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Ivan Agullo [E=1N]

CMB: info encoded in the statistics of temperature anisotropies

1. Average temperature

T =2.726

2. Temperature anisotropies

3. Root mean square

AT? .
—— /10
T
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CMB: info encoded in the statistics of temperature anisotropies

4. Two point function

® In real space: Legendre pols.
-, w R
(AT (n)AT(n')). = Z 57+ 1 C'y Pp(cos6) (assuming isotropic distribution)
14
classical statistical average Cg angular Power Spectrum

® Equivalently, in angular Fourier space: <agma2‘,m,>c = 000/ Oy Cl

where @em is defined from: AT(R) =) am Yom(?)
m
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Observations (Planck 2015)

Multipole moment, ¢
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A remarkably beautiful idea about the origin of the statistics of temp.
anisotropies:

Vacuum quantum fluctuations in the early universe!

We need to compute the quantum statistics (i.e. correlation functions) of a field

® In angular Fourier space:

A )
(0]0¢;:005,(0) = (2m)36®) (k + k’)k—zp&b(k) (for a hom+isot state)

Pss(k) Primordial Power Spectrum

Propagating until the instant of last scattering, and projecting on a sphere, produces (Y

10
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5. Three-point function

® In real space:

(AT (n1)AT (n2) AT (N2))e

® In angular Fourier space:

01020 .. e e e L.
<CLg1m1 A fommy CLg3m3>c = g,rélfngmg) bg1g2g3 (assuming isotropic distribution)

where  Glilittn, = [ ditYim, () Yiama (i) Vi, (9

b£1 bol3 BiSpeCtrum

This is what cosmologists call non-Gaussianity

(because in a Gaussian probability distribution the three-point function vanishes) 11
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Primordial origin: three-point quantum cotrrelation function

® In angular Fourier space:

<0|(5A¢E1 5A¢]—€*2 5Agbl—€>3 0) = (27T)35(3) (/;1 + ko + Eg) Bso(k1, k2, ks3) (for a hom+isot state)

Bss (K1, k2, k3) Primordial Bispectrum

Propagating until the instant of last scattering, and projecting on a sphere, produces b, 505

Therefore, studying primordial non-Gaussianity simply means computing the
three-point correlation function of scalar perturbations

12
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Because we have datall!

Data on non-Gaussianity provides valuable information
about the mechanism generating the primordial
perturbations

14
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Observations (Planck 2015)

b€1 lol3 BiSpeCtrum
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Again, rich structure!

Although most of this structure is not primordial

Forthcoming observations of the Large Scale Structure (galaxy distribution) is expected to
provide richer observatioq;él data on non-Gaussianity
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Last few years: lot of interest in LQC-phenomenology

Reason: contact between quantum gravity and observations

Framework: LQC + Inflation

Cosmic microwave background

-

Inflation

Quantum
Geometry

\ Pre-inflation
) — Bounce

Pre-bounce Phase
of the Universe

Fig. Credits:
P. Singh, Physics 5, 142 (2012)
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Focus so far: Power spectrum

[ Inflation without LQC

/

kLQC/k*

1074 1073 1072 10~1 109 101
k/k,

Gray points: Power spectrum numerically computed for individual values of k

Black points: Average of gray points

18
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Similar results obtained by different groups:

For other choices of initial conditions (for perturbations) the infrared part of the
spectrum is suppressed rather than enhanced

Comparing with data:

(1) Restriction to the parameter space to the region that makes results compatible with
observation

(2) In this region of the parameter space, look for LQC-specific signatures, both for
scalar and tensor modes.

19
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In this talk, we argue that this (the analysis of the power spectrum) is only half
of the story

It remains to be answered:

How big is the non-Gaussianity generated by the bounce?

(a) If it is large enough, the perturbative expansion used to compute the power spectrum
would break down.

This is a real possibility, because the bounce takes place at the Planck scale

(b) Even if perturbation theory turns out to be OK, there are strong observational upper
bounds we must satisfy to claim compatibility with data.

An analysis of non-Gaussianity is therefore needed (a) to claim self-consistency
and (b) to make statements about predictions.

20
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What we need to do (now schematically, more details later):

1) Second order classical cosmological perturbation theory:
gicalp y
H=HD 4+ HO
’H(2) : piece quadratic in perturbation. Dictates the free evolution (linear equations of motion)

7-[(3) : cubic piece. Interaction Hamiltonian
(2) Quantize, and use interaction picture

~ 1
Operators evolve with the free Hamiltonian 7‘[(2) : 0@

/r] A
States evolve with the interaction Hamiltonian 7—[(3): U (777 770) = T'exp (_Z/ h / d77/ H(S)I(n’)) ;
n

0

(3) Power Spectrum

S NSV SN AT AT . T I T (3, (3)12
(01367, 067, 10) = (0|U* 96, 67, Ut |0) = (0l0@z, 607, 0y ~i/h | dn' (O] [0z, 007, HEY ()| 10) + O(HD)?
n

0
Next-to-leading order correction
ust be small for the perturbative expansio

01 make sense
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(4) Non-Gaussianity

(01005, (oo, (n)ddr,

~ifn [ anf (o [§ox, (n)dor, ()5

This is what we need to compute

22
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e We have developed a numerical code to compute non-Gaussianity in generic FRLW
spacetime

®@ Embedded in the numerical infrastructure CLASS

e Codes for non-Gaussianity already existed, but their range of applicability is not
generic enough for our problem

® We have made it publicly available: https://github.com/borisbolliet/ class_lqc_public

@ This code will be useful beyond LQC

24
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(1) Power Spectrum

LQC introduces a new

IR modes relative to kLQC : .
QC UV modes relative to KLQC scale in the problem kiqc.

I<I T TTTTI | T T TTTH I>IIIIIIIIl I<IIIIIIII | | Illlt o L] L]

; ] It is defined by the Ricci

1077 // curvature at the bounce
~ —8 — E 3
= R i -
& - ’
Q. [l g 8.0, %0 o g, i . -
10_9 g E \

] i 1 T Inflation without LQC
10—10 ]C* -
1074 1073 1072 1071 10° 10!
k/k*

Agreement with standard inflation for UV modes (these modes don’t “feel” the bounce”)

The bounce affects the IR part of the spectrum

25



(2) Non-Gaussianity

Ivan Agullo

Iy (k1, ko, k3) : Bispectrum in “units” of the power spectrum. See later for

exact definition

First, we show equilateral configurations, i.e. ki=k2=k3

B i kLQC/k*

101 10"

k/k,

103 102

101

20
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Similar results for other configurations
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| (R B, F)]

IR modes relative to kpoc UV modes relative to kiqc

IR modes relative to kLqc UV modes relative to kLqc
< > ~ >
4 > 4 > | T T TTTT | T T TTTT | T T TTTTT | T T TTTTI | T T TTTI

k

= 107% E

101 N - ! ]

& - : ]

00 Q. B It I X SN a3 ...................... -

- 3 1077 i E

10_1 % ¢’ ° H q ' E ;

1 _3_||||” | oyl | | IIIIIIIE I Ll | | IIIIII_ | L L Lrlll | L L Lrlll | | IIIIIII! L1111l | L1 1 I11T]
! 1073 102 10~1 100 10! 1073 1072 1071 10° 10!

k/k, k/k,
Inflation without LQC

Qualitative understanding: similar to the power spectrum

The bounce amplifies non-Gaussianity significantly, for modes that are of the same
order or more infrared than the curvature radius at the bounce

Non-Gaussianty in LQC are strongly scale dependent, in contrast to a majority of

models in the market e
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Summary of the results:

(1) The results of standard inflation exactly recovered for UV modes (nice check)
(2) Non-Gaussianity is very oscillatory
(3) The amplitude largely enhanced by the bounce for IR modes

(4) The origin of this enhancement understood analytically

(5) Non-Gaussianity “more sensitive” to the bounce than the power spectrum (see
previous slide)

(6) We have check that, despite the large enhancement, perturbation theory is
under control

(7) Comparison with observations modifies the range of parameters that makes
the predictions of LQC compatible with data

29
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Well-known in the Lagrangian framework (Maldacena’s paper on non-
Gaussianity in inflation 2003)

For LQC we need Hamiltonian approach
We couldn’t find this in the literature, so we did it ourselves

We took advantage of the very useful Mathematica package xAct, written by

32
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Perturbative strategy

Expansion at second order. Two strategies:

(%) = ¢+ 61 (Z) + l5¢<2>(f) +

— 1 —
(Z) = 79 + 67 W(Z) + 55#3 (2)(513) +
Linear e.o.m. with sources Non-linear e.o.m.
where: §;; = a’6;;; 7 = L5

6a

We choose the second strategy, because it is easier to implement in the
quantum theory via standard perturbative techniques in the interaction
picture.

33
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Gauge choice for scalar perturbations
e First question, Gauge invariant versus Gauge fixed

® Remember: no matter what your choice is, the results must be reported in

terms of the comoving curvature perturbations R (it remains constant at supet-
Hubble scales)

® But R is ill-defined a bit before inflation starts, when ¢ =0
e We use §¢ to parameterized scalar perturbations and fix the gauge so §¢;; =0

e We compute correlation functions for §¢ and translate them to R at the
end of inflation, using the relation:

2
R(Z,n) =~ 00(, 1) + 3 g Ve _ﬁil <35¢(f,n))2+...

2 KD Ta 4 a A

h y— _6P¢ subdominant terms
where o G4 at the end of inflation
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Second order Hamiltonian (free evolution)

1 1 -
HZ) = N / Bz [—5]72 + a®(969)? + a®A6¢?
9 a3 1o

Potential;

4 I/
p 3 p 6 p T ap
¢ + —/43—¢ _2P¢ V¢ + V¢¢—|—6p¢p¢ 3 ¢ t_ 3 ¢

a®r2 2 a®  am, Ty a* 2 a® ,

A= -9

Produces equations of motion: (O —2A(t)) dp(Z,t) =

35
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Third order Hamiltonian (self-interactions)

9kpy  2Tpy  3a’p,V, 3,
N/d%[( 6 2Py 307Po Voo | @ Vigs | 43

datm, 2a573  2m, 6
3 Pg 9 9p‘3§ ,  3a’py 2 02 3p?b 9 12
— ops 00 — OpL0D° — 00 (00 YOR,
2a4 T, Dy ¢ a2 PpOP T ¢ (00p)” + Nar, P07 x
1 - 3a% py 3a® py o
— Opy 0;00 O 60 0%y 0%y — 5 0;0:x 0" x |.

with: X

3K

N k2a?

5
p a’ Vg \ .~ p 3
K Tg K QT

Note: most of terms are independent of V(¢) . These are self-interactions mediated

by gravity

Check:

After a LLegendre transformation, agreement with Maldacena’s third order Lagrangian

36
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2. Extension of the dressed metric approach
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The formal derivation is the same as at it is when working at leading order in
perturbations. I don’t repeat it here, but only emphasize the differences

Under the test field approx. the e.o.m. for perturbation turn out to be:

iR 0g0U = (Wo|Hpert| Vo) 0W
/ N

State of perturbations FLRW background

Main difference: the Hamiltonian for perturbations now acquires a new term (in red):

AN AN

Hper = Vo ((Ho) ™2 (HP[N,] + HEON,]) (Ho)™'1?)

38
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First, free evolution:

Same as in previous papers: (Ij — Q~() 5A¢(;E’, ﬁ) —

[] d’Alembertian of the dressed metric Gapdz®dx® = a*(0) (—di® + dz?)

o (H ety

® with scale factor: a =

r—1
(Hy)
1/2 77— 1/2,4 77y—1/2\1/2
@ and relation conformal time-internal time dfj = V), (H SOV (H et Hy oYY 2 dg
Hy? a2 Hy ?
o~ a a
® and dressed potential Ql:< OA I 1 )
(Hy * a* Hy ?)

Three moments of W affect the dynamics of perturbations

If a sharply peaked state W is used for the background, the dressed metric reduces effective metric

, studied phenomenology with states with large dispersions
39
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Interactions:

/’7 A
Evolution operator: U (n,m0) = T exp (_Z/ h / dn HiInt(n/))
n

0

Where: Hint = (¥o|Vo ((Ho)_l/2 HB[N,] (ﬁo)_l/Q) Uo)

A bunch of new moments of Vo enter in the dynamics

One can compute the new moments using the same techniques
as in

We will focus here on sharply peaked states

40
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@ Definition of the bispectrum:

(0Rz: R, Ry, 10) = (2)30@) (By + s + Ks) B (kr, ko, ks)

® Definition of fnr(k1, k2, k3)

BR(klak% k?)) = — fNL (k17k27k3) X (A/ﬂAkQ T AklAk3 T AkQAkS)

] O

@ We have to compute

N a\ 3 ~ ,\ N
LRy [0) = (—;) (0[06; ooy, 36 0)

3 V. a® K 22 a\4 d3p A A A~ A . . R 5
+ <__ R et __) (_;) [/ (27)3 <O‘5¢E15¢E25¢55¢];’3_5‘0> + (k1 <> k3) + (k2 < k3)

41
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To compute fNL we need to specify:

First choice

Lo
A choice of potential V (¢) Vie) = oM
Initial conditions for the background field ¢(t5) o(tp) = T7.62 Mpy
Energy density at the bounce 0B pp =1 Mp,

Minkowski vacuum in the past,
Initial quantum state for perturbations well before the bounce

Later, we will explore other choices

43



Ivan Agullo

Equilateral configurations, i.e. ki=k2=k3

| T TTTTI | | T T T | | IIIIIII; | | T TTTTI | | T 104§IIIIII | | T TTTTI | | IIIIIII: | | T TTTTI | | IIIIII§
10

— 10%

~< - -

<& 101 E

ST :

= 10 E

< F? -

10_1% - . ‘-". =

- Ko/ K . : K ke :
L Lol | | L1l | | ||||||I! | | L Lidd | | L1111l 10—3 L il | | L1 1ill | | L Lt | | L1 1ill | | L1111l
1073 1072 1071 10° 10! 1073 1072 1071 109 10!

k/k, k/k.

Similar for other configurations (see slide number 27 , and next slide)

44
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Two dimensional plots: fNL vs k2 and k3, for fixed ki1

The amplitude of
fNL is quite
uniform, although
larger in squeezed
configurations

k1

EgL —>

—

k2

0.021

Lms

k1 = 3 k.
ek =k,
ki = 0.5k,

L0 983

954471

45
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Different values of ¢(tg)

Physically, ¢({B) dictates the amount of expansion from the bounce to
the end of inflation

Observable modes Observable modes
< <<
T T T T T LR T T TTTTT T T T T T T 105 _llllll l IR l IR l IR l l |||4|:||_
107§ r. py = 1.00 Ml‘flg pp = 1.OOM,,
o :
107%E ° o o o E )
S HEIF I foh A | =
R "B AEmev, WY I w -
A 1077 = Ao "v 0 T Avw = 2
- A my wa Tt aVy ] =
C o 4" Yaem 4 v i K
[ = v A v i 3l ¢ =8.02M ¢, = 7.62M 1
L0-10L - ¢, = 8.02M,, A O, =T.62M, . 10 B : Pl A Py : PI
§ I. u ¢B = 1.82M,, v qu = 142 M, g - ¢B = 182 MPl v ¢B =142 MPl
i - |||||m | ||'|||||l L1 L il L1 1L LIl L1 L1 Lilll | ||||||T 10_5 E— I EE— I EE— I EE— I EE—
10° 104 103 102 107! 10 10! 107 107 107 107 10°

Changing ¢(tp) produces a shift w.r.t. the observable window, but does not change the shape

46
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Different values of the energy density at the bounce

Changing pB changes the amount of expansion from bounce to end of inflation

But it also changes the energy scale of the bounce, and this is related to the effective

| f(ky B R))

strength of interactions among perturbations

Observable modes

<
104 LI L IIIIIII LA LA L II:III L III_
; ¢, = 7.62M,,
10° '5“ .
10 \ -
- v
102 o rdip——p—
Py =2.0M, o p,=05M
107 F s pp=10MLy po=02M! 1
1072 107! 10" 10! 107
k/k,

Changing pBproduces both a shift relative to the observable window, and a different

maximum value of non-Gaussianity

47
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Different potential V(¢)

. . 3 M? _
Starobinsky potential V(¢) = 1 (1 — e

K

2
2?¢> M = 2.51 x 10-5Mp,

104§||||||| T T T T TTTT1T h| T T T TTTIT T T T T 11110 1 ||||||§ 104 P L T T T TTTTTI T T T T TTIT1 T |||||||§]
103 ' ! 10% ]
i . ;
— 10k | T
o) : E s :
= 10} < 10°F |
~c 3 - .
~— ] =~ 0 B
= 107 = 107 .
- (IR . e, B ]
— 10 1 =0k | | ]
107! Quadratic potential = 10 = ®  Quadratic potential o.. 5 s
102 ®  Starobinsky potential »n § 102 L ®  Starobinsky potential H
10—3 Ll L1 L1 RN Lol ]_0_3 . T R T N W T W N
1073 102 10! 100 10! 107 1072 107! 100

Plots obtained for:

k/k,

¢p = —4.88 Mpy , pB = 1 M},

k/k,

10!

Conclusion: non-Gausssianity from the bounce the same. Differences come
from differences in the background spacetime during inflation, and also well

before the bounce

48
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Different choices of initial vacuum in the past, before the bounce

1O4§IIIIIII | T T TTH | | ||||||| T T TTH | |||||1::
- ' 3
10%L ?
- "-. 3
B - a o o e . .
_ 107k e ‘:'.;-'-; |  Allplots for initial time:
e " R ] B 5
o 10t udE . o = 2.842 x 103 Tpy
— - @y & o . v @ E . . . :
= 100k 'i, “ . -l _ or, in cosmic time to = —10°1py
HE ¢y ¢ * §
10t ¥ e Minkowski-like vacuum . é
9 v Preferred instantaneous vacuum u
10 A Obvious 4th-order adiabatic vacuum ;. §
10_3 L 111111 | L 1 1 11111 | L 1 1 11111 | L 1 1 11111 ] ] IIIIII_
1073 10~ 10~ 10 10!
k/k,

Conclusions: same results

Results are also the same if we choose the initial time to be different, as long as
modes start evolution well inside the curvature radius

On the contrary, if we start evolution very close or at the bounce, when some modes are

outside the curvature radius, results are very sensitive to the specific initial time chosen.
49
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4, Analytical arsument




Ivan Agullo

Our calculations are numerical, and that makes difficult to understand the origin of the
enhancement of non-Gaussianity

Goal here: get further understanding using analytical approximations

The argument is very simple, and approximation may look crude, but the
result turns out to be an excellent approximation for the numerics

o1
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I will be brief here (more details in 1712.08148).

Contribution of non-Gaussianity generated by the bounce is given by integrals
of this type:

An

I(k1, k2, k3) = /_ . dn f1(n) ©x, (1) Pk, (1) Prs (1)

/ Perturbations
Background functions

Extend the integration rate by introducing a window function:

Ik kaks) = [ dn W) fi(0) s (n)era (s, (0
1 forn > A

where Win) = . o ' and smooth
0 for |n| > An

The mode functions are oscillatory (fof large enough k):

Ok (M) Py (1) Phy () o e Kithkaths)n

o2
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So the integrals involved in the calculations are of the type:

©.@)

I(kla k27 kS) — / dn g(n) 6_7: (k1+ka+k3)n

— OO

Cauchy intergal theorem+ asymptotic analysis:

The behavior of the integral for large enough values of ki = k1 + ko + k3 is
dominated by the pole of the integrand with the largest imaginary part

Such pole is the pole of the inverse of the scale factor a(n)_1

. 1/6
Using an analytical approx. valid near the bounce a(t) = a5 (1 + 5Bz t2)

, ['[5/6] 1 .«
The Pole at the bounce is (in conformal time —\/m/3 =1
( ) T / 2I'(4/3] ap \/RB/G/ krqc
where: «a >~ 0.64677 kLoc = /Rp/6

Therefore, the integral is estimated to behave as:  g—a(kithetks)/krac when (kg + ko + k3) > kLqc

03



Comparison with numerics for different configurations:

1 | | | | | | (L | | |
~— 1072 _&‘ '
&.\ 10—4 -
<& -
- 1076
<8 i
N—
s —107° |
(e
2 4 -
QN\Z —107% F kl — k2 — k?,
< i ok =k =2k
—107* |
i k, =k, = 100k,
_1 | | | | | | | |1 | | |
10~ 1 10V
k, [k,
Points: numerics
Solid line: curve e~ @(kitka+ks)/kLoc  with o ~ 0.64677

Ivan Agullo
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- 5.Stability of perturbation theory
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(The results of this sections were already mentioned in the first part of the talk. Here a few more
details)

We have seen that the three-point function is several orders of magnitud larger than in
standard inflation.

Second order effects may be too large === breakdown of perturbation theory

We can check this explicitly

o6
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Next to leading order contribution to the two-point function

Next-to-leading order

=

- N
(0|R; Ry, 10) = (2m)26) (k1 + Ko) k—ﬂg Pr (k1) + APx (k)]

KP¢ Ta

RP¢ Ta

Numerical evaluation:

|APr(k)/Pr(k)|

d3p - -
(27_(_)3 B5¢(klap7 _kl —ﬁ)

2
opl? |90|;;1_ﬁ1\2J +O (M)

The three-point fnc enters here

' Perturbation theory

1s under control

o7
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6. Contrast with observations |
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The Planck collaboration reported results for non-Gaussianity in 2015

P. A. R. Ade et al. (Planck), “Planck 2015 results. XVII. Constraints on primordial non-Gaussianity,”
Astron. Astrophys. 594, A17 (2016), arXiv:1502.01592 [astro-ph.CO].

1500
Ty

1000
g

500
Moo

Their results constrained models in the market, and did not confirm any.

Planck sensitivity is good at large multiples:

|fNL| 5 10 for ¢ z 1000

and it gets worse as for low multipoles, growing as 1/v//
59
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° i kLQC/k*

1073 102 101 10° 10!
k/k.

LQC-non-Gaussianity has precisely the shape needed to respect observational constraints on
large multipoles (large k), and still to produce some observable effect at low multipoles

Here, we obtain an estimate of constraints on our free parameters coming from data

I will consider here the most restrictive scenario, forgetting about the oscillations in fnr,

It is expected the oscillations will attenuate the effects of fnL in the CMB
and actual constrains may be weaker

60



Ivan Agullo

Results from Plank imply

» Upper bound: |fnr| <50 for £ S5 (orequivalently, k < 2k,)

Ok with observations ¢(tg) = 7.62 Mpy

| (ks F, R))

—_
=
\}
e T T 1T T
®
[ J
] i

SN

| kige/ke e

10_3 R L Ll ] IIINHM [ AT
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Ivan Agullo

Results from Plank imply

» Upper bound: |fnr| <50 for £ S5 (orequivalently, k < 2k,)

Ok with observations ¢(tB) — 7.82 Mpy
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Results from Plank imply

» Upper bound: |fnr| <50 for £ S5 (orequivalently, k < 2k,)

This values corresponds to Minimum o(tp) b(tp) = 7.46 M
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Conclussions:

® Minimum allowed value ¢(tp) = 7.46 Mpy

Ivan Agullo

e For values larger than ¢(tg) = 7.82 Mp, scales modified by the bounce are

redshifted to super-Hablle scale

b(tg) = 7.46 Mpy

o

[

1072 ! $ -
! : R
1!All{l)llll | L Lt | RN | lllllllll L riud
1073 1072 1071 109 10!
k/k* k = 2k,
4 Observable modes
< >




Non-Gaussianity vs Power spectrum
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Corrections to the CMB
restricted to the lowest multipoles
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Conclussions:

In the worse-case scenario we just considered, the LQC corrections on
the power spectrum must be restricted to k < 1/2k, (¢ < 20)

However, I expect the oscillatory character of fyto weaken this constraints

How much exactly: difficult to answer. Work in progress
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. Summar




Ivan Agullo

Summary

(1) We have computed, for the first time, non-Gaussianity from LQC. This provides
a new dimension in the study of phenomenological aspects of LQC. Also, it makes
previous results more robust and complete.

(2) The LQC pre-inflationary dynamics makes the state of perturbations to be
excited and non-Gaussian at the onset of inflation, relative to the Bunch-Davis
vacuum

(3) The bounce introduces a new scale on the problem kLqc

4) The amplitude of fn; is enhanced for IR wave-numbers relative to krQc
P
| fxn (B1, k2, k3)| oce™@ (k1+k2+k3)/kLQC, with a ~ 0.65

68



Ivan Agullo

(4) Perturbation theory remains under control

(5) fnr(k1,k2,ks) is highly oscillatory. This attenuates its observational effects.

Still, the average value is significantly larger than in standard inflation.

(6) The LQC-non-Gaussianity has a particular “shape” that would help us to
identify it in observations (e.g. Large Scale Structure)

(7) Observational upper bounds on non-Gaussianity impact the allowed region in
the parameter space
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