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CMB: our source of  info about the early universe
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CMB: info encoded in the statistics of  temperature anisotropies

3. Root mean square

2. Temperature anisotropies
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1. Average temperature

T̄ = 2.726

�T (n̂) ⌘ T (n̂)� T̄
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CMB: info encoded in the statistics of  temperature anisotropies

h�T (n̂)�T (n̂0
)ic =

X

`

4⇡

2`+ 1

C` P`(cos ✓)

ha`ma?`0m0ic = �``0�mm0 C`

�T (n̂) =
X

`m

a`m Y`m(n̂)

Equivalently, in angular Fourier space:

4. Two point function

where         is defined from:

(assuming isotropic distribution)

C` angular Power Spectrum
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classical statistical average

a`m

In real space: Legendre pols.



Rich structure!

Observations (Planck 2015)
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A remarkably beautiful idea about the origin of  the statistics of  temp. 
anisotropies:

Vacuum quantum fluctuations in the early universe!

We need to compute the quantum statistics (i.e. correlation functions) of  a field

h0|�̂�~k �̂�~k0 |0i ⌘ (2⇡)3�(3)(~k + ~k0)
2⇡2

k3
P��(k)

In angular Fourier space:

(for a hom+isot state)

 Primordial Power SpectrumP��(k)

Propagating until the instant of  last scattering, and projecting on a sphere, produces C`
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In angular Fourier space:

5. Three-point function

In real space:

h�T (n̂1)�T (n̂2)�T (n̂2)ic

ha`1m1a`2m2a`3m3ic = G`1`2`3
m1m2m3

b`1`2`3

where

This is what cosmologists call non-Gaussianity
(because in a Gaussian probability distribution the three-point function vanishes)

G`1`2`3
m1m2m3

⌘
Z

dn̂ Y`1m1(n̂)Y`2m2(n̂)Y`3m3(n̂)

(assuming isotropic distribution)

 Bispectrumb`1`2`3
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Primordial origin: three-point quantum correlation function

(for a hom+isot state)

 Primordial Bispectrum

Propagating until the instant of  last scattering, and projecting on a sphere, produces

In angular Fourier space:

h0|�̂�~k1
�̂�~k2

�̂�~k3
|0i ⌘ (2⇡)3�(3)(~k1 + ~k2 + ~k3)B��(k1, k2, k3)

B��(k1, k2, k3)

b`1`2`3

Therefore, studying primordial non-Gaussianity simply means computing the 
three-point correlation function of  scalar perturbations 
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Because we have data!!!

Data on non-Gaussianity provides valuable information 
about the mechanism generating the primordial 

perturbations
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Observations (Planck 2015)

Again, rich structure!
Although most of  this structure is not primordial

 Bispectrumb`1`2`3

Forthcoming observations of  the Large Scale Structure (galaxy distribution) is expected to 
provide richer observational data on non-Gaussianity15



2. Non-Gaussianity and LQC
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Last few years: lot of  interest in LQC-phenomenology

Reason: contact between quantum gravity and observations
4/10/15, 5:29 PMThe Beginning of Everything: A New Paradigm Shift for the Infant Universe — Eberly College of Science

Page 1 of 4http://science.psu.edu/news-and-events/2012-news/Ashtekar11-2012

The Beginning of  Everything: A New Paradigm
Shift for the Infant Universe

Diagram showing evolution of  the Universe according to the new paradigm of  Loop Quantum Origins, developed
by scientists at Penn State University and published on 11 December 2012 as an "Editor's Suggestion" paper in the
scientific journal Physical Review Letters. Image source: P. Singh Physics 5, 142 (2012). Image credit: Alan Stonebraker.
For re-use requests, contact APS.

28 November 2012 — A new paradigm for understanding the earliest eras in the history of  the universe has been
developed by scientists at Penn State University. Using techniques from an area of  modern physics called loop
quantum cosmology, developed at Penn State, the scientists now have extended analyses that include quantum
physics farther back in time than ever before -- all the way to the beginning. The new paradigm of  loop quantum
origins shows, for the first time, that the large-scale structures we now see in the universe evolved from fundamental
fluctuations in the essential quantum nature of  "space-time," which existed even at the very beginning of  the universe
over 14 billion years ago. The achievement also provides new opportunities for testing competing theories of  modern
cosmology against breakthrough observations expected from next-generation telescopes. The research will be
published on 11 December 2012 as an "Editor's Suggestion" paper in the scientific journal Physical Review Letters.

"We humans always have yearned to understand more about the origin and evolution of  our universe," said Abhay
Ashtekar, the senior author of  the paper. "So it is an exciting time in our group right now, as we begin using our
new paradigm to understand, in more detail, the dynamics that matter and geometry experienced during the earliest
eras of  the universe, including at the very beginning." Ashtekar is the Holder of  the Eberly Family Chair in Physics at
Penn State and the director of  the university's Institute for Gravitation and the Cosmos. Coauthors of  the paper,

Fig. Credits:  
P. Singh, Physics 5, 142 (2012) 

Framework: LQC + Inflation

17



LQC, Non-Gaussianity and CMB anomalies

Ivan Agullo

Loops 15, Erlangen,  2015

Louisiana State University
Ivan Agullo

Focus so far: Power spectrum

10�4 10�3 10�2 10�1 100 101

k/k⇤
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10�9
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10�7

P R
(k

)

kLQC/k⇤

Inflation without LQC
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Gray points: Power spectrum numerically computed for individual values of  k 
 Black points: Average of  gray points
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I.A., Ashtekar, Barrau, Bojowald, Bonga, Bolliet, Brizuela, Calcagni, Castelló-Gomar, Grain, 
Gupt, Martin-Benito, Martin de Blas, Mena-Marugan, Mielczarek, Linsefors, Nelson, 
Olmedo, Vijayakumar, Wilson-Ewing,… 

Similar results obtained by different groups:

For other choices of  initial conditions (for perturbations) the infrared part of  the 
spectrum is suppressed rather than enhanced (Martin de Blas-Olmedo, Ashtekar-Gupt) 

Comparing with data:

(1) Restriction to the parameter space to the region that makes results compatible with 
observation

(2) In this region of  the parameter space, look for LQC-specific signatures, both for 
scalar and tensor modes.
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In this talk, we argue that this (the analysis of  the power spectrum) is only half  
of  the story

(b) Even if  perturbation theory turns out to be OK, there are strong observational upper 
bounds we must satisfy to claim compatibility with data.

(a) If  it is large enough, the perturbative expansion used to compute the power spectrum 
would break down. 

This is a real possibility, because the bounce takes place at the Planck scale

An analysis of  non-Gaussianity is therefore needed (a) to claim self-consistency 
and (b) to make statements about predictions. 

How big is the non-Gaussianity generated by the bounce?  
It remains to be answered:

20
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What we need to do (now schematically, more details later):

(1) Second order classical cosmological perturbation theory: 

H = H(2) +H(3)

: piece quadratic in perturbation.  Dictates the free evolution (linear equations of  motion)H(2)

H(3) : cubic piece.  Interaction Hamiltonian

(3) Power Spectrum

h0|�̂�~k1
�̂�~k2

|0i = h0|U †�̂�
I
~k1
�̂�

I
~k2
U †|0i = h0|�̂�I

~k1
�̂�

I
~k2
|0i�i/~

Z ⌘

⌘0

d⌘0 h0|
h
�̂�

I
~k1
�̂�

I
~k2
, Ĥ(3)I

int (⌘0)
i
|0i+ O(H(3))2 .

Next-to-leading order correction
It must be small for the perturbative expansion to 

make sense21

(2) Quantize, and use interaction picture

Operators evolve with the free Hamiltonian             :H(2)

States evolve with the interaction Hamiltonian           : H(3) U(⌘, ⌘0) = T exp

✓
�i/~

Z ⌘

⌘0

d⌘0 ˆH(3)I
(⌘0)

◆
,

�̂�
I
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(4) Non-Gaussianity

h0|�̂�~k1
(⌘)�̂�~k2

(⌘)�̂�~k3
(⌘)|0i = h0|�̂�

I
~k1
(⌘)�̂�

I
~k2
(⌘)�̂�

I
~k3
(⌘)|0i
0

� i/~
Z

d⌘0h0|
h
�̂�

I
~k1
(⌘)�̂�

I
~k2
(⌘)�̂�

I
~k3
(⌘), Ĥ(3)I(⌘0)

i
|0i+ O(H(3))2

This is what we need to compute
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3. Results
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We have developed a numerical code to compute non-Gaussianity in generic FRLW 
spacetime  

Embedded in the numerical infrastructure CLASS

Codes for non-Gaussianity already existed, but their range of  applicability is not 
generic enough for our problem

We have made it publicly available: https://github.com/borisbolliet/class_lqc_public

This code will be useful beyond LQC

24
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(1) Power Spectrum 

10�4 10�3 10�2 10�1 100 101

k/k⇤

10�10

10�9

10�8

10�7

P R
(k

)

kLQC/k⇤

LQC introduces a new 
scale in the problem kLQC. 
It is defined by the Ricci 
curvature at the bounce 

IR modes relative to kLQC UV modes relative to kLQC

Inflation without LQC

Agreement with standard inflation for UV modes (these modes don’t “feel” the bounce”)

The bounce affects the IR part of  the spectrum
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(2) Non-Gaussianity

10�3 10�2 10�1 100 101

k/k⇤

�103

�101

�10�1
0

10�1

101

103

f N
L
(k

,k
,k

)

kLQC/k⇤

10�3 10�2 10�1 100 101

k/k⇤

10�3

10�2

10�1

100

101

102

103

104

|f
N

L
(k

,k
,k

)|

kLQC/k⇤

: Bispectrum in “units” of  the power spectrum. See later for 
exact definition

First, we show equilateral configurations, i.e. k1=k2=k3

fNL(k1, k2, k3)
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Similar results for other configurations

10�3 10�2 10�1 100 101
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10�2

10�1

100

101

102
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104

|f
N

L
(k

,k
,k

/2
)|

kLQC/k⇤

10�2 10�1 100 101

k/k⇤
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|f
N

L
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/1
0)

|

kLQC/k⇤
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k/k⇤

10�3
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N
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kLQC/k⇤
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10�4 10�3 10�2 10�1 100 101

k/k⇤

10�10

10�9

10�8

10�7

P R
(k

)

kLQC/k⇤

UV modes relative to kLQCIR modes relative to kLQC

Inflation without LQC

IR modes relative to kLQC UV modes relative to kLQC

Qualitative understanding: similar to the power spectrum

The bounce amplifies non-Gaussianity significantly, for modes that are of  the same 
order or more infrared than the curvature radius at the bounce 

Non-Gaussianty in LQC are strongly scale dependent, in contrast to a majority of  
models in the market 
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Summary of  the results:

(1) The results of  standard inflation exactly recovered for UV modes (nice check)

(2) Non-Gaussianity is very oscillatory  

(3) The amplitude largely enhanced by the bounce for IR modes  

(5) Non-Gaussianity “more sensitive” to the bounce than the power spectrum (see 
previous slide)

(6) We have check that, despite the large enhancement, perturbation theory is 
under control

(7) Comparison with observations modifies the range of  parameters that makes 
the predictions of  LQC compatible with data

(4) The origin of  this enhancement understood analytically
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Additional Details
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Additional Details

1. Second order classical perturbation theory
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Well-known in the Lagrangian framework (Maldacena’s paper on non-
Gaussianity in inflation  2003)

For LQC we need Hamiltonian approach

We couldn’t find this in the literature, so we did it ourselves  

We took advantage of  the very useful Mathematica package xAct, written by 
Brizuela, Martin, and Mena-Marugán
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2

homogeneous and isotropic subspace, �
FLRW

2 �. In this neighborhood, the canonical variables
can be written as

�(~x) = � + ��(~x)

⇧
�

(~x) = p
�

+ �p
�

(~x)

q
ij

(~x) = q̊
ij

+ �q
ij

(~x)

⇡ij(~x) = ⇡̊ij + �⇡ij(~x) . (2.4)

where ��(~x), �p
�

(~x), �q
ij

(~x), �⇡ij(~x) describe small perturbations around the homogenous and
isotropic background variables �, p

�

, q̊
ij

, ⇡̊ij .

A. Background variables

The fields �, p
�

, q̊
ij

, ⇡̊ij are chosen to describe a spatially flat FLRW universe. This implies the
following. First of all, because we are dealing here with homogenous fields, the spatial integrals
involved in the definition of the Hamiltonian and the symplectic form diverge. But this is a
spurious infrared divergence, which can be eliminated by restricting the integrals to some finite,
although arbitrarily large cubical coordinate volume V

0

. This infrared regulator will appear only
in intermediate expressions, and physical predictions will not depend on it, therefore allowing us
to take V

0

! 1 at the end of the calculation. Secondly, the basics Poisson brackets are

{�, p
�

} =
1

V
0

; {q̊
ij

, ⇡̊kl} =
1

V
0

�k
(i

�l
j)

. (2.5)

The rest of Poisson brackets between background variables, as well as the ‘mixed’ brackets involving
both background and perturbation fields, all vanish. Thirdly, homogeneity and isotropy allows us
to choose a gauge in which the metric variables take the manifestly symmetric form

q̊
ij

= a2 �
ij

; ⇡̊ij =
⇡
a

6 a
�ij , (2.6)

where numerical factors have been chosen to make a and ⇡
a

canonically conjugated variables,
{a,⇡

a

} = 1

V0
. Furthermore, the background degrees of freedom are subject only to a scalar

constraint—the form (2.6) of the metric variables make the vector constraint to vanish identically—
given by the terms in (2.2) involving only background variables. This is the Friedmann constraint

S(0) = �⇡2

a

12 a
+

p2
�

2 a3
+ a3 V (�) = 0 , (2.7)

where V (�) is the potential of the scalar field. And finally, dynamics is generated by the Hamilto-
nian

HFRW =

Z
d3xN S(0) = V

0

N

"
�⇡2

a

12 a
+

p2
�

2 a3
+ a3 V (�)

#
, (2.8)

where the homogenous lapse N may depend on background variables. Commonly used choices are
N = 1, which corresponds to using proper—or cosmic—time t as time variable, N = a correspond-
ing to conformal time ⌘, or N = a3 to harmonic time ⌧ . Friedmann equations are easily obtained
from Hamilton’s equations of motion which, in cosmic time, read

ȧ = {a,HFRW} = �
⇡
a

6 a
; ⇡̇

a

= {⇡
a

,HFRW} = �

�3

2

1

a4
p2
�

+ 3a2 V (�) +


12a2
⇡2

a

�
(2.9)

Expansion at second order. Two strategies:

where:

�(~x) = �+ ��(~x) ,

P�(~x) = p� + �p�(~x) ,

qij(~x) = q̊ij + �qij(~x) ,

⇡

ij(~x) = ⇡̊

ij + �⇡

ij(~x)
Versus

We choose the second strategy, because it is easier to implement in the 
quantum theory via standard perturbative techniques in the interaction 
picture. 

Non-linear e.o.m.Linear e.o.m. with sources

Perturbative strategy

�(~x) = �+ ��

(1)(~x) +
1

2!
��

(2)(~x) + . . .

P�(~x) = p� + �p

(1)
� (~x) +

1

2!
�p

(2)
� (~x) + . . .

qij(~x) = q̊ij + �q

(1)
ij (~x) +

1

2!
�q

(2)
ij (~x) + . . .

⇡

ij(~x) = ⇡̊

ij + �⇡

ij (1)(~x) +
1

2!
�⇡

ij (2)(~x) + . . .
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Gauge choice for scalar perturbations

Remember: no matter what your choice is, the results must be reported in 
terms of  the comoving curvature perturbations     (it remains constant at super-
Hubble scales) 
     

R

But       is ill-defined a bit before inflation starts, when �̇ = 0

We use       to parameterized scalar perturbations and fix the gauge so��

We compute correlation functions for       and translate them to      at the 
end of  inflation, using the relation:

7

H(3) = N

Z
d3x

 
9 p3

�

4 a4 ⇡
a

�
27 p5

�

2 a6⇡3

a

� 3 a2 p
�

V
��

2⇡
a

+
a3 V

���

6

!
��3

� 3 p
�

2 a4 ⇡
a

�p2
�

���
9 p3

�

a5⇡2

a

�p
�

��2 � 3 a2 p
�

2⇡
a

�� (~@��)2 +
3 p2

�

N a⇡
a

��2@2�

+
1

N
�p

�

@
i

�� @i� +
3 a2 p

�

N2 2⇡
a

�� @2�@2� � 3 a2 p
�

N2 2⇡
a

�� @
i

@
j

�@i@j�

�
. (2.23)

The subscripts � in the potential V (�) indicate derivative with respect to �. It can be checked,
by performing a Legendre transformation, that these expressions agree with the third-order La-
grangian first derived in [7]. It is also important to remark that we have not used the Friedmann
constraint (2.7) to derive, or simplify, the second and third order Hamiltonians. This will be impor-
tant in the next section, where these Hamiltonians will be the starting point to evolve perturbations
in loop quantum cosmology.

The second order Hamiltonian H(2) provides the free evolution of perturbations, i.e., it give rise
to the linear equations of motion

(⇤ � A(t)) ��(~x, t) = 0 , (2.24)

where ⇤ is the D’Alembertian of the FLRW background metric.
The third oder piece of the Hamiltonian, H(3), is the so-called interaction Hamiltonian, which

provides self-interactions between perturbations (quadratic terms in the equations of motion). In
the quantum theory, discussed in the next section, interactions are included perturbatively, by
using the standard interaction picture in quantum field theory.

To finish, we need to lear how to related �� and the comoving curvature perturbations R. This
will allow as to write our results in terms R at the end of inflation. This relation was derived in
[7] and is given, in cosmic time, by

R(~x, t) = �z

a
�� +


�3

2
+ 3

V
�

a2

 p
�

⇡
a

�
p


4

z

a

�⇣z
a
��
⌘
2

+
3 a2

⇡
a

d

dt

hz
a
��
i
2

� 3

2

1

⇡
a

z2

a2
(@

i

��)2 +
3

2

1

⇡
a

z2

a2
@�2@

i

@
j

�
@i��@j��

�

+ 6
a z

⇡
a

@
i

�@i�� � 6
a z

⇡
a

@�2@
i

@
j

⇥
@i�@j��

⇤
. (2.25)

where z := � 6



p�

⇡a
. Although this relation looks complicated, we will only need to use it at the

end of the inflation. At that time, only the terms in the first line will be relevant. The rest of
terms give negligible contribution. The reason for this is that perturbations that can a↵ect the
CMB have wavelengths much larger than the Hubble radius at the end of inflation. As previously
mentioned, these super-Hubble modes of the R variable become time independent. These two
facts—very long wave-length compared to the Hubble radius, and time independence—make that
both the spatial and time derivatives appearing in the second and third line of the previous equation
become negligibly small compared to the terms in the first line.

III. EXTENSION OF THE DRESSED METRIC APPROACH TO SECOND-ORDER IN
PERTURBATIONS

This section is devoted to obtaining the equations that describe the propagation of scalar per-
turbations in the Planck era of the universe. We will use the so-called dressed metric approach

15

in the classical theory N
�

= V
0

H
0

a3). As for the free evolution, we are not free of factor order
ambiguities, and we choose a symmetric ordering. At second order, therefore, the evolution of
perturbations is sensitive to more ‘moments’ of the state  

0

(v,�) chosen to describe the quantum
FLRW geometry (in addition to the three already involved in the free evolution, Eqs. (3.17), (3.18),
and (3.19)). These moments can be read directly from (2.23)—keeping in mind the expression for
N

�

and the symmetric ordering—and we do not write them here again.
In the computations of the three-point correlation function of scalar perturbations, we will

restrict to states to states  
0

for the background geometry with small dispersion in v, and in
section ?? we will generalized these results by considering di↵erent values for ⇢

B

. The motivation
comes again from the results of [12], summarized above Eqn. (3.20). Then, the interaction
Hamiltonian for �� at leading order in perturbations is obtained by just substituting in (2.23)
the chosen solution ā(t), ⇡̄

a

(t), �̄(t), p̄
�

(t) of the e↵ective equations (3.10). We will now use
this Hamiltonian to obtain an expression for the primordial non-Gaussianity, at the end of inflation.

At the lowest order in perturbations, primordial non-Ganissianity is characterized by the Bis-
pectrum BR(k

1

, k
2

, k
3

) of comoving curvature perturbations at the end of inflation, defined from
its three-point correlation function via
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|0i =: (2⇡)3�(3)(~k
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) . (3.25)

BR(k
1

, k
2

, k
3

) has dimensions of (length)�6. It is common, and convenient, to characterize the size
of the bispectrum in terms of the dimensionless function f

NL

(k
1

, k
2

, k
3

),

BR(k
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, k
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, k
3

) =: �6

5
f
NL

(k
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, k
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, k
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) ⇥ (�
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k1�k3 +�
k2�k3) , (3.26)

see appendix A2 of 0711.4126 for discussions about this sign. where �
k

:= 2⇡

2

k

3 PR(k) is the
dimensionful Power spectrum. (The numerical factor �6/5 appears because of historical reasons
[22].) Hence, f

NL

can be roughly thought of as the “amount of correlations in units of �2

k

”.
The strategy that we shall follow is to use the relation between R and �� to write f

NL

in terms
of the correlation functions of ��, and then use the interaction Hamiltonian of �� to compute the
result. This relation was given in (2.25),
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⌘
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+ · · · , (3.27)

where, the dots represent terms producing subdominant contributions to correlations functions at
the end of inflation for the wave-numbers ~k that we can observe today (se discussion below Eqn.
(2.25)). With this, we have
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+ · · ·
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. (3.28)

In this equation, (~k
i

$ ~k
j

) indicates terms obtained from the first term in the second line after

interchanging ~k
i

and ~k
j

, and the dots in the third line indicate contributions containing five or

more fields �̂�
~

k

. To compute (3.28) at the end of inflation, we will use standard time-dependent
perturbation theory in the interaction picture, where operators evolve with the free Hamiltonian,
and states with the interaction Hamiltonian.

subdominant terms  
at the end of  inflationwhere 34

�qij = 0

��

R

R

First question, Gauge invariant versus Gauge fixed



LQC, Non-Gaussianity and CMB anomalies

Ivan Agullo

Loops 15, Erlangen,  2015

Louisiana State University
Ivan Agullo

6

(iii) Find the lapse and shift associated with this gauge fixing by demanding that the gauge
conditions are preserved upon evolution; i.e. use the equations

˙̃�
1

= {�̃
1

,H} = 0 ; ˙̃�
2

= {�̃
2

,H} = 0 . (2.18)

to obtain �Ñ and and �Ñ i in terms of ⇡̃
1

, ⇡̃
2

, ��̃, and �p̃
�

. For our purposes—to obtain
the third order Hamiltonian— keeping terms in �Ñ and and �Ñ i only up to first order in
perturbations will su�ce.

(iv) Use the first order constraints, S(1)(~x) = 0, V(1)

i

(~x) = 0 to eliminate the conjugated variables
⇡̃
1

, ⇡̃
2

in favor of ��̃ and �p̃
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1
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1

(��̃, �p̃
�

), ⇡̃
2

= ⇡̃
2

(��̃, �p̃
�

).

(v) Plug these results in the Hamiltonian (2.3) and keep terms up to third order in perturbations.

We perform this calculation using xPert [9], a suite of free packages for tensor computer algebra
in Mathematica. The result is
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. (2.19)

Moving back to position space, we obtain the expression for the third-order Hamiltonian for scalar
perturbations H

pert

= H(2) + H(3), where5

H(2) = N
1

2

Z
d3x


1

a3
�p2
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+ a3 (~@��)2 + a3A ��2
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, (2.20)

where the potential A is given by
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; (2.21)
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. (2.22)

5 We have performed the canonical transformatoin (��, �p�) ! (��, �p̄� = �p� � 3 p2�
a⇡a

��) to eliminate a term
proportional to �p��� in the second order Hamiltonian. From now on we will work with �p̄�, but we will drop the
bar to simplify the notation.
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(iii) Find the lapse and shift associated with this gauge fixing by demanding that the gauge
conditions are preserved upon evolution; i.e. use the equations

˙̃�
1

= {�̃
1

,H} = 0 ; ˙̃�
2

= {�̃
2

,H} = 0 . (2.18)

to obtain �Ñ and and �Ñ i in terms of ⇡̃
1

, ⇡̃
2

, ��̃, and �p̃
�

. For our purposes—to obtain
the third order Hamiltonian— keeping terms in �Ñ and and �Ñ i only up to first order in
perturbations will su�ce.

(iv) Use the first order constraints, S(1)(~x) = 0, V(1)

i

(~x) = 0 to eliminate the conjugated variables
⇡̃
1

, ⇡̃
2

in favor of ��̃ and �p̃
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, i.e. to find the relations ⇡̃
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), ⇡̃
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= ⇡̃
2

(��̃, �p̃
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).

(v) Plug these results in the Hamiltonian (2.3) and keep terms up to third order in perturbations.

We perform this calculation using xPert [9], a suite of free packages for tensor computer algebra
in Mathematica. The result is

�Ñ = � 2N
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1

+
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).
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Moving back to position space, we obtain the expression for the third-order Hamiltonian for scalar
perturbations H

pert

= H(2) + H(3), where5

H(2) = N
1

2

Z
d3x


1

a3
�p2
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+ a3 (~@��)2 + a3A ��2
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, (2.20)

where the potential A is given by

A = �9
p4
�

a8⇡2

a

+
3

2

p2
�

a6
� 6 p

�

a⇡
a

V
�

+ V
��

+6
p
�

ṗ
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5 We have performed the canonical transformatoin (��, �p�) ! (��, �p̄� = �p� � 3 p2�
a⇡a

��) to eliminate a term
proportional to �p��� in the second order Hamiltonian. From now on we will work with �p̄�, but we will drop the
bar to simplify the notation.
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The subscripts � in the potential V (�) indicate derivative with respect to �. It can be checked,
by performing a Legendre transformation, that these expressions agree with the third-order La-
grangian first derived in [7]. It is also important to remark that we have not used the Friedmann
constraint (2.7) to derive, or simplify, the second and third order Hamiltonians. This will be impor-
tant in the next section, where these Hamiltonians will be the starting point to evolve perturbations
in loop quantum cosmology.

The second order Hamiltonian H(2) provides the free evolution of perturbations, i.e., it give rise
to the linear equations of motion

(⇤ � A(t)) ��(~x, t) = 0 , (2.24)

where ⇤ is the D’Alembertian of the FLRW background metric.
The third oder piece of the Hamiltonian, H(3), is the so-called interaction Hamiltonian, which

provides self-interactions between perturbations (quadratic terms in the equations of motion). In
the quantum theory, discussed in the next section, interactions are included perturbatively, by
using the standard interaction picture in quantum field theory.

To finish, we need to lear how to related �� and the comoving curvature perturbations R. This
will allow as to write our results in terms R at the end of inflation. This relation was derived in
[7] and is given, in cosmic time, by

R(~x, t) = �z

a
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
�3

2
+ 3
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@
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⇤
. (2.25)

where z := � 6



p�

⇡a
. Although this relation looks complicated, we will only need to use it at the

end of the inflation. At that time, only the terms in the first line will be relevant. The rest of
terms give negligible contribution. The reason for this is that perturbations that can a↵ect the
CMB have wavelengths much larger than the Hubble radius at the end of inflation. As previously
mentioned, these super-Hubble modes of the R variable become time independent. These two
facts—very long wave-length compared to the Hubble radius, and time independence—make that
both the spatial and time derivatives appearing in the second and third line of the previous equation
become negligibly small compared to the terms in the first line.

III. EXTENSION OF THE DRESSED METRIC APPROACH TO SECOND-ORDER IN
PERTURBATIONS

This section is devoted to obtaining the equations that describe the propagation of scalar per-
turbations in the Planck era of the universe. We will use the so-called dressed metric approach

Second order Hamiltonian (free evolution)

Potential:

Produces equations of  motion:

35
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The subscripts � in the potential V (�) indicate derivative with respect to �. It can be checked,
by performing a Legendre transformation, that these expressions agree with the third-order La-
grangian first derived in [7]. It is also important to remark that we have not used the Friedmann
constraint (2.7) to derive, or simplify, the second and third order Hamiltonians. This will be impor-
tant in the next section, where these Hamiltonians will be the starting point to evolve perturbations
in loop quantum cosmology.

The second order Hamiltonian H(2) provides the free evolution of perturbations, i.e., it give rise
to the linear equations of motion

(⇤ � A(t)) ��(~x, t) = 0 , (2.24)

where ⇤ is the D’Alembertian of the FLRW background metric.
The third oder piece of the Hamiltonian, H(3), is the so-called interaction Hamiltonian, which

provides self-interactions between perturbations (quadratic terms in the equations of motion). In
the quantum theory, discussed in the next section, interactions are included perturbatively, by
using the standard interaction picture in quantum field theory.

To finish, we need to lear how to related �� and the comoving curvature perturbations R. This
will allow as to write our results in terms R at the end of inflation. This relation was derived in
[7] and is given, in cosmic time, by

R(~x, t) = �z
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where z := � 6



p�

⇡a
. Although this relation looks complicated, we will only need to use it at the

end of the inflation. At that time, only the terms in the first line will be relevant. The rest of
terms give negligible contribution. The reason for this is that perturbations that can a↵ect the
CMB have wavelengths much larger than the Hubble radius at the end of inflation. As previously
mentioned, these super-Hubble modes of the R variable become time independent. These two
facts—very long wave-length compared to the Hubble radius, and time independence—make that
both the spatial and time derivatives appearing in the second and third line of the previous equation
become negligibly small compared to the terms in the first line.

III. EXTENSION OF THE DRESSED METRIC APPROACH TO SECOND-ORDER IN
PERTURBATIONS

This section is devoted to obtaining the equations that describe the propagation of scalar per-
turbations in the Planck era of the universe. We will use the so-called dressed metric approach

Third order Hamiltonian (self-interactions)

6

(iii) Find the lapse and shift associated with this gauge fixing by demanding that the gauge
conditions are preserved upon evolution; i.e. use the equations
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,H} = 0 . (2.18)

to obtain �Ñ and and �Ñ i in terms of ⇡̃
1

, ⇡̃
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, ��̃, and �p̃
�

. For our purposes—to obtain
the third order Hamiltonian— keeping terms in �Ñ and and �Ñ i only up to first order in
perturbations will su�ce.

(iv) Use the first order constraints, S(1)(~x) = 0, V(1)
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(v) Plug these results in the Hamiltonian (2.3) and keep terms up to third order in perturbations.

We perform this calculation using xPert [9], a suite of free packages for tensor computer algebra
in Mathematica. The result is
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Moving back to position space, we obtain the expression for the third-order Hamiltonian for
scalar perturbations H

pert

= H(2) + H(3), where5
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a

�� @2�@2� � 3 a2 p
�

N2 2⇡
a

�� @
i

@
j

�@i@j�

�
. (2.22)

5 We have performed the canonical transformatoin (��, �p�) ! (��, �p̄� = �p� � 3 p2�
a⇡a

��) to eliminate a term
proportional to �p��� in the second order Hamiltonian. From now on we will work with �p̄�, but we will drop the
bar to simplify the notation.

with:

After a Legendre transformation, agreement with Maldacena’s third order  Lagrangian
Check:

Note: most of  terms are independent of            . These are self-interactions mediated 
by gravity

V (�)
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i~ @�� = h 0|Ĥpert| 0i � 

Dressed metric approach (Ashtekar-Kaminski-Lewandowski, I.A., Dapor, Nelson, 
Puchta, Tavakoli)

The formal derivation is the same as at it is when working at leading order in 
perturbations. I don’t repeat it here, but only emphasize the differences

Main difference: the Hamiltonian for perturbations now acquires a new term (in red):

State of  perturbations FLRW background

Ĥpert = V0

⇣
(Ĥ0)

�1/2 (Ĥ(2)[N⌧ ] + Ĥ(3)[N⌧ ]) (Ĥ0)
�1/2

⌘
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Under the test field approx. the e.o.m. for perturbation turn out to be:
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(⇤̃� Ã) �̂�(~x, ⌘̃) = 0

d⌘̃ = V0 hĤ�1
0 i1/2 hĤ�1/2

0 â4Ĥ
�1/2
0 i1/2 d�

Ã =
hĤ� 1

2
0 â2 Â â2 Ĥ

� 1
2

0 i

hĤ� 1
2

0 â4 Ĥ
� 1

2
0 i

First, free evolution:

ã4 =
hĤ�1/2

0 â4Ĥ
�1/2
0 i

h Ĥ�1
0 i

⇤̃ g̃abdx
a
dx

b = ã

2(⌘̃) (�d⌘̃

2 + d~x

2)d’Alembertian of  the dressed metric

with  scale factor:

and relation conformal time-internal time

and dressed potential

If  a sharply peaked state       is used for the background, the dressed metric reduces effective metric

I.A., Ashtekar, Gupt 2017, studied phenomenology with states with large dispersions

Three moments of           affect the dynamics of  perturbations 0
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Same as in previous papers:
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U(⌘, ⌘0) = T exp

✓
�i/~

Z ⌘

⌘0

d⌘0 ˆHI
int(⌘

0
)

◆

Ĥint = h 0|V0

⇣
(Ĥ0)

�1/2 Ĥ(3)[N⌧ ] (Ĥ0)
�1/2

⌘
| 0i

A bunch of  new moments of         enter in the dynamics 0

One can compute the new moments using the same techniques  
as in I.A., Ashtekar, Gupt 2017

We will focus here on sharply peaked states

40

Interactions:

Evolution operator:

Where:
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15

in the classical theory N
�

= V
0

H
0

a3). As for the free evolution, we are not free of factor order
ambiguities, and we choose a symmetric ordering. At second order, therefore, the evolution of
perturbations is sensitive to more ‘moments’ of the state  

0

(v,�) chosen to describe the quantum
FLRW geometry (in addition to the three already involved in the free evolution, Eqs. (3.17), (3.18),
and (3.19)). These moments can be read directly from (2.22)—keeping in mind the expression for
N

�

and the symmetric ordering—and we do not write them here again.
In the computations of the three-point correlation function of scalar perturbations, we will

restrict to states to states  
0

for the background geometry with small dispersion in v, and in
section ?? we will generalized these results by considering di↵erent values for ⇢

B

. The motivation
comes again from the results of [12], summarized above Eqn. (3.20). Then, the interaction
Hamiltonian for �� at leading order in perturbations is obtained by just substituting in (2.22)
the chosen solution ā(t), ⇡̄

a

(t), �̄(t), p̄
�

(t) of the e↵ective equations (3.10). We will now use
this Hamiltonian to obtain an expression for the primordial non-Gaussianity, at the end of inflation.

At the lowest order in perturbations, primordial non-Ganissianity is characterized by the Bis-
pectrum BR(k

1

, k
2

, k
3

) of comoving curvature perturbations at the end of inflation, defined from
its three-point correlation function via

h0|R̂
~

k1
R̂

~

k2
R̂

~

k3
|0i =: (2⇡)3�(3)(~k

1

+ ~k
2

+ ~k
3

)BR(k
1

, k
2

, k
3

) . (3.25)

BR(k
1

, k
2

, k
3

) has dimensions of (length)�6. It is common, and convenient, to characterize the size
of the bispectrum in terms of the dimensionless function f

NL

(k
1

, k
2

, k
3

),

BR(k
1

, k
2

, k
3

) =: �6

5
f
NL

(k
1

, k
2

, k
3

) ⇥ (�
k1�k2 +�

k1�k3 +�
k2�k3) , (3.26)

see appendix A2 of 0711.4126 for discussions about this sign. where �
k

:= 2⇡

2

k

3 PR(k) is the
dimensionful Power spectrum. (The numerical factor �6/5 appears because of historical reasons
[22].) Hence, f

NL

can be roughly thought of as the “amount of correlations in units of �2

k

”.
The strategy that we shall follow is to use the relation between R and �� to write f

NL

in terms
of the correlation functions of ��, and then use the interaction Hamiltonian of �� to compute the
result. This relation was given in (2.24),

R(~x, ⌘) = �z

a
��(~x, ⌘) +


�3

2
+ 3

V
�

a2

 p
�

⇡
a

�
p


4

z

a

�⇣z
a
��(~x, ⌘)

⌘
2

+ · · · , (3.27)

where, the dots represent terms producing subdominant contributions to correlations functions at
the end of inflation for the wave-numbers ~k that we can observe today (se discussion below Eqn.
(2.24)). With this, we have

h0|R̂
~

k1
R̂

~

k2
R̂

~

k3
|0i =

⇣
�z

a

⌘
3

h
h0|�̂�

~

k1
�̂�

~

k2
�̂�

~

k3
|0i

+

✓
�3

2
+ 3

V
�

a2

 p
�

⇡
a

�
p


4

z

a

◆ ⇣
�z

a

⌘ Z
d3p

(2⇡)3
h0|�̂�

~

k1
�̂�

~

k2
�̂�

~p

�̂�
~

k3�~p

|0i + (~k
1

$ ~k
3

) + (~k
2

$ ~k
3

)

+ · · ·
i
. (3.28)

In this equation, (~k
i

$ ~k
j

) indicates terms obtained from the first term in the second line after

interchanging ~k
i

and ~k
j

, and the dots in the third line indicate contributions containing five or

more fields �̂�
~

k

. To compute (3.28) at the end of inflation, we will use standard time-dependent
perturbation theory in the interaction picture, where operators evolve with the free Hamiltonian,
and states with the interaction Hamiltonian.

20

Now, in order to compute the bispectrum BR(k
1

, k
2

, k
3

) in terms of ��, we use the relation
between both variables given in section II D

R(~x, ⌘) = �a

z
��(~x, ⌘) +


�3

2
+ 3

V
�

a5

 p
�

⇡
a

+


4

z2

z2

�⇣a
z
��(~x, ⌘)

⌘
2

+ · · · , (3.27)

where, the dots represent terms producing subdominant contributions to correlation functions at
the end of inflation for the wave-numbers ~k that we can observe today (see equation (2.25) and
the discussion after it). With this, we have

h0|R̂
~

k

1

R̂
~

k

2

R̂
~

k

3

|0i =
⇣
�a

z

⌘
3

h0|�̂�
~

k

1

�̂�
~

k

2

�̂�
~

k

3

|0i

+

✓
�3

2
+ 3

V
�

a5

 p
�

⇡
a

+


4

z2

a2

◆ ⇣
�a

z

⌘
4

h Z d3p

(2⇡)3
h0|�̂�

~

k

1

�̂�
~

k

2

�̂�
~p

�̂�
~

k

3

�~p

|0i + (~k
1

$ ~k
3

) + (~k
2

$ ~k
3

)

+ · · ·
i
. (3.28)

In this equation, (~k
i

$ ~k
j

) indicates terms obtained from the first term in the second line after

interchanging ~k
i

and ~k
j

, and the dots indicate subdominant contributions. To obtain the scalar
bispectrum BR and f

NL

at leading order we need to compute the three- and four-point correlation
functions of �̂�

~

k

.
Let us begin with the three-point function, appearing in the first line in (3.28). At leading order

in the interaction Hamiltonian, it is given by

h0|�̂�
~

k

1

(⌘)�̂�
~

k

2

(⌘)�̂�
~

k

3

(⌘)|0i = h0|�̂�I

~

k

1

(⌘)�̂�
I

~

k

2

(⌘)�̂�
I

~

k

3

(⌘)|0i

� i/~
Z

d⌘0h0|
h
�̂�

I

~

k

1

(⌘)�̂�
I

~

k

2

(⌘)�̂�
I

~

k

3

(⌘), ĤI

int

(⌘0)
i
|0i

+ O(H2

int

) . (3.29)

The first term in the right hand side vanishes, h0|�̂�I

~

k

1

�̂�
I

~

k

2

�̂�
I

~

k

3

|0i = 0, since �̂�
I

~

k

in the interaction
picture is a Gaussian field. Hence, the term in the second line gives the leading order contribution.
By using the mode expansion (3.18), we find

h0|�̂�
~

k

1

(⌘)�̂�
~

k

2

(⌘)�̂�
~

k

3

(⌘)|0i = (2⇡)3�(3)(~k
1

+ ~k
2

+ ~k
3

)B
��

(k
1

, k
2

, k
3

) , (3.30)

where

B
��

(k
1

, k
2

, k
3

) = 2 ~2 Im
h
'
~

k

1

(⌘)'
~

k

2

(⌘)'
~

k

3

(⌘)

⇥
Z

⌘

⌘

0

d⌘0
⇣
f
1

(⌘0)'?

k

1

(⌘0)'?

k

2

(⌘0)'?

k

3

(⌘0) + f
2

(⌘0)'?

k

1

(⌘0)'?

k

2

(⌘0)'0?
k

3

(⌘0) + f
3

(⌘0)'?

k

1

(⌘0)'0?
k

2

(⌘0)'0?
k

3

(⌘0)

+ (~k
1

$ ~k
3

) + (~k
2

$ ~k
3

)
⌘i

+ O(H2

int

) , (3.31)

where the functions f
1

(⌘), f
2

(⌘) and f
3

(⌘) are combinations of background functions, given in
Appendix B.

The terms in the second line of (3.28) involve the four-point correlation function of �̂�
I

~

k

. Ap-
plying again time-dependent perturbation theory, we get

h0|�̂�
~

k

1

(⌘)�̂�
~

k

2

(⌘)�̂�
~p

(⌘)�̂�
~

k

3

�~p

(⌘)|0i = h0|�̂�I

~

k

1

(⌘)�̂�
I

~

k

2

(⌘)�̂�
I

~p

(⌘)�̂�
I

~

k

3

�~p

(⌘)|0i + O(H
int

) . (3.32)

BR(k1, k2, k3) ⌘ �6

5
fNL(k1, k2, k3) ⇥ (�k1�k2 +�k1�k3 +�k2�k3)
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Definition of  the bispectrum:

Definition of fNL(k1, k2, k3)

We have to compute
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To compute fNL we need to specify:

A choice of  potential V (�)

Initial conditions for the background field �(tB)

Initial quantum state for perturbations 

First choice

V (�) =
1

2
m2�2

�(tB) = 7.62MP `

Energy density at the bounce ⇢B ⇢B = 1M4
P `

Minkowski vacuum in the past,  
well before the bounce

Later, we will explore other choices 
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10�3 10�2 10�1 100 101

k/k⇤

�103

�101

�10�1
0

10�1

101

103

f N
L
(k

,k
,k

)

kLQC/k⇤

10�3 10�2 10�1 100 101

k/k⇤

10�3

10�2

10�1

100

101

102

103

104

|f
N

L
(k

,k
,k

)|

kLQC/k⇤

Equilateral configurations, i.e. k1=k2=k3

Similar for other configurations (see slide number 27 , and next slide)
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Two dimensional plots: fNL vs k2 and k3, for fixed k1

k1 = k⇤

k1 = 3 k⇤

k1 = 0.5 k⇤

The amplitude of  
fNL is quite 

uniform, although 
larger in squeezed 

configurations
~k1

~k2

~k3
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Different values of   

28
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k/k�
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10�7

P R
(k

)

�
B

= 1.00 M4
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�
B

= 8.02 M
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�
B

= 7.82 M
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�
B

= 7.62 M
Pl

�
B

= 7.42 M
Pl

FIG. 6. Power spectrum (upper panel), and |fNL | in the equilateral configuration (bottom panel) for ⇢
B

=
1M4

P `, for di↵erent values of �
B

. The horizontal axis shows wave-number relative to the reference scale
k⇤ that today corresponds to 0.002 Mpc�1. Hence the window of observable modes is approximately k 2
[k⇤/10, 1000k⇤]. The plot shows that di↵erent values of �

B

give rise to power spectra and fNL with exactly
the same shape, with the only di↵erence that they are shifted from each other.

C. Dependence of fNL on the value of the scalar field at the bounce

The value of �
B

determines the number of e-folds of expansion between the bounce and the
onset of the observable phase of inflation, dubbed N

B ?

[27, 30, 50, 66].14 We are interested in
e↵ective trajectories for which N

B ?

⇡ 12. For this value the e↵ects created by the bounce on
the power spectrum and non-Gaussianity would appear only in the smallest wave-numbers—or

14 By “onset” of inflation we refer in this paper to the time ⌘ = ⌘⇤ at which the reference scale k⇤ that today has a
physical value k⇤/atoday

= 0.002M�1

Pc , exits the Hubble radius during inflation. Since inflation lasts approximately
61 additional e-folds after ⌘⇤, the number of e-folds from the bounce to the end of inflation is N

B ? + 61.
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FIG. 6. Power spectrum (upper panel), and |fNL | in the equilateral configuration (bottom panel) for ⇢
B

=
1M4

P `, for di↵erent values of �
B

. The horizontal axis shows wave-number relative to the reference scale
k⇤ that today corresponds to 0.002 Mpc�1. Hence the window of observable modes is approximately k 2
[k⇤/10, 1000k⇤]. The plot shows that di↵erent values of �

B

give rise to power spectra and fNL with exactly
the same shape, with the only di↵erence that they are shifted from each other.

C. Dependence of fNL on the value of the scalar field at the bounce

The value of �
B

determines the number of e-folds of expansion between the bounce and the
onset of the observable phase of inflation, dubbed N

B ?

[27, 30, 50, 66].14 We are interested in
e↵ective trajectories for which N

B ?

⇡ 12. For this value the e↵ects created by the bounce on
the power spectrum and non-Gaussianity would appear only in the smallest wave-numbers—or

14 By “onset” of inflation we refer in this paper to the time ⌘ = ⌘⇤ at which the reference scale k⇤ that today has a
physical value k⇤/atoday

= 0.002M�1

Pc , exits the Hubble radius during inflation. Since inflation lasts approximately
61 additional e-folds after ⌘⇤, the number of e-folds from the bounce to the end of inflation is N

B ? + 61.

Physically,            dictates the amount of  expansion from the bounce to 
the end of  inflation 

Changing            produces a shift w.r.t. the observable window, but does not change the shape 

Observable modesObservable modes

�(tB)

�(tB)

�(tB)
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FIG. 7. Power spectrum (upper panel), and |fNL | in the equilateral configuration (bottom panel) for
�
B

= 7.62MP `, for di↵erent values of ⇢
B

. The plot shows that di↵erent values of ⇢
B

change the maximum
value of fNL . We also see that both, the power spectrum and fNL are shifted towards more infrared scales
relative to k⇤ for large values of ⇢

B

.

the observable e↵ects of �
B

and ⇢
B

disappears for non-Gaussianity. Consequently, an observation
of the power spectrum and non-Gaussianity generated by the bounce would provide information
about the energy (or curvature) scale of the bounce.

The results of this section can be interpreted in more general terms. Recall that, as discussed
in [59] and [50] and summarized in section III A 1, a change in the quantum state  

0

(v,�) that
describes the background geometry has e↵ects on observable quantities that, with great accuracy,
can be mimicked by a change in ⇢

B

. Therefore, the content of this section can be also understood
as an investigation of the sensitivity of observable quantities to the choice of  

0

(v,�).

Different values of  the energy density at the bounce  

Changing         changes the amount of  expansion from bounce to end of  inflation

But it also changes the energy scale of  the bounce, and this is related to the effective 
strength of  interactions among perturbations 

Changing        produces both a shift relative to the observable window, and a different 
maximum value of  non-Gaussianity

⇢B

⇢B

Observable modes
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FIG. 8. Comparison of |fNL(k, k, k)| (upper panel) and |fNL(k, k, k/5)| (bottom) evaluated at the end of
inflation for the quadratic and the Starobinsky potential. The figure illustrates that the spectral shape
is very similar regardless of the potential. The di↵erences, more evident in the bottom panel, arise from
contributions generated far from the bounce.

in all three cases considered. Here, we reach the same conclusions for non-Gaussianity. Therefore,
we argue that the results of this paper do not rely on a fine-tuned choice of initial conditions for
perturbations, and are therefore generic, within the mathematical limitations mentioned above.

More precisely, the three types of initial state that we choose are:

• Minkowski-like initial state. This state was introduced at the beginning of section IV A. This
state is not a forth-order adiabatic state (it is only of adiabatic order zero).

• Obvious adiabatic vacuum. This state was introduced in [42]. It is the state obtained
by using initial data for the mode functions given by the first four terms of the adiabatic
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FIG. 8. Comparison of |fNL(k, k, k)| (upper panel) and |fNL(k, k, k/5)| (bottom) evaluated at the end of
inflation for the quadratic and the Starobinsky potential. The figure illustrates that the spectral shape
is very similar regardless of the potential. The di↵erences, more evident in the bottom panel, arise from
contributions generated far from the bounce.

in all three cases considered. Here, we reach the same conclusions for non-Gaussianity. Therefore,
we argue that the results of this paper do not rely on a fine-tuned choice of initial conditions for
perturbations, and are therefore generic, within the mathematical limitations mentioned above.

More precisely, the three types of initial state that we choose are:

• Minkowski-like initial state. This state was introduced at the beginning of section IV A. This
state is not a forth-order adiabatic state (it is only of adiabatic order zero).

• Obvious adiabatic vacuum. This state was introduced in [42]. It is the state obtained
by using initial data for the mode functions given by the first four terms of the adiabatic
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E. Influence of the scalar field’s potential

In this section, we investigate the sensitivity of the results for non-Gaussianity in LQC under
a change of the scalar field’s potential. In LQC the bounce is generated by quantum gravity
e↵ects, and the contribution of V (�) is subdominant. Therefore, we expect that the results for
f
NL

(k
1

, k
2

, k
3

) obtained in the previous sections by using the quadratic potential will remain largely
unaltered for other choices of V (�). We compute f

NL

(k
1

, k
2

, k
3

) in this section for the so-called
Starobinsky potential [77–80],

V (�) =
3M2

4

✓
1 � e

�
q

2
3

�

◆
2

. (4.2)

The power spectrum in LQC has been analyzed in detail in [81, 82], and the results are qualitatively
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begins at a time at which all wavelengths of interest for observations are small compared to the
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FIG. 9. Plot of |fNL(k
1

, k
2

, k
3

)| in the equilateral configuration (k
1

= k
2

= k
3

) for di↵erent choices of initial
quantum state for perturbations. The plot shows that the three choices considered in this paper produce
results that are all very similar. Di↵erences only appear for the most infrared part of the spectrum, that
corresponds to unobservable scales.

expansion of '
k

(⌘). This state is therefore of fourth adiabatic order. This prescription,
however, cannot be specified for very infrared modes, since it produces modes with the
incorrect normalization. Nevertheless, the ambiguity will only modify the most infra-red
part of our results that correspond to modes that are not directly observable, and therefore
we use this state for the purpose of this section.

• Preferred instantaneous vacuum. This state was introduced in [84], and it is defined as
the only state that has zero expectation value of the adiabatically renormalized energy-
momentum tensor at the initial time ⌘

0

. In this sense, this is a generalization of the
Minkowski vacuum to cosmological spacetimes. It is also a state of fourth adiabatic or-
der.

Figure 9 shows the function f
NL

for equilateral configurations computed using these three dif-
ferent initial states, specified at ⌘

0

= 2.842 ⇥ 103 T
P `

. As anticipated, the results are essentially
the same.

We have also explored the sensitivity of f
NL

to the time at which the initial conditions are
imposed. We found that as long as ⌘

0

is chosen such that all modes of interest are ultra-violet
compare to the curvature-scale, k2 � a00/a, the results for f

NL

(k
1

, k
2

, k
3

) are insensitive to the
choice of ⌘

0

.
Another physically motivated instant to specify initial data is the bounce. At that time, however,

the condition k2 � a00/a is not satisfied for all modes of interest, and therefore the adiabatic
condition is not su�cient to choose an initial state. We found that f

NL

is very sensitive to the
ambiguity in the choice of initial data for perturbations at the bounce. Di↵erent choices produce
results that di↵er significantly from each other, and therefore we were unable to make any generic
statement about the value of f

NL

when the evolution begins at the bounce. Unless one adds new

Different choices of  initial vacuum in the past, before the bounce  

Conclusions: same results
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FIG. 2. Equilateral configurations. Plot of fNL(k, k, k) versus k. We have used here the same parameter as
in the plot of the power spectrum, figure 1, namely �

B

= 7.62MP `, and ⇢
B

= 1M4

P `, and Minkowski-like
initial data for perturbations at ⌘

0

= �2.8 103 TP ` (or equivalently, t
0

= �105TP ` in cosmic time). The plot
shows that fNL(k, k, k) is highly oscillatory, and its amplitude is strongly scale dependent. For the value of
the �

B

, and ⇢
B

chosen in this plot, fNL grows only for the most infrared scales that we can observe in the
CMB, which correspond to angular multipoles ` . 30.

the bispectrum. All these simplifications cannot be used in our case because, first of all, before
inflation the slow-roll approximation is no longer valid. And secondly, in our problem the spacetime
goes through a contracting phase, followed by a bounce, a pre-inflationary phase on which the
kinetic energy of the scalar field is converted to potential energy, and finally an inflationary phase.
In each of these phases the scale factor behaves in a quite di↵erent manner and, as a consequence,
it is di�cult to arrive at an analytical approximation for '

k

(⌘) valid during the entire evolution.13

We present our results for non-Gaussianity in terms of the function f
NL

(k
1

, k
2

, k
3

), defined in
(3.26). We evaluate f

NL

(k,↵
1

k,↵
2

k) as a function of k, for di↵erent values of ↵
1

and ↵
2

. Following
standard terminology, we will refer to triads (k,↵

1

k,↵
2

k) for which (↵
1

= ↵
2

= 1) as equilateral
configurations of wave-numbers. Similarly, (↵

1

⇡ 1,↵
2

⌧ ↵
1

) and (↵
2

⇡ 1 � ↵
1

) are known as
squeezed and flattened configurations, respectively. These names are motivated by the shape of
the triangles formed by ~k

1

, ~k
2

, and ~k
3

.
In figure 2 we show f

NL

in the equilateral configuration as a function of k/k⇤. In the regime
k & k

LQC

the result agrees with the inflationary prediction, i.e., f
NL

⇠ ✏ where ✏ is the slow-roll
parameter evaluated at horizon exit. For scales that were larger than the curvature radius at the
bounce, i.e., k . k

LQC

, f
NL

oscillates between positive and negative values with an amplitude of
order 103. In figure 3 we show the absolute value of f

NL

in the equilateral configuration in order
to analyze the scale dependence of f

NL

more carefully. In figure 4 we show f
NL

in a few di↵erent
configurations. In figure 5 we present two-dimensional plots for f

NL

containing all configurations,
by fixing k

1

to three di↵erent values.
These results can be summarized as follows:

1. f
NL

(k
1

, k
2

, k
3

) is highly oscillatory. This is a consequence of the oscillatory behavior of the

13 There exist e↵orts to compute non-Gaussianity in more complicated inflationary scenarios involving deviations from
slow-roll, both analytically (see, e.g., [71, 72]) and numerically [64, 73]. However, the pre-inflationary evolution
that we are interested in is more complicated than the scenarios previously considered.

Results are also the same if  we choose the initial time to be different, as long as 
modes start evolution well inside the curvature radius

On the contrary, if  we start evolution very close or at the bounce, when some modes are 
outside the curvature radius, results are very sensitive to the specific initial time chosen. 

All plots for initial time:

or, in cosmic time
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Goal here: get further understanding using analytical approximations 

Our calculations are numerical, and that makes difficult to understand the origin of  the 
enhancement of  non-Gaussianity

The argument is very simple, and approximation may look crude, but the 
result turns out to be an excellent approximation for the numerics 
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I will be brief  here (more details in 1712.08148). 

Contribution of  non-Gaussianity generated by the bounce is given by integrals 
of  this type:

I(k1, k2, k3) =

Z �⌘

��⌘
d⌘ f1(⌘)'k1(⌘)'k2(⌘)'k3(⌘)

Perturbations 
Background functions 

Extend the integration rate by introducing a window function:

I(k1, k2, k3) =

Z 1

�1
d⌘W (⌘) f1(⌘)'k1(⌘)'k2(⌘)'k3(⌘)

W (⌘) =
1 for ⌘ > �⌘

0 for |⌘| > �⌘

The mode functions are oscillatory (for large enough k):

'k1(⌘)'k2(⌘)'k3(⌘) / e�i (k1+k2+k3) ⌘

and smoothwhere
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I(k1, k2, k3) =

Z 1

�1
d⌘ g(⌘) e�i (k1+k2+k3) ⌘

So the integrals involved in the calculations are of  the type:

The behavior of  the integral for large enough values of                                   is 
dominated by the pole of  the integrand with the largest imaginary part  

Cauchy intergal theorem+ asymptotic analysis:

kt = k1 + k2 + k3

Such pole is the pole of  the inverse of  the scale factor a(⌘)�1
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part adds an exponentially decreasing factor. Hence, the asymptotic behavior of the amplitude of
the integral I as a function of k

t

is given by the pole of g(⌘) with the largest imaginary part.

To find this pole, it is su�cient to realize that, out of the four background functions a(⌘),
⇡
a

(⌘), �(⌘), and p
�

(⌘) that appear in g(⌘), the scale factor is the only one having a minimum at
the bounce. From this, we know that the pole we are looking for comes from factors 1

a

n
(⌘)

contained

in g(⌘). To compute this pole, we use an analytical approximation for the scale factor, valid close
to the bounce, that in cosmic time reads (see, e.g., [67])

a(t) = a
B

�
1 + 3⇢

B

t2
�
1/6

, (5.3)

where we have chosen the bounce to take place at t = 0. The pole of a(t)�1 is at t
p

= i /
p

3 ⇢
B

and, in conformal time, at17

⌘
p

= i
p
⇡/3

�[5/6]

2�[4/3]

1

a
B

p
 ⇢

B

= i
↵

k
LQC

, (5.4)

where �[x] is the Gamma function, ↵ ' 0.64677, and we have used k
LQC

= a
B

p
⇢

B

. Therefore,
this argument tells us that the bounce produces a contribution to f

NL

(k
1

, k
2

, k
3

) whose amplitude
changes with k

i

according to e�↵(k

1

+k

2

+k

3

)/k

LQC , when (k
1

+ k
2

+ k
3

) & k
LQC

. In figure 13 we
compare this analytical approximation with the numerical result, for three di↵erent configurations
finding a good agreement.

To summarize, the analysis of this section confirms that the scale dependent enhancement of f
NL

originates from the bounce, and it is the scale k
LQC

that dictates how pronounced this enhancement
is. Furthermore, since it is only the complex pole of the scale factor at the bounce that accounts
for the main features of f

NL

, it is expected that bounces in other cosmological models di↵erent
from LQC will produce similar non-Gasussianity.

VI. STABILITY OF PERTURBATION THEORY

We found that a cosmic bounce taking place close to the Planck scale produces large values of
f
NL

, of order 103. This result is in agreement with the extended intuition that, near the Planck
regime, self-interactions of scalar perturbations with purely gravitational origin—i.e., described
by terms in the third order interaction Hamiltonian (2.23) that are independent of the potential
V (�)—become strong. This large value of f

NL

raises concerns about the validity of the perturbative
expansion, on which the entire analysis rests.

To evaluate the validity of the perturbative series, we need to compute the corrections that
f
NL

(the three-point functions) introduces in the power spectrum (the two-point function). If this
correction is similar or larger than the leading order contribution, then the perturbative expansion
would break down. As we show in this section, this is not the case.

The two-point function of comoving curvature perturbations at the end of inflation at next-to-
leading order, is obtained from the correlation function of �� by keeping the first correction arising
from (3.27). We get
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part adds an exponentially decreasing factor. Hence, the asymptotic behavior of the amplitude of
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FIG. 13. Comparison of the numerically-computed contribution from the bounce to fNL (gray points), called
�fbounce

NL in the figure, and the analytical approximation e�↵(k1+k2+k3)/kLQC (black line). The comparison
is made for three di↵erent configurations of wave-numbers. The agreement is very good for all of them.
�fbounce

NL is defined as the value of fNL given only by the first term in equation (3.34), and evaluating the
integral in (3.31) just before the onset of inflation.
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The power spectrum computed in previous sections was obtained by considering only the first line
of this equation and, additionally, by ignoring corrections from the interaction Hamiltonian when
computing it. Now, we go to the next order in perturbations.

For the two-point function in the first line of (6.1), we have
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, ĤI

int

(⌘0)
i
|0i + O(H2

int

) . (6.2)

The first term in the right hand side was the one computed in equation (3.21). The second term in
the right hand side vanishes, since it involves expectation values of an odd number of fields in the
interaction picture, which are Gaussian. Therefore, there is no correction linear in the third order
Hamiltonian to this term. Hence, the leading order correction to the two-point function comes
from the second and third line of (6.1).

The three-point function in the second line contributes with terms linear in the third order
Hamiltonian. In contrast, the leading order term in the four-point function is independent of the
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part adds an exponentially decreasing factor. Hence, the asymptotic behavior of the amplitude of
the integral I as a function of k

t

is given by the pole of g(⌘) with the largest imaginary part.

To find this pole, it is su�cient to realize that, out of the four background functions a(⌘),
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(⌘) that appear in g(⌘), the scale factor is the only one having a minimum at
the bounce. From this, we know that the pole we are looking for comes from factors 1
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contained

in g(⌘). To compute this pole, we use an analytical approximation for the scale factor, valid close
to the bounce, that in cosmic time reads (see, e.g., [67])
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. In figure 13 we
compare this analytical approximation with the numerical result, for three di↵erent configurations
finding a good agreement.

To summarize, the analysis of this section confirms that the scale dependent enhancement of f
NL

originates from the bounce, and it is the scale k
LQC

that dictates how pronounced this enhancement
is. Furthermore, since it is only the complex pole of the scale factor at the bounce that accounts
for the main features of f

NL

, it is expected that bounces in other cosmological models di↵erent
from LQC will produce similar non-Gasussianity.

VI. STABILITY OF PERTURBATION THEORY

We found that a cosmic bounce taking place close to the Planck scale produces large values of
f
NL

, of order 103. This result is in agreement with the extended intuition that, near the Planck
regime, self-interactions of scalar perturbations with purely gravitational origin—i.e., described
by terms in the third order interaction Hamiltonian (2.23) that are independent of the potential
V (�)—become strong. This large value of f

NL

raises concerns about the validity of the perturbative
expansion, on which the entire analysis rests.

To evaluate the validity of the perturbative series, we need to compute the corrections that
f
NL

(the three-point functions) introduces in the power spectrum (the two-point function). If this
correction is similar or larger than the leading order contribution, then the perturbative expansion
would break down. As we show in this section, this is not the case.

The two-point function of comoving curvature perturbations at the end of inflation at next-to-
leading order, is obtained from the correlation function of �� by keeping the first correction arising
from (3.27). We get
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for the main features of f

NL

, it is expected that bounces in other cosmological models di↵erent
from LQC will produce similar non-Gasussianity.

VI. STABILITY OF PERTURBATION THEORY

We found that a cosmic bounce taking place close to the Planck scale produces large values of
f
NL

, of order 103. This result is in agreement with the extended intuition that, near the Planck
regime, self-interactions of scalar perturbations with purely gravitational origin—i.e., described
by terms in the third order interaction Hamiltonian (2.23) that are independent of the potential
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expansion, on which the entire analysis rests.

To evaluate the validity of the perturbative series, we need to compute the corrections that
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would break down. As we show in this section, this is not the case.

The two-point function of comoving curvature perturbations at the end of inflation at next-to-
leading order, is obtained from the correlation function of �� by keeping the first correction arising
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(The results of  this sections were already mentioned in the first part of  the talk. Here a few more 
details)

We have seen that the three-point function is several orders of  magnitud larger than in 
standard inflation. 

Second order effects may be too large                breakdown of  perturbation theory

We can check this explicitly
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FIG. 14. Plot of the relative size of the first order correction to the power spectrum, |�PR/PR|. The plot
shows the numerically computed value as a function of the wave-numbers k. The result shows that, indeed,
|�PR/PR| ⌧ 1, confirming that we are well inside the perturbative regime. This plot is obtained by using
the same values for the free parameters as in section IV B, and the conclusions remain unchanged for other
choices.

interaction Hamiltonian. By using (3.33) and the definition of the bispectrum of �� given in (3.30),
we obtain the first perturbative correction to the power spectrum:
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where all quantities are evaluated at the end of inflation. Note from this expression that the next-
to-leading order correction to the power spectrum for a wave-number k

1

, gets contributions from
other wave numbers, as a result of the correlations arising from the three-point function.

An order of magnitude estimate of (6.4) can be obtained as follows. In the first line, the
background function between square brackets is of order ✏ (✏ symbolizes here any of the slow-roll
parameters). The bispectrum B

��

, is of order f
NL

P2

R and, therefore, the term in the first line of
(6.4) is of order ✏ f

NL

P2

R (✏ symbolizes a slow-roll parameter). Similarly, the second line of (6.4) is
of order ✏2 P2

R. Since f
NL

. 104, and ✏ ⇠ 10�2, the first line of (6.4) is much larger than the second
one. Then, we expect �PR/PR ⇠ ✏ f

NL

PR . 10�4.
We have numerically evaluated expression (6.4), and the results appear in figure 14. The figure

shows that �PR/PR is smaller than 10�4, confirming that the next to leading order corrections
to the power spectrum are indeed negligible. Therefore, we find that although f

NL

experiences an
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where all quantities are evaluated at the end of inflation. Note from this expression that the next-
to-leading order correction to the power spectrum for a wave-number k
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, gets contributions from
other wave numbers, as a result of the correlations arising from the three-point function.

An order of magnitude estimate of (6.4) can be obtained as follows. In the first line, the
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We have numerically evaluated expression (6.4), and the results appear in figure 14. The figure

shows that �PR/PR is smaller than 10�4, confirming that the next to leading order corrections
to the power spectrum are indeed negligible. Therefore, we find that although f
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Next to leading order contribution to the two-point function
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Where

The three-point fnc enters here

Perturbation theory  
is under control

Numerical evaluation:

Next-to-leading order
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The Planck collaboration reported results for non-Gaussianity in 2015
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and it gets worse as for low multipoles, growing as 1/
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LQC-non-Gaussianity has precisely the shape needed to respect observational constraints on 
large multipoles (large k), and still to produce some observable effect at low multipoles
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Here, we obtain an estimate of  constraints on our free parameters coming from data

I will consider here the most restrictive scenario, forgetting about the oscillations in 

It is expected the oscillations will attenuate the effects of           in the CMB 
and actual constrains may be weaker 
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FIG. 11. The scalar power spectrum Ps(k) evaluated at the end of inflation for the three di↵erent strategies
for evaluating ⇡a described at the end of III B 1. The power spectrum is very similar in the three cases,
and important di↵erences appear only for the very infra-red part of the spectrum, that corresponds to
wave-lengths that are several orders of magnitude larger than today’s Hubble radius.

of the cut-o↵ �. As expected, for large values of � the integral is artificially suppressed, and the
result underestimates the value of f

NL

. On the contrary, when � is very small, numerical instabilities
appear for large wave-numbers. Our analysis shows that there is an optimal value, around � = 0.02
for which the numerical calculation is fast and reliable. This is the value that we have used to
produce the figures in section IV B.

The second test that we perform in this section concerns the ambiguity regarding the value of
⇡
a

in LQC, discussed at the end of section III B 1. There, we proposed three di↵erent strategies for
evaluating ⇡

a

and the various powers of it that appear in the classical Hamiltonian for perturbations.
We will now show that the results obtained for the power spectrum and non-Gaussianity are very
similar in all three cases. In order to do this, we compare the power spectrum in figure 11, and
|f

NL

| in figure 12, obtained by using the three proposed strategies. Although some small di↵erences
appear, they are either smaller than observational error bars, or they appear for very infrared modes
that cannot be observed in our Hubble patch of the universe. Note also that the freedom that we
have in changing the free parameters of the theory, and that we explore in previous sections, make
these di↵erences even less relevant, since, as we saw, a small change in the value of some of these
parameters would compensate the e↵ects in the power spectrum and non-Gaussianity.

V. ANALYTICAL UNDERSTANDING OF THE EVOLUTION OF NON-GAUSSIANITY
ACROSS THE BOUNCE

A characteristic feature of the non-Gaussianity produced by the LQC bounce is an enhancement
of f

NL

for wave-numbers comparable to the scale k
LQC

set by the bounce. The goal of this section
is to complement the previous numerical analysis with an analytical understating of the origin of
this feature. By doing so we will, on the one hand, increase our confidence on the numerical results
and, on the other, understand better the physical origin of such behavior.
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FIG. 11. The scalar power spectrum Ps(k) evaluated at the end of inflation for the three di↵erent strategies
for evaluating ⇡a described at the end of III B 1. The power spectrum is very similar in the three cases,
and important di↵erences appear only for the very infra-red part of the spectrum, that corresponds to
wave-lengths that are several orders of magnitude larger than today’s Hubble radius.

of the cut-o↵ �. As expected, for large values of � the integral is artificially suppressed, and the
result underestimates the value of f

NL

. On the contrary, when � is very small, numerical instabilities
appear for large wave-numbers. Our analysis shows that there is an optimal value, around � = 0.02
for which the numerical calculation is fast and reliable. This is the value that we have used to
produce the figures in section IV B.

The second test that we perform in this section concerns the ambiguity regarding the value of
⇡
a

in LQC, discussed at the end of section III B 1. There, we proposed three di↵erent strategies for
evaluating ⇡

a

and the various powers of it that appear in the classical Hamiltonian for perturbations.
We will now show that the results obtained for the power spectrum and non-Gaussianity are very
similar in all three cases. In order to do this, we compare the power spectrum in figure 11, and
|f

NL

| in figure 12, obtained by using the three proposed strategies. Although some small di↵erences
appear, they are either smaller than observational error bars, or they appear for very infrared modes
that cannot be observed in our Hubble patch of the universe. Note also that the freedom that we
have in changing the free parameters of the theory, and that we explore in previous sections, make
these di↵erences even less relevant, since, as we saw, a small change in the value of some of these
parameters would compensate the e↵ects in the power spectrum and non-Gaussianity.

V. ANALYTICAL UNDERSTANDING OF THE EVOLUTION OF NON-GAUSSIANITY
ACROSS THE BOUNCE

A characteristic feature of the non-Gaussianity produced by the LQC bounce is an enhancement
of f

NL

for wave-numbers comparable to the scale k
LQC

set by the bounce. The goal of this section
is to complement the previous numerical analysis with an analytical understating of the origin of
this feature. By doing so we will, on the one hand, increase our confidence on the numerical results
and, on the other, understand better the physical origin of such behavior.
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FIG. 11. The scalar power spectrum Ps(k) evaluated at the end of inflation for the three di↵erent strategies
for evaluating ⇡a described at the end of III B 1. The power spectrum is very similar in the three cases,
and important di↵erences appear only for the very infra-red part of the spectrum, that corresponds to
wave-lengths that are several orders of magnitude larger than today’s Hubble radius.

of the cut-o↵ �. As expected, for large values of � the integral is artificially suppressed, and the
result underestimates the value of f

NL

. On the contrary, when � is very small, numerical instabilities
appear for large wave-numbers. Our analysis shows that there is an optimal value, around � = 0.02
for which the numerical calculation is fast and reliable. This is the value that we have used to
produce the figures in section IV B.

The second test that we perform in this section concerns the ambiguity regarding the value of
⇡
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in LQC, discussed at the end of section III B 1. There, we proposed three di↵erent strategies for
evaluating ⇡

a

and the various powers of it that appear in the classical Hamiltonian for perturbations.
We will now show that the results obtained for the power spectrum and non-Gaussianity are very
similar in all three cases. In order to do this, we compare the power spectrum in figure 11, and
|f

NL

| in figure 12, obtained by using the three proposed strategies. Although some small di↵erences
appear, they are either smaller than observational error bars, or they appear for very infrared modes
that cannot be observed in our Hubble patch of the universe. Note also that the freedom that we
have in changing the free parameters of the theory, and that we explore in previous sections, make
these di↵erences even less relevant, since, as we saw, a small change in the value of some of these
parameters would compensate the e↵ects in the power spectrum and non-Gaussianity.

V. ANALYTICAL UNDERSTANDING OF THE EVOLUTION OF NON-GAUSSIANITY
ACROSS THE BOUNCE

A characteristic feature of the non-Gaussianity produced by the LQC bounce is an enhancement
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NL

for wave-numbers comparable to the scale k
LQC

set by the bounce. The goal of this section
is to complement the previous numerical analysis with an analytical understating of the origin of
this feature. By doing so we will, on the one hand, increase our confidence on the numerical results
and, on the other, understand better the physical origin of such behavior.
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for evaluating ⇡a described at the end of III B 1. The power spectrum is very similar in the three cases,
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wave-lengths that are several orders of magnitude larger than today’s Hubble radius.

of the cut-o↵ �. As expected, for large values of � the integral is artificially suppressed, and the
result underestimates the value of f
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. On the contrary, when � is very small, numerical instabilities
appear for large wave-numbers. Our analysis shows that there is an optimal value, around � = 0.02
for which the numerical calculation is fast and reliable. This is the value that we have used to
produce the figures in section IV B.

The second test that we perform in this section concerns the ambiguity regarding the value of
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in LQC, discussed at the end of section III B 1. There, we proposed three di↵erent strategies for
evaluating ⇡

a

and the various powers of it that appear in the classical Hamiltonian for perturbations.
We will now show that the results obtained for the power spectrum and non-Gaussianity are very
similar in all three cases. In order to do this, we compare the power spectrum in figure 11, and
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| in figure 12, obtained by using the three proposed strategies. Although some small di↵erences
appear, they are either smaller than observational error bars, or they appear for very infrared modes
that cannot be observed in our Hubble patch of the universe. Note also that the freedom that we
have in changing the free parameters of the theory, and that we explore in previous sections, make
these di↵erences even less relevant, since, as we saw, a small change in the value of some of these
parameters would compensate the e↵ects in the power spectrum and non-Gaussianity.
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ACROSS THE BOUNCE

A characteristic feature of the non-Gaussianity produced by the LQC bounce is an enhancement
of f
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for wave-numbers comparable to the scale k
LQC

set by the bounce. The goal of this section
is to complement the previous numerical analysis with an analytical understating of the origin of
this feature. By doing so we will, on the one hand, increase our confidence on the numerical results
and, on the other, understand better the physical origin of such behavior.
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of the cut-o↵ �. As expected, for large values of � the integral is artificially suppressed, and the
result underestimates the value of f
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. On the contrary, when � is very small, numerical instabilities
appear for large wave-numbers. Our analysis shows that there is an optimal value, around � = 0.02
for which the numerical calculation is fast and reliable. This is the value that we have used to
produce the figures in section IV B.

The second test that we perform in this section concerns the ambiguity regarding the value of
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in LQC, discussed at the end of section III B 1. There, we proposed three di↵erent strategies for
evaluating ⇡

a

and the various powers of it that appear in the classical Hamiltonian for perturbations.
We will now show that the results obtained for the power spectrum and non-Gaussianity are very
similar in all three cases. In order to do this, we compare the power spectrum in figure 11, and
|f

NL

| in figure 12, obtained by using the three proposed strategies. Although some small di↵erences
appear, they are either smaller than observational error bars, or they appear for very infrared modes
that cannot be observed in our Hubble patch of the universe. Note also that the freedom that we
have in changing the free parameters of the theory, and that we explore in previous sections, make
these di↵erences even less relevant, since, as we saw, a small change in the value of some of these
parameters would compensate the e↵ects in the power spectrum and non-Gaussianity.
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A characteristic feature of the non-Gaussianity produced by the LQC bounce is an enhancement
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for wave-numbers comparable to the scale k
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set by the bounce. The goal of this section
is to complement the previous numerical analysis with an analytical understating of the origin of
this feature. By doing so we will, on the one hand, increase our confidence on the numerical results
and, on the other, understand better the physical origin of such behavior.
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and important di↵erences appear only for the very infra-red part of the spectrum, that corresponds to
wave-lengths that are several orders of magnitude larger than today’s Hubble radius.

of the cut-o↵ �. As expected, for large values of � the integral is artificially suppressed, and the
result underestimates the value of f

NL

. On the contrary, when � is very small, numerical instabilities
appear for large wave-numbers. Our analysis shows that there is an optimal value, around � = 0.02
for which the numerical calculation is fast and reliable. This is the value that we have used to
produce the figures in section IV B.

The second test that we perform in this section concerns the ambiguity regarding the value of
⇡
a

in LQC, discussed at the end of section III B 1. There, we proposed three di↵erent strategies for
evaluating ⇡

a

and the various powers of it that appear in the classical Hamiltonian for perturbations.
We will now show that the results obtained for the power spectrum and non-Gaussianity are very
similar in all three cases. In order to do this, we compare the power spectrum in figure 11, and
|f

NL

| in figure 12, obtained by using the three proposed strategies. Although some small di↵erences
appear, they are either smaller than observational error bars, or they appear for very infrared modes
that cannot be observed in our Hubble patch of the universe. Note also that the freedom that we
have in changing the free parameters of the theory, and that we explore in previous sections, make
these di↵erences even less relevant, since, as we saw, a small change in the value of some of these
parameters would compensate the e↵ects in the power spectrum and non-Gaussianity.

V. ANALYTICAL UNDERSTANDING OF THE EVOLUTION OF NON-GAUSSIANITY
ACROSS THE BOUNCE

A characteristic feature of the non-Gaussianity produced by the LQC bounce is an enhancement
of f

NL

for wave-numbers comparable to the scale k
LQC

set by the bounce. The goal of this section
is to complement the previous numerical analysis with an analytical understating of the origin of
this feature. By doing so we will, on the one hand, increase our confidence on the numerical results
and, on the other, understand better the physical origin of such behavior.
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In the worse-case scenario we just considered, the LQC corrections on 
the power spectrum must be restricted to  k . 1/2k⇤ (` . 20)

However, I expect the oscillatory character of         to weaken this constraintsfNL
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(2) The LQC pre-inflationary dynamics makes the state of  perturbations to be 
excited and non-Gaussian at the onset of  inflation, relative to the Bunch-Davis 
vacuum 

(3) The bounce introduces a new scale on the problem

(4) The amplitude of            is enhanced for IR wave-numbers relative to kLQC

kLQC

fNL

40

enhancement of several orders of magnitude, the perturbative expansion remains valid. The reason
is found in the smallness of the leading order power spectrum PR(k) . 10�7. From the expressions
above, we see that the leading order correction contains, in addition to f

NL

, an additional power
of PR(k). The smallness of PR compensated for the enhancement of f

NL

. Higher order corrections
contain even higher powers of PR(k). In this sense, one can intuitively think about PR(k) as the
small ‘parameter’ in terms of which the perturbative expansion is defined.

VII. DISCUSSION AND CONCLUSIONS

The goal of this section is to provide a summary of the main results of this paper, contrast
them with observational data, and discuss the main consequences. The main take-home messages
from our analysis are the following:

(1) The evolution of scalar perturbations across the LQC bounce, starting from an adiabatic
vacuum state before the bounce when all the Fourier modes of interest have wavelengths much
smaller than the (spacetime) curvature radius, produces a state that at the onset of inflation
is both excited and non-Gaussian, relative to the Bunch-Davies vacuum. In other words, both
the two- and three-point correlation functions of scalar perturbations deviate significantly from
their Bunch-Davies counterparts at the onset of inflation. Consequently, the predictions for the
primordial power spectrum and non-Gaussianity are modified as a result of the pre-inflationary
evolution. (See section III and IV.)

(2) The bounce of LQC produces a strong enhancement of the non-Gaussianity as compared
to that generated by inflation alone, producing values for the function f

NL

(k
1

, k
2

, k
3

) as large as
104 for some wave-numbers and for some choices of the free parameters of the model. Recall that
inflation alone produces f

NL

of order of 10�2. (See section IV.)

(3) The large enhancement of non-Gaussianty raises concerns about the validity of perturbation
theory. We have computed higher order contributions to correlation functions and found that they
are small compared to the leading order result. Hence, perturbation theory remains a valid tool
to compute the primordial power spectrum and bispectrum of cosmological perturbations in LQC.
(See section VI.)

(4) The non-Gaussianity produced by the LQC bounce is strongly scale dependent. The bounce
introduces a new scale, determined by the Ricci spacetime curvature scalar at the bounce, R

B

.
For perturbations, this new scale can be written as k

LQC

⌘ a
B

p
R

B

/6—or, equivalently, in terms
of the energy density at the bounce, ⇢

B

, as k
LQC

⌘ a
B

p
 ⇢

B

. Fourier modes with comoving
wave-numbers k � k

LQC

are not a↵ected by the bounce, and their primordial non-Gaussianity
originate entirely from the inflationary phase and are small. On the contrary, for Fourier modes
that are infra-red enough to “feel” the bounce, i.e., k . k

LQC

, the bounce contributes sig-
nificantly to their non-Gaussianty. We have provided an analytical argument to understand
the enhancement observed in our numerical computations, and concluded that it is given by
|f

NL

(k
1

, k
2

, k
3

)| / e�↵ (k

1

+k

2

+k

3

)/k

LQC , with ↵ ⇡ 0.65. (See section V.)

(5) The non-Gaussianty generated by the LQC bounce has a very particular “shape”, discussed
in section IV B, that can be used to di↵erentiate the results for LQC from other models of the
early universe. Namely, in addition to the scale-dependence mentioned above, f

NL

(k
1

, k
2

, k
3

) peaks

(1) We have computed, for the first time, non-Gaussianity from LQC. This provides 
a new dimension in the study of  phenomenological aspects of  LQC. Also, it makes  
previous results more robust and complete.

Summary
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(4) Perturbation theory remains under control

(6) The LQC-non-Gaussianity has a particular “shape” that would help us to 
identify it in observations (e.g. Large Scale Structure)

(5) fNL(k1, k2, k3) is highly oscillatory. This attenuates its observational effects.

Still, the average value is significantly larger than in standard inflation. 

(7) Observational upper bounds on non-Gaussianity impact the allowed region in 
the parameter space
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