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Some Questions

• Why is the Weak Interaction Maximally 
parity violating?

• Why is the standard model Chiral?

• Like gravity the weak force interacts 
universally with all fermions



Chirality Gauge Theory
and Parity 
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ing from Weyl, it was understood that the simplest way
to couple spinors to gravity involved the so-called spin-
connection, in the “Cartan-Palatini” formulation of gen-
eral relativity. Later Kibble realized that general rela-
tivity could be seen as the gauge theory of the Poincaré
group, with the tetrad gauging translations and the spin-
connection gauging Lorentz transformations and rota-
tions. Torsion naturally sneaks into the theory whenever
spinors are present, although the relation is purely alge-
braic, so that torsion can be reinterpreted as a 4-fermion
interaction in the standard torsion-free theory (for an ex-
cellent review see [15] and reference therein).

To a large extent the Ashtekar formalism is a reformu-
lation of the Palatini-Cartan-Kibble earlier work, ren-
dering it more amenable to quantization via techniques
imported from lattice gauge theory. The Ashtekar theory
can be obtained by adding a surface term to the usual
Palatini action. Depending on how this is done in the
spinorial sector, one may end up with the same classi-
cal dynamics or with an extension of the original theory
when spinors are present, as we shall see in the next Sec-
tion. In either case the quantum theory is always distinct
from what one would get by attempting to quantize the
original theory. Quantum e↵ects and classical dynamics
driven by spinors always introduce novelties.
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One may wonder how the HL theory looks using
Ashtekar’s “new” variables. This is most easily accom-
plished following the treatment in [5], where the Ashtekar
formalism is derived from the standard ADM framework
by an extension of the phase space followed by a canonical
transformation (dependent on the Immirzi parameter �).
The first operation produces a canonical pair made up of
the densitized inverse triad Ea

i and the extrinsic curva-
ture 1-form Ki

a. With Ei
a the inverse of Ea

i , the extrinsic
curvature Kab can be obtained from the “extended” Ki

a

according to:

Kab =
p
qKi

(aE
i
b) (2)

subject to constraint:

Gab = Ki
[aE

i
b] = 0 (3)

(which produces a form of the Gauß constraint when
contracted with ✏cab). A canonical transformation de-
pendent on Immirzi parameter � is then applied to Ki

a

leading to the Ashtekar connection:

Ai
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a , (4)

where, in the absence of spinors, �i
a is the torsion-free

Cartan connection associated with Ea
i . The Gauß con-

straint impliesDaE
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to an expression in terms of the new covariant derivative:
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This is the usual form for the Gauß constraint in terms
of Ashtekar variables. The Gauß constraint is the only
new constraint to be added in this approach to the usual
two present in the ADM formalism.
Having performed this exercise, the ADM Hamiltonian

becomes the sum of 3 constraints: the Gauß the di↵eor-
morphism and the Hamiltonian constraint. Specifically
the Hamiltonian constraint becomes:
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(where we are using units such that  = 8⇡G).
We now note that the HL action can be written as the

standard Einstein-Hilbert action plus an additional term
in 1� �:

SHL = SEH +
1� �

2

Z
d3xdt

p
qNK2 . (7)

This results in a correction to the ADM Hamiltonian:

HHL = HADM +

p
q

2
(�� 1)K2 . (8)

Therefore all we need to do in order to translate the
model into the Ashtekar formalism is to rewrite the extra
term in terms of the canonically transformed variables.
It is easy to prove that:

K = qabKab =
1p
q
Ea

i K
i
a . (9)

so that the Hamiltonian constraint is becomes
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AM:I introduced a symmetrization for the indices
a b of the (1��) term. JM: Was this a good idea? I
think the new term should NOT be symmetrized.
We see that the di↵ invariant theory contains both the
trace and the traceless part in well apportioned amounts.
The new term is a pure trace, deforming the original
proportions.
Our task now is to obtain this theory from a fermionic

aether. In so doing it will be useful to recall that in the
above Hamiltonian Ki

a is to be understood as

Ki
a =

Ai
a � �i

a

�
. (11)

Thus, if �i
a acquires torsion (solved explicitly in terms of

the fermionic field), it is not unreasonable to expect that
a new term, of the form of the new term in (1 � �), is
generated.

A Lesson on Chiral Gauge Theory

But Parity Violating if couplings are not 
the same.  

Maximal Parity violation if right handed
gauge field is missing.



Beta Decay



The Lesson

Parity violation can emerge from a 
Chiral and Parity Symmetric 

Mother Theory. 

But what could it be....



General Relativity and BF 
Theory

Here YCS is the famous Chern-Simons invariant, given by

YCS =
1

2
Tr(A ∧ dA +

2

3
A3). (24)

It satisfies
δ
∫

YCS

δAai
= 2εabcF i

bc

Thus, the self-dual solutions follow trajectories in configuration space which are gradients
of the Chern-Simons invariant. Not only is deSitter spacetime one of these, there is the
remarkable fact that, while there are an infinite number of self-dual solutions for Euclidean
signature, there is only one for Lorentzian signature and it is deSitter spacetime.

This suggests that the semiclassical state that describes deSitter is

ΨK(A) = N e
3
2λ

∫

YCS (25)

N is a normalization depending only on topology[8].
In fact, this is an exact quantum state as was shown in 1990 by Hideo Kodama[6]. We

will return to the Kodama state and the physics that may be derived from it. But first we
want to go back and find out why what we have been studying is Einstein’s general theory
of relativity.

5 General Relativity as a constrained topological field

theory

In the last sections a very mysterious fact emerged, which is that when general relativity
is written in such a way as to bring it close to gauge theory, in terms of field content and
geometry, we fell upon a close relationship between an important set of solutions-the self-dual
solutions, and a topological field theory. Given the ease by which topological field theories
may be quantized and studied, as well as their remarkable connections with various fields
of algebra, representation theory and topology, it is very important to know if this is an
accident or if it has its roots in some deep relationship between gravity and topological field
theory. In this section we will show that it is indeed no accident and that general relativity
and topological field theory are deeply connected at the level of the action principle.

BF theory

We begin with a four dimensional topological field theory called BF theory[75]. We will
work on a four manifold M = Σ × R, where Σ will be the spatial topology. There is no
metric, and no other fixed background field.

We introduce now two fields. The first is an SU(2) connection Ai
µ, where µ indices the

spatial coordinates (to be suppressed when we use form notation and i = 1, 2, 3 label the
generators of SU(2). The second field is a two form, Bi

µν which is also valued in the SU(2)
generators. To begin with we take them both real.

The action we use is,

IBF =
∫

Bi ∧ Fi +
Λ

2
Bi ∧ Bi. (26)

13

It is easy to derive the equations of motion,

F i = −ΛBi, D ∧ Bi = 0 (27)

We see that the curvature is constrained to be proportional to the B field, with Λ the
constant of proportionality. Bi is in turn is constrained to be covariantly constant. If one
counts one finds there are no local degrees of freedom, hence the theory is topological. It is
also invariant under Diff(M), the group of diffeomorphisms of the manifold. Because of
the form of the action, this topological field theory is called BF theory.

Self-dualology

General relativity is in fact closely related to BF theory. To see this, we need first to
understand the dynamics of general relativity in 4 spacetime dimensions in terms of self-
dual and antiself-dual connections and curvatures.

Let us then have a four dimensional spacetime metric gµν . We will at first take the
spacetime to be Euclidean, then we will see how things are modified for the Lorentzian case.

It is convenient to work with frame fields, ea
µ, with a = 0, 1, 2, 3 = 0, i being four dimen-

sional frame field indices. They are related to the metric by

gµν = ea
µeb

νηab (28)

with ηab the flat metric on the tangent space.
Now we need do do a little self-dualology. Let us consider an antisymmetric tensor Aab in

the tangent space. Given the totally antisymmetric εabcd and the metric ηab we may divide
Aab into its self-dual and antiself-dual parts

A±
ab =

1

2
(Aab ± A∗

ab) (29)

where A∗
ab = 1

2ε
cd

ab Acd. We have
(A±

ab)
∗ = ±A±

ab (30)

Note that these equations are consistent with ∗∗ = +1, which is the case for Euclidean
signature.

Among the objects that can be decomposed this way are the spin connection one form
Aab and the curvature two form Fab = dAab + 1

2A
c

a Abc. These are valued in the SO(4) lie
algebra. The decomposition of Aab into A+

ab and A−
ab corresponds to the Lie algebra identity

SO(4) = SO(3)L ⊕ SO(3)R. There are then three generators (per form index) in A+
ab and

they correspond to SO(3)L. These three generators may then be labeled by i = 1, 2, 3 by
the correspondence A+

i = A+
0i = 1

2ε
jk

i A+
jk.

It is important to note that F+
i , being also valued in SO(3)L is an SO(3) gauge field

which is a function only of the SO(3)L connection A+
i .

It turns out that not only can the connection and curvature information in a four man-
ifold be decomposed in self-dual and antiself-dual parts, the same is true for the metric
information. Given the metric gµν one can construct three two forms from the self-dual
parts of ea ∧ eb, as

Σi = e0 ∧ ei + εi
jke

j ∧ ek (31)

These forms are self-dual by construction in the internal indices. Each of the three is
also self-dual in the spacetime sense

∗Σi
µν ≡ εµνλσgλαgσβΣi

µν = Σi
αβ (32)
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From self-dual two forms to general relativity

The connection of general relativity to BF theory comes about by identifying the SO(3)
valued Bi fields, which are three two forms, with the self-dual two forms Σi corresponding
to some metric gµν . Let us see how this works.

To make the correspondence we cannot just plug

Bi = Σi = e0 ∧ ei + εi
jke

j ∧ ek (33)

into the equations of motion, (27), as the restriction (33) reduces the number of degrees of
freedom per point, and there are already zero degrees of freedom per point. But we can plug
(33) into the action (26) for BF theory to find that,

IJSS = IBF |Bi=Σi =
∫

(e0 ∧ ei + εi
jke

j ∧ ek) ∧ Fi +
Λ

2
εabcde

a ∧ eb ∧ ec ∧ ed (34)

This is actually an action for general relativity[76]. In fact it is easy to see that it gives the
same equations of motion as the Palatini action

IPalatini =
∫

εabcd

(

ea ∧ eb ∧ F cd +
Λ

2
ea ∧ eb ∧ ec ∧ ed

)

(35)

Using the projections into the self-dual and antiself-dual parts of the curvature, our
strange looking action (34) can be written as,

IJSS =
∫

εabcd

(

ea ∧ eb ∧ F+cd +
Λ

2
ea ∧ eb ∧ ec ∧ ed

)

(36)

The equations of motion that come from varying the self-dual part of the connection, A+
i

are
(D+Σ)i = 0 (37)

These three equations are in fact the self-dual projection of the six equation of motion that
corresponds to varying the Palatini action by the full SO(3)⊕SO(3) connection, Aab to find,

∇ea ∧ eb = 0 (38)

It is well known that the solution to this last (38) is that Aab is equal to the SO(4)
spin connection, ωab corresponding to the frame field ea. The solution to the equations of
motion of the modified action (37) are similar, they are that A+

i is equal to ω+ab, which is
the self-dual part of the spin connection of ea.

The other equation of motion of the Palatini equation is, with the connection taken to
be the spin connection, the Einstein equations,

εabcd

(

eb ∧ F cd + Λea ∧ eb ∧ ec ∧ ed
)

= 0. (39)

The equation of motion of the modified equation is instead

εabcd

(

eb ∧ F+cd(ω+) + Λea ∧ eb ∧ ec ∧ ed
)

= 0 (40)

This differs from the Einstein equation (39) by a single term, which is

ec ∧ F cd(ω), (41)

but this vanishes by the Bianchi identity that sets Rµ[νλσ] = 0.
This establishes the equivalence of (36) to general relativity with Euclidean signature10.

10Except that, as in the Palatini case, the fact that the action and equations of motion are polynomial
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Consider the Following Action

Ansatz: 

2

The full action gives an extended dynamics for the grav-
itational field [11]. The symmetric phase of the theory
consists of a bi-metric theory [12, 13] with a massless
graviton, a massive spin two field and a scalar ghost
[14]. The phenomena of spontaneous gravitational sym-
metry breaking were discussed earlier in [11], where it
was shown that an extended Plebanski action of the form
of (2), for a gauge group G which contains the Lorentz
group, SO(3, 1), su↵ers spontaneous symmetry breaking
to an Einstein-Yang-Mills theory with a Yang-Mills gauge
group inG/SO(3, 1). The same was demonstrated for the
chiral SU(2)L subgroup of the Lorentz group [15].

It is convenient to change to two component spinor
indices [16]. A,B = 0, 1 are left handed spinor in-
dices while A0, B0 = 00, 10 are right handed spinor in-
dices. This allows us to easily distinguish the left and
right handed fields. The connection decomposes into
Aab = AAA0BB0

= "ABAA0B0
+ AAB"A

0B0
and similarly

the two forms Bab. The scalar fields  abcd decompose
into pure spin two fields represented by  ABCD and
 A0B0C0D0 , both totally symmetric, and mixed compo-
nents  ABA0B0 on symmetric pairs of indices. Thus
 ABCD =  (ABCD). The action now takes the form,

S=

Z

ı

4⇡G

n

BAB^FAB+
�

6G
BAB ^BAB�BA0B0

^FA0B0

� �

6G
BA0B0 ^BA0B0

� 1

2
 ABCD B(AB ^BCD)

+
1

2
 A0B0C0D0B(A0B0

^BC0D0) � A0B0ABB
A0B0

^BAB
o

+
ıg2

2
 2 (BAB ^BAB �BA0B0 ^BA0B0

) , (2)

where � = G⇤ is the dimensionless cosmological constant
and  2 =  2

ABCD + 2
A0B0C0D0 + 2

ABA0B0 .
We must impose reality conditions that restrict the

solutions of the theory to those in which the metric is real.
We make use of the remarkable fact that a densitized
metric, which is cubic in the B fields, can be constructed.
In fact, two metrics can be built out of the left and right
parts of B. These are the left and right Urbantke metrics
[17, 18], namely g̃Lµ⌫ = "��⇢�BB

µ�AB
A
⌫�CB

C
⇢�B and g̃Rµ⌫ =

"��⇢�BB0

µ�A0BA0

⌫�C0BC0

⇢�B0 , in which "↵��� is the Levi-Civita
symbol and over tildes label tensor densities transforming
like a covariant tensor times

p
�g, gµ⌫ being the space-

time metric. Note that in the symmetric solution these
are equal to each other while in the asymmetric solution
they di↵er. The reality conditions we propose are that
both left and right handed Urbantke metrics are real.

Because the reality conditions are subtle we start with
the complexification of the theory and study phase in-
variant reality conditions below. Variation with respect
to the BAB and BA0B0

fields yields

FAB= ABCD BCD+ ABA0B0 BA0B0
�Z+( 

2)BAB , (3)

FA0B0 = A0B0C0D0BC0D0
� A0B0ABB

AB�Z�( 
2)BA0B0,(4)

with Z±( 2)= �
3G±4⇡Gg2 2, while varying with respect

to the multiplet of scale fields  we find

 ABCD = (8⇡Gg2W )�1 B(AB ^BCD) , (5)

 A0B0C0D0 = �(8⇡Gg2W )�1 B(A0B0 ^BC0D0) , (6)

 ABA0B0 = (4⇡Gg2W )�1 BAB ^BA0B0 , (7)

where W = BAB ^BAB �BA0B0 ^BA0B0
. Variation with

respect to the connection components gives D ^ BAB =
D0 ^ BA0B0 = 0, in which D stands for the covariant
derivative with respect to AAB , and D0 stands for the
covariant derivative with respect to AA0B0

.
Left-right symmetric solution of the theory for BAB

and BA0B0
expanded in g are

BAB = B
(0)
AB + g2bAB , BA0B0 = B

(0)
A0B0 + g2bA0B0 . (8)

We then solve the equations of motion (5) and (6) order
by order in g. We have to leading order on the left side

B
(0)
(AB ^ B

(0)
CD) = 0, while to order g2 we find 2b(AB ^

B
(0)
CD) + g2b(AB ^ bCD) = 8⇡G ABCDW . A frame field

eAA0
exists such that

BAB = e A0

A ^ eBA0 = ⌃AB . (9)

Similarly on the right side we have the same equations

of motion, B(0)
(A0B0 ^ B

(0)
C0D0) = 0 and 2B(0)

(A0B0 ^ bC0D0) +

g2b(A0B0^bC0D0)=�8⇡G A0B0C0D0W , which tells us that

there must exist a second frame field fAA0
such that

B
(0)
A0B0 = fA

A0 ^ fAB0 �0 = ⌃0
A0B0(f)�0 . (10)

The two frame fields, eAA0
and fAA0

are coupled through
(7), which to leading order give ⌃AB(e) ^ ⌃0A0B0

(f)=0.
This is solved by fAA0

=h eAA0
, with h a function.

Solutions of the asymmetric phase. We keep the above
solution on the left, unprimed side, and we continue to
expand as in (8). Thus we have a frame field eAA0

from

the solution toB(0)
(AB^B

(0)
CD) = 0. But on the right handed

side we image that the equation of motion for FA0B0 , eq.
(4), is dominated by the term (BA0B0�)/3G and by the
term BCD(BA0B0 ^ BCD)/(4⇡Gg2W ). In doing so, we
assume BA0B0 to be order g2 and higher and we image
the scaling � g2 = ⇠, with ⇠ a fixed dimensionless real
parameter, so that

FA0B0 ⇡ �BCDB(A0B0 ^BCD)

4⇡Gg2W
� �

3G
BA0B0+O(g2). (11)

We now expand the left handed B fields as BAB=⌃AB+
O(g2), which to zeroth order leads to W =24 ı e+O(g2),
and invert (11) in order to obtain an expression for BA0B0

in terms of FA0B0
and its dual. We then realize the rela-

tion between BA0B0
and FA0B0

shifting the BA0B0
field:

BA0B0 = �⇡Gg2 (�⇠11 + �⇠ ?) FA0B0 + g6bA0B0 , (12)



Homework:

Using 

It is easy to derive the equations of motion,

F i = −ΛBi, D ∧ Bi = 0 (27)

We see that the curvature is constrained to be proportional to the B field, with Λ the
constant of proportionality. Bi is in turn is constrained to be covariantly constant. If one
counts one finds there are no local degrees of freedom, hence the theory is topological. It is
also invariant under Diff(M), the group of diffeomorphisms of the manifold. Because of
the form of the action, this topological field theory is called BF theory.

Self-dualology

General relativity is in fact closely related to BF theory. To see this, we need first to
understand the dynamics of general relativity in 4 spacetime dimensions in terms of self-
dual and antiself-dual connections and curvatures.

Let us then have a four dimensional spacetime metric gµν . We will at first take the
spacetime to be Euclidean, then we will see how things are modified for the Lorentzian case.

It is convenient to work with frame fields, ea
µ, with a = 0, 1, 2, 3 = 0, i being four dimen-

sional frame field indices. They are related to the metric by

gµν = ea
µeb

νηab (28)

with ηab the flat metric on the tangent space.
Now we need do do a little self-dualology. Let us consider an antisymmetric tensor Aab in

the tangent space. Given the totally antisymmetric εabcd and the metric ηab we may divide
Aab into its self-dual and antiself-dual parts

A±
ab =

1

2
(Aab ± A∗

ab) (29)

where A∗
ab = 1

2ε
cd

ab Acd. We have
(A±

ab)
∗ = ±A±

ab (30)

Note that these equations are consistent with ∗∗ = +1, which is the case for Euclidean
signature.

Among the objects that can be decomposed this way are the spin connection one form
Aab and the curvature two form Fab = dAab + 1

2A
c

a Abc. These are valued in the SO(4) lie
algebra. The decomposition of Aab into A+

ab and A−
ab corresponds to the Lie algebra identity

SO(4) = SO(3)L ⊕ SO(3)R. There are then three generators (per form index) in A+
ab and

they correspond to SO(3)L. These three generators may then be labeled by i = 1, 2, 3 by
the correspondence A+

i = A+
0i = 1

2ε
jk

i A+
jk.

It is important to note that F+
i , being also valued in SO(3)L is an SO(3) gauge field

which is a function only of the SO(3)L connection A+
i .

It turns out that not only can the connection and curvature information in a four man-
ifold be decomposed in self-dual and antiself-dual parts, the same is true for the metric
information. Given the metric gµν one can construct three two forms from the self-dual
parts of ea ∧ eb, as

Σi = e0 ∧ ei + εi
jke

j ∧ ek (31)

These forms are self-dual by construction in the internal indices. Each of the three is
also self-dual in the spacetime sense

∗Σi
µν ≡ εµνλσgλαgσβΣi

µν = Σi
αβ (32)
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On the gravitational origin of the weak interaction’s chirality
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Electro-weak and gravitational interactions are dealt with in a unified framework. Weak SU(2)
gauge fields and the left handed part of the space-time connection are joined into a single gauge
field, valued in the complexification of the local Lorentz group. Weak interactions emerge as the
right handed chiral half of the space-time connection, which explains the chirality of the weak
interaction. The unified framework is provided by an extension of the Plebanski action and has
a stable asymmetric phase where the eight degrees of freedom arrange themselves as the massless
graviton coupled to an SU(2) triplet of chirally coupled Yang-Mills fields. Dirac fermion emerges as
a chiral neutrino paired with a scalar field with the quantum numbers of the Higgs.

Models that aim at unifying gravity with the other forces
face several main obstacles. Gravity is described by a dy-
namical metric while the other interactions are described
by connection fields. The standard model can be quan-
tized perturbatively, because its action is a polynomial of
dimension four terms, while the Einstein-Hilbert action,
being non-polynomial, is challenging to quantize. In ad-
dition, the standard model of particle physics is chiral,
while gravity, at least at the classical level, is not. Any
unification must explain why parity is broken only for the
weak interactions. The Ashtekar-Plebanski formulations
of general relativity addresses the first two challenges.
Gravity is described by a gauge field [1, 2], while the
metric is emergent [3, 4]. These connection formulations
of gravity are drastically simpler than Einstein’s original
metric formulation, as the action and hamiltonian for-
mulations are based on cubic polynomials in the basic
fields, which is a much better situation for quantization
than Einstein’s non-polynomial formulation.

Remarkably, these connection formulations of gravity
address the issue of chirality as well. Depending on the
value of the Immirzi parameter, Ashtekar-Plebanski for-
mulations allow for actions where gravity is chiral or the
gravitational action is just a function of the left handed
part of the space-time connection. Chirality, which in
the classical level is hidden in the gravitational sector,
emerges in the quantum theory [5, 6] where it can cause
parity breaking in the production of tensor modes in in-
flation [7]. This could be detected as correlations of B
mode polarization with temperature fluctuations [8].

Einstein equations can be generated by an action which
involves only the chiral SU(2)L half of the space-time
connection [9]. We then conjecture that the initial ac-
tion for gravity is parity symmetric, but that there exists
a phase in which parity is broken so that one chiral half,
SU(2)L, of the space-time connection codes the gravita-
tional interactions, while the other chiral half, SU(2)R,
emerges with the dynamics of a Yang-Mills field propa-
gating on a space-time described by the left half of the
connection. There might then also be a phase in which
parity is restored so that both chiral halves carry gravi-
tational dynamics. The SU(2) of the weak interactions

is unified with the chiral representation of gravity in a
single SL(2,C) connection, as earlier proposed in 4D in
[19, 20], and in a 3D toy-model in [21] together with a
spin-foam quantization.
This idea requires doubling the degrees of freedom ini-

tially. In general relativity the left and right halves of
the space-time connection are complex conjugates of each
other. To free them up reality conditions have to be for-
mulated which allow the left and right halves of the con-
nection to be independent of each other, but in a way
which still realizes the reality of the metric.
Our starting point is a gauge theory of the complexified

Lorentz group, SL(2,C)C on a four dimensional mani-
fold M. The space-time connection Aab = �Aba is a one
form, valued in sl(2,C)C the Lie algebra of SL(2,C)C.
That Lie algebra is represented by complex antisymmet-
ric, 4⇥4 matrices, Mab = �M ba, where a, b, c = 0, 1, 2, 3
are internal Lorentz indices. Dynamics of Aab is re-
covered involving auxiliary fields, a two form Bab, also
valued in the Lie algebra of SL(2,C) and a scalar field
which provides a map  : sl(2,C)C ! sl(2,C)C , which is
written as  abcd, and undergoes the symmetries  abcd =
 cdab = � bacd and the constraints "abcd abcd = 0.

e ^ e ^ e ^ e ' dete (1)

To specify the dynamics we choose the most general par-
ity symmetric polynomial of dimension four and less:

S =

Z

1

8⇡G

�

"abcd B
ab ^ F cd � 1

2
 abcd B

ab ^Bcd
 

(2)

+
⇣ ⇤

16⇡G
� g2

2
 2

abcd

⌘

"lmnpB
lm^Bnp+

↵

2
"abcd F

ab^F cd ,

where F ab is the field strength of Aab, G is Newton’s
constant and ⇤ is the cosmological constant. Aab then
naturally has dimensions of inverse length, Bab is di-
mensionless and  abcd has dimensions of inverse length
squared.  2

abcd =  abcd abcd, "abcd is the Levi-Civita
symbol and g is a new dimensionless coupling constant.
There is no Immirzi parameter as we restrict the action
to parity even terms. This action has been studied in

Show that 

From self-dual two forms to general relativity

The connection of general relativity to BF theory comes about by identifying the SO(3)
valued Bi fields, which are three two forms, with the self-dual two forms Σi corresponding
to some metric gµν . Let us see how this works.

To make the correspondence we cannot just plug

Bi = Σi = e0 ∧ ei + εi
jke

j ∧ ek (33)

into the equations of motion, (27), as the restriction (33) reduces the number of degrees of
freedom per point, and there are already zero degrees of freedom per point. But we can plug
(33) into the action (26) for BF theory to find that,

IJSS = IBF |Bi=Σi =
∫

(e0 ∧ ei + εi
jke

j ∧ ek) ∧ Fi +
Λ

2
εabcde

a ∧ eb ∧ ec ∧ ed (34)

This is actually an action for general relativity[76]. In fact it is easy to see that it gives the
same equations of motion as the Palatini action

IPalatini =
∫

εabcd

(

ea ∧ eb ∧ F cd +
Λ

2
ea ∧ eb ∧ ec ∧ ed

)

(35)

Using the projections into the self-dual and antiself-dual parts of the curvature, our
strange looking action (34) can be written as,

IJSS =
∫

εabcd

(

ea ∧ eb ∧ F+cd +
Λ

2
ea ∧ eb ∧ ec ∧ ed

)

(36)

The equations of motion that come from varying the self-dual part of the connection, A+
i

are
(D+Σ)i = 0 (37)

These three equations are in fact the self-dual projection of the six equation of motion that
corresponds to varying the Palatini action by the full SO(3)⊕SO(3) connection, Aab to find,

∇ea ∧ eb = 0 (38)

It is well known that the solution to this last (38) is that Aab is equal to the SO(4)
spin connection, ωab corresponding to the frame field ea. The solution to the equations of
motion of the modified action (37) are similar, they are that A+

i is equal to ω+ab, which is
the self-dual part of the spin connection of ea.

The other equation of motion of the Palatini equation is, with the connection taken to
be the spin connection, the Einstein equations,

εabcd

(

eb ∧ F cd + Λea ∧ eb ∧ ec ∧ ed
)

= 0. (39)

The equation of motion of the modified equation is instead

εabcd

(

eb ∧ F+cd(ω+) + Λea ∧ eb ∧ ec ∧ ed
)

= 0 (40)

This differs from the Einstein equation (39) by a single term, which is

ec ∧ F cd(ω), (41)

but this vanishes by the Bianchi identity that sets Rµ[νλσ] = 0.
This establishes the equivalence of (36) to general relativity with Euclidean signature10.

10Except that, as in the Palatini case, the fact that the action and equations of motion are polynomial
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Is equivalent to Einstein-Hilbert with a 
Cosmological Constant



Isogravity 

• Idea:  View Gravity as a gauge theory with a 
connection valued in   

• This is realized by the fact that the 
Complex Ashtekar-Sen variable is Chiral.

gravity-weak unification is to simply add a kinetic curvature term to the chiral gravity theory
with one chiral gauge connection. Schematically we will be dealing with an action of the form:

S =

∫

M4

R(E,A) + R ∧ ∗R (1)

where R(E,A) is the curvature of the gauge connection. But why should we expect this
relatively simple theory with just one connection to encode two forces?

The key is to use the gauge group:

SO(3, 1;C) = SL(2,C)L × SL(2,C)R (2)

where SL(2,C)L and SL(2,C)R are two copies of SL(2,C): the “left-handed” group SL(2,C)L

is formed by the special linear maps on a complex 2-dimensional vector space W , while
SL(2,C)R consists of the special linear maps on the dual complex conjugate space W

∗
. We

denote the associated connections by AL and AR.

The generators of the left and right part of group act independently and are related to each
other by a discrete parity transformations on the complex spinors(ie. the representations are
not unitarily equivalent). We will now write down a gauge theory, where the electroweak
isospin symmetry is generated by the left handed part of the complexified Lorentz group.
Likewise, the gravitational curvature is defined solely in terms of the left connection.

The curvature is given by

FL
µν = ∂µAL

ν − ∂νAL
µ + [AL

µ , AL
ν ] , (3)

(4)

We denote representations of the left handed sector of the gauge group by (k, l), where the
first two indices correspond to the usual classification of spinors.

In addition to the connections, we have four real spinor fields σµ, µ = 0, 1, 2, 3, of type (0, 1):

σµ
aḃ = σµ

bȧ (5)

At each point, they can be decomposed into four linearly independent components σI ,

σµ = EI
µσI , (6)

where1

(σ0
aȧ) = 1 , (σi

aȧ)T = −σi ,

(σ0aȧ) = 1 , (σiaȧ) = σi , i = 1, 2, 3 .

The coefficients EI
µ are called tetrads, and we assume that det(EI

µ) %= 0. Furthermore, we
have a hermitian, positive definite spinor fields of determinant one and type (0, 1). This field

1Spinor indices are raised and lowered by ε-tensors according to the standard conventions.

3
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Mechanism

• Treat one SL(2,C) as the connection for 
gravity (Jacobson, Smolin ’84)

• The other SL(2,C) connection as the weak 
interaction

• Mother Theory is parity invariant

• Q: Is there a parity violating sector 
(solutions) and what are they?



Mother Theory

Mother Theory:
Extended Plebanski 

following symmetries and constraints,

 abcd =  cdab = � bacd, "abcd abcd = 0 (1)

To specify the dynamics we choose the most general parity symmetric1 polynomial of
dimension four and less:

S =

Z

1

8⇡G

⇢

"abcd B
ab ^ F cd � 1

2
 abcd B

ab ^ Bcd

�

+

✓

⇤

16⇡G
� g2

2
 2

abcd

◆

"efghB
ef ^Bgh +

↵

2
"abcd F

ab ^ F cd , (2)

where F ab is a two form which is the field strength of Aab, G is Newton’s constant and
⇤ is the cosmological constant. Aab then naturally has dimensions of inverse length, Bab

is dimensionless and  abcd has dimensions of inverse length squared.  2

abcd =  abcd abcd,
"abcd is the Levi-Civita symbol and g is a new dimensionless coupling constant. Note that
there is no Immirzi parameter as we restrict the action to parity even terms.

The last term is a topological invariant. Apart from that there is only a single term
with a derivative in it, which is the first term.

This action has been studied in several forms. Without the terms in  , it describes BF
theory, a topological theory [8]. With g2 = 0 it is a form of the Plebanski action for general
relativity [9]. The full action gives an extended dynamics for the gravitational field as
discussed in [10]. It has been studied by Krasnov [11] and Speziale [12] and is known to
have eight degrees of freedom. Krasnov and Speziale studied the symmetric phase and
found a bi-metric theory with a massless graviton, a massive spin two field and a scalar
ghost (8 = 2+5+1). Because of the ghost that phase of the theory should be considered to
be unstable. We show below that there is another, stable phase, in which parity is broken
and the eight degrees of freedom arrange themselves as a massless graviton and three
spin one fields making up an SU(2) Yang-Mills theory.

To discuss the dynamics in more detail, as well as to specify the modified reality con-
ditions it is convenient to change to two component spinor indices [13, 14]. A,B = 0, 1 are
left handed spinor indices while A0, B0 = 00, 10 are right handed spinor indices. This al-
lows us to easily distinguish the left and right handed fields. The connection decomposes
into

Aab = AAA0BB0
= "ABAA0B0

+ AAB"A
0B0

(3)

and the two forms Bab similarly decompose. The scalar fields  abcd decompose into pure
spin two fields represented by  ABCD and  A0B0C0D0 , both totally symmetric, and mixed
components  ABA0B0 on symmetric pairs of indices. Thus,

 ABCD =  
(ABCD)

(4)

and the same for primed indices represents the spin two field.
1With parity transformations applied simultaneously to space-time and internal Lorentz indices.

4

Krasnov, Smolin



• The Theory is Parity Symmetric, which was 
shown to be a Bi-Metric Theory with a 
ghost (instability)

• We found a new Parity violating sector that 
is stable and has a self-consistent 
perturbative expansion.



Rewrite Action with 
Spinorial Indices
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The action now takes the form,

S =

Z

ı

4⇡G

⇢

BAB ^ FAB � BA0B0 ^ FA0B0 +
�

6G
(BAB ^BAB � BA0B0 ^BA0B0

)

�1

2
 ABCDB

(AB ^ BCD) +
1

2
 A0B0C0D0B(A0B0 ^BC0D0

) � A0B0ABB
A0B0 ^BAB

�

+
ıg2

2
( 2

ABCD + 2

A0B0C0D0 + 2

ABA0B0)(BAB ^BAB � BA0B0 ^BA0B0
) , (5)

where � = G⇤ is the dimensionless cosmological constant.
To describe the real world we have to impose reality conditions, which restrict the

solutions of the theory to those in which the metric is real. This can be done directly, in
spite of the fact that the metric is not a fundamental field in the action. Instead, we make
use of the remarkable fact that a densitized metric can be constructed which is cubic in
the B fields. In fact, two metrics can be built, out of the left and right parts of B, which
we call the left and right Urbantke metrics [15, 16]

g̃Lµ⌫ = "��⇢�BB
µ�AB

A
⌫�CB

C
⇢�B , (6)

g̃Rµ⌫ = "��⇢�BB0

µ�A0BA0

⌫�C0BC0

⇢�B0 , (7)

in which "↵��� is the Levi-Civita symbol and over tildes label tensor densities of weight
�1, i.e. tensor densities transforming like a covariant tensor times

p
�g, gµ⌫ being the

space-time metric. Note that in the symmetric solution these are equal to each other while
in the asymmetric solution they differ. The reality conditions we propose are that both
left and right handed Urbantke metrics are real.

To summarize, we make four physical hypotheses:

• The SU(2) of the weak interactions is unified with the chiral representation of grav-
ity in a single SL(2,C) connection. This was proposed earlier by Alexander [17] and
by Nesti and Percacci [18]. A toy-model in 3D was presented in [19] by Alexander,
Marcianò and Tacchi, together with its spin-foam quantization.

• The chirality of the standard model arises from a spontaneous breaking of parity
in the gravitational dynamics. It is the weak interactions that break parity because
the weak SU(2) gauge connection is in fact a chiral half of what is originally the
space-time connection.

• This mechanism also explains why parity is maximally violated in the weak inter-
actions. The parity mirror of the coupling of weak isospin to matter is the coupling
of the left handed part of the space-time connection to left-handed spinors.

5

Left Connection

Right Connection



Equations of Motion

• Under the symmetry breaking, right handed space-time spinors become internal
isospinors. More specifically, consider the Higgs field, a space-time scalar valued
in the 1

2

of gauged isospin and the sterile neutrino (or right handed neutrinos in
general) which are isospin singlets but space-time spinors. These are mirrors of
each other under the parity symmetry that exchanges the SU(2)L and SU(2)R parts
of the original connection, and are hence unified in a single Dirac spinor.

The basic dynamics of the SL(2,C)C extended Plebanski action are detailed in the
next section. Sections 3 and 4 describe the symmetric and broken phases of solutions.
The imposition of reality conditions is discussed in sections 5. For the theory to truly
unify the electroweak interactions with gravity there must be a U(1) in the theory. This
can be incorporated most simply by extending SL(2,C)R to GL(2,C)R as is discussed in
section 6. But if we keep the philosophy that parity is only broken spontaneously, there
must be another U(1) gauge field coming from extending SL(2,C)L to GL(2,C)L. Matter
coupling is discussed in section 7, and some possible phenomenological consequences
are spelled out in the conclusions, in section 8. Finally, the appendix contains a summary
of the Infeld-Van der Waerden map, in section A, and of the conventions and recurrent
identities we have been making use of, in section B.

2 Field equations

We now exhibit the field equations. Because the reality conditions are subtle we start with
the complexification of the theory and study phase invariant reality conditions below.

We write the equations of motion: from variation with respect to the BAB and BA0B0 fields
we obtain

FAB =  ABCD BCD + ABA0B0 BA0B0 �
✓

�

3G
+ 4⇡Gg2 2

◆

BAB , (8)

FA0B0 =  A0B0C0D0 BC0D0 � A0B0AB BAB +

✓

� �

3G
+ 4⇡Gg2 2

◆

BA0B0 , (9)

whilst varying with respect to the multiplet of scale fields we find

 ABCD =
1

8⇡Gg2W
B

(AB ^BCD)

, (10)

 A0B0C0D0 = � 1

8⇡Gg2W
B

(A0B0 ^ BC0D0
)

, (11)

 ABA0B0 =
1

4⇡Gg2W
BAB ^ BA0B0 , (12)

where
W = BAB ^BAB � BA0B0 ^BA0B0

. (13)
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Finally, variation with respect to the connection components gives

D ^BAB = D0 ^ BA0B0 = 0 , (14)

in which D stands for the covariant derivative with respect to AAB, whilst D0 stands for
the covariant derivative with respect to AA0B0 .

3 Symmetric solution

We begin with a left-right symmetric solution of the theory. We expand the BAB and BA0B0

in g
BAB = B

(0)

AB + g2bAB , (15)

BA0B0 = B
(0)

A0B0 + g2bA0B0 . (16)

We then solve the equations of motion (10) and (11) order by order in g. We have to
leading order on the left side

B
(0)

(AB ^ B
(0)

CD)

= 0 , (17)

while to order g2

b
(AB ^ B

(0)

CD)

+
g2

2
b
(AB ^ bCD)

= 4⇡G ABCDW. (18)

There then must exists frame field eAA0 such that

B
(0)

AB = e A0

A ^ eBA0 = ⌃AB . (19)

Similarly on the right side we have the same equations of motion,

B
(0)

(A0B0 ^B
(0)

C0D0
)

= 0 (20)

and
B

(0)

(A0B0 ^ bC0D0
)

+
g2

2
b
(A0B0 ^ bC0D0

)

= �4⇡G A0B0C0D0W , (21)

which tells us that there must exist a second frame field fAA0 such that

B
(0)

A0B0
)

= fA
A0 ^ fAB0 �0 = ⌃0

A0B0(f)�0 . (22)

The two frame fields, eAA0 and fAA0 are coupled through (12) which to leading order give

⌃AB(e) ^ ⌃0A0B0
(f) = 0 . (23)

This is solved by
fAA0

= h eAA0
, (24)

where h is a function. Speziale shows that in general the symmetric solutions give a bi-
metric theory with eight degrees of freedom [12].
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Symmetric Solution

• Speziale showed that this theory is a bi-
metric theory with 8 DOF:                          
two spin-2 fields, one ghost scalar                               
(8=2+5+1)

Finally, variation with respect to the connection components gives

D ^BAB = D0 ^ BA0B0 = 0 , (14)

in which D stands for the covariant derivative with respect to AAB, whilst D0 stands for
the covariant derivative with respect to AA0B0 .
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+
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b
(AB ^ bCD)

= 4⇡G ABCDW. (18)

There then must exists frame field eAA0 such that

B
(0)

AB = e A0

A ^ eBA0 = ⌃AB . (19)

Similarly on the right side we have the same equations of motion,
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+
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= �4⇡G A0B0C0D0W , (21)

which tells us that there must exist a second frame field fAA0 such that
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(0)

A0B0
)

= fA
A0 ^ fAB0 �0 = ⌃0

A0B0(f)�0 . (22)

The two frame fields, eAA0 and fAA0 are coupled through (12) which to leading order give

⌃AB(e) ^ ⌃0A0B0
(f) = 0 . (23)

This is solved by
fAA0

= h eAA0
, (24)

where h is a function. Speziale shows that in general the symmetric solutions give a bi-
metric theory with eight degrees of freedom [12].
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Parity Breaking Solution

• When coupling constant g is small.

• The Right Handed Field Strength is 
dominated by the Cosmological Constant
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This is solved by
fAA0

= h eAA0
, (24)

where h is a function. Speziale shows that in general the symmetric solutions give a bi-
metric theory with eight degrees of freedom [13].

4 Symmetry breaking solution
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and invert (25) in order to obtain an expression for BA0B0 in terms of FA0B0 and its dual.
We then realize the relation between BA0B0 and FA0B0 shifting the BA0B0 field by
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fAA0

= h eAA0
, (24)

where h is a function. Speziale shows that in general the symmetric solutions give a bi-
metric theory with eight degrees of freedom [13].
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We keep the above solution on the left, unprimed, side, so we continue to expand as in
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tion of motion for FA0B0 , eq. (9) is dominated by the term (BA0B0�)/3G and by the term
BCD(BA0B0 ^ BCD)/(4⇡Gg2W ). In doing so, we have assumed BA0B0 to be order g2 and
higher and we have imaged the scaling � g2 = ⇠, with ⇠ a fixed dimensionless real param-
eter, so that

FA0B0 ⇡ �BCDB
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3G
BA0B0 +O(g2) . (25)

We may now expand the left handed B fields as BAB = ⌃AB+O(g2), which leads to zeroth
order,

W = 24 ı e+O(g2) , (26)

and invert (25) in order to obtain an expression for BA0B0 in terms of FA0B0 and its dual.
We then realize the relation between BA0B0 and FA0B0 shifting the BA0B0 field by
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Similarly on the right side we have the same equations of motion,

B
(0)

(A0B0 ^ B
(0)

C0D0
)

= 0 (20)

and
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(0)

(A0B0 ^ bC0D0
)

+
g2

2
b
(A0B0 ^ bC0D0

)

= �4⇡G A0B0C0D0W , (21)

which tells us that there must exist a second frame field fAA0 such that
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(0)

A0B0
)

= fA
A0 ^ fAB0 �0 = ⌃0

A0B0(f)�0 . (22)

The two frame fields, eAA0 and fAA0 are coupled through (12) which to leading order give

⌃AB(e) ^ ⌃0A0B0
(f) = 0 . (23)

This is solved by
fAA0

= h eAA0
, (24)

where h is a function. Speziale shows that in general the symmetric solutions give a bi-
metric theory with eight degrees of freedom [13].

4 Symmetry breaking solution

We keep the above solution on the left, unprimed, side, so we continue to expand as in
(15). Thus, we have a frame field eAA0 from the solution to (17).

However on the right handed side we do something else. We image that the equa-
tion of motion for FA0B0 , eq. (9) is dominated by the term (BA0B0�)/3G and by the term
BCD(BA0B0 ^ BCD)/(4⇡Gg2W ). In doing so, we have assumed BA0B0 to be order g2 and
higher and we have imaged the scaling � g2 = ⇠, with ⇠ a fixed dimensionless real param-
eter, so that

FA0B0 ⇡ �BCDB
(A0B0 ^ BCD)

4⇡Gg2W
� �

3G
BA0B0 +O(g2) . (25)

We may now expand the left handed B fields as BAB = ⌃AB+O(g2), which leads to zeroth
order,

W = 24 ı e+O(g2) , (26)

and invert (25) in order to obtain an expression for BA0B0 in terms of FA0B0 and its dual.
We then realize the relation between BA0B0 and FA0B0 shifting the BA0B0 field by

BA0B0 = �⇡Gg2 (�⇠11 + �⇠ ?) FA0B0 + g6bA0B0 , (27)

with
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Similarly on the right side we have the same equations of motion,

B
(0)

(A0B0 ^ B
(0)

C0D0
)

= 0 (20)

and
B

(0)

(A0B0 ^ bC0D0
)

+
g2

2
b
(A0B0 ^ bC0D0

)

= �4⇡G A0B0C0D0W , (21)

which tells us that there must exist a second frame field fAA0 such that

B
(0)

A0B0
)

= fA
A0 ^ fAB0 �0 = ⌃0

A0B0(f)�0 . (22)

The two frame fields, eAA0 and fAA0 are coupled through (12) which to leading order give

⌃AB(e) ^ ⌃0A0B0
(f) = 0 . (23)

This is solved by
fAA0

= h eAA0
, (24)

where h is a function. Speziale shows that in general the symmetric solutions give a bi-
metric theory with eight degrees of freedom [13].

4 Symmetry breaking solution

We keep the above solution on the left, unprimed, side, so we continue to expand as in
(15). Thus, we have a frame field eAA0 from the solution to (17).

However on the right handed side we do something else. We image that the equa-
tion of motion for FA0B0 , eq. (9) is dominated by the term (BA0B0�)/3G and by the term
BCD(BA0B0 ^ BCD)/(4⇡Gg2W ). In doing so, we have assumed BA0B0 to be order g2 and
higher and we have imaged the scaling � g2 = ⇠, with ⇠ a fixed dimensionless real param-
eter, so that

FA0B0 ⇡ �BCDB
(A0B0 ^BCD)

4⇡Gg2W
� �

3G
BA0B0 +O(g2) . (25)

We may now expand the left handed B fields as BAB = ⌃AB+O(g2), which leads to zeroth
order,

W = 24 ı e+O(g2) , (26)

and invert (25) in order to obtain an expression for BA0B0 in terms of FA0B0 and its dual.
We then realize the relation between BA0B0 and FA0B0 shifting the BA0B0 field by

BA0B0 = �⇡Gg2 (�⇠11 + �⇠ ?) FA0B0 + g6bA0B0 , (27)
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The Action II
We can check that the shifting term in (27) is small in solutions to equations of motion

and compute that bA0B0 is suppressed in power of G:

bA0B0 =�⇡4G3

�

(�2⇠ + �2

⇠ )11 + 2�⇠ �⇠?
�

FC0D0
(�⇠11 + �⇠?)FA0B0^(�⇠11 + �⇠?)FC0D0+O(g6) . (29)

To understand the effect of this shift we solve the equations of motion for the  mul-
tiplet, (10)-(12), and plug the result back into the action to find

S =

Z

ı

4⇡G

⇢

BAB ^ FAB � BA0B0 ^ FA0B0 +
�

6G
(BAB ^ BAB � BA0B0 ^ BA0B0

)

�

+
81 ı

128⇡2G2g2W

⇣

(BAB ^ BCD)
2 + (BA0B0 ^BC0D0)2 � 4(BAB ^ BA0B0)2

⌘

. (30)

We incorporate the shift (25) together with

BAB = ⌃AB + g2bAB (31)

to write the action as

S = S(0)(eAA0
, AAB, AA0B0) + S(1)(bAB, bA0B0 , eAA0

, AAB, AA0B0) , (32)

where the leading order action S(0) is

S(0) =

Z

ı

4⇡G
⌃AB ^ FAB +

�

12⇡G2

e

� e

4g2YM

FA0B0

µ⌫ FA0B0⇢�g
µ⇢g⌫� � ı⇥FA0B0 ^ FA0B0

+
9G2

(16⇡)2�2e
(F

(A0B0 ^ FC0D0
)

)2 . (33)

In this latter expression the Yang-Mills coupling constant is

� 1

4g2YM

= g2


�⇠ �⇠

✓

⇠
⇡2

3
� 1

64
� 74

◆

+ �⇠

�

, (34)

while the ⇥ angle is

⇥ = g2


(�2⇠ + �2

⇠ )

✓

⇠
⇡2

6
� 1

128
� 37

◆

+ �⇠

�

. (35)

Notice for ⇠ ⇠ 10�1 or smaller we would get (g2gYM2)�1 ⇠ 104.
The bAB and bA

0B0 are auxiliary fields which are determined by variation of the higher
order action S(1), namely

S(1) =

Z

ıg2

4⇡G

⇢

bAB ^ FAB +
�

3G
bAB ^ ⌃AB +

�g2

3G
bAB ^ bAB +

g2�

3G
bA0B0 ^ bA

0B0
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+
81 ı

128⇡2G2g2 W
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(BAB ^ BCD)
2 + (BA0B0 ^ BC0D0)2 � 4(BAB ^BA0B0)2

⌘

(1)

, (36)
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We can check that the shifting term in (27) is small in solutions to equations of motion
and compute that bA0B0 is suppressed in power of G:
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(BAB ^ BAB � BA0B0 ^ BA0B0

)

�

+
81 ı

128⇡2G2g2W

⇣

(BAB ^ BCD)
2 + (BA0B0 ^BC0D0)2 � 4(BAB ^BA0B0)2

⌘

. (30)

We incorporate the shift (25) together with

BAB = ⌃AB + g2bAB (31)

to write the action as

S = S(0)(eAA0
, AAB, AA0B0) + S(1)(bAB, bA0B0 , eAA0

, AAB, AA0B0) , (32)

where the leading order action S(0) is

S(0) =

Z

ı

4⇡G
⌃AB ^ FAB +

�

12⇡G2

e

� e

4g2YM

FA0B0

µ⌫ FA0B0⇢�g
µ⇢g⌫� � ı⇥FA0B0 ^ FA0B0

+
9G2

(16⇡)2�2e
(F

(A0B0 ^ FC0D0
)

)2 . (33)

In this latter expression the Yang-Mills coupling constant is

� 1

4g2YM

= g2


�⇠ �⇠

✓

⇠
⇡2

3
� 1

64
� 74

◆

+ �⇠

�

, (34)

while the ⇥ angle is

⇥ = g2


(�2⇠ + �2

⇠ )

✓

⇠
⇡2

6
� 1

128
� 37

◆

+ �⇠

�

. (35)

Notice for ⇠ ⇠ 10�1 or smaller we would get (g2gYM2)�1 ⇠ 104.
The bAB and bA

0B0 are auxiliary fields which are determined by variation of the higher
order action S(1), namely

S(1) =

Z

ıg2

4⇡G

⇢

bAB ^ FAB +
�

3G
bAB ^ ⌃AB +

�g2

3G
bAB ^ bAB +

g2�

3G
bA0B0 ^ bA

0B0
�

+
81 ı

128⇡2G2g2 W

⇣

(BAB ^ BCD)
2 + (BA0B0 ^ BC0D0)2 � 4(BAB ^BA0B0)2

⌘

(1)

, (36)
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We arrive at the leading order action

We can check that the shifting term in (27) is small in solutions to equations of motion
and compute that bA0B0 is suppressed in power of G:

bA0B0 =�⇡4G3

�

(�2⇠ + �2

⇠ )11 + 2�⇠ �⇠?
�

FC0D0
(�⇠11 + �⇠?)FA0B0^(�⇠11 + �⇠?)FC0D0+O(g6) . (29)

To understand the effect of this shift we solve the equations of motion for the  mul-
tiplet, (10)-(12), and plug the result back into the action to find

S =

Z

ı

4⇡G

⇢

BAB ^ FAB � BA0B0 ^ FA0B0 +
�

6G
(BAB ^BAB � BA0B0 ^ BA0B0

)

�

+
81 ı

128⇡2G2g2W

⇣

(BAB ^ BCD)
2 + (BA0B0 ^BC0D0)2 � 4(BAB ^BA0B0)2

⌘

. (30)

We incorporate the shift (25) together with

BAB = ⌃AB + g2bAB (31)

to write the action as

S = S(0)(eAA0
, AAB, AA0B0) + S(1)(bAB, bA0B0 , eAA0

, AAB, AA0B0) , (32)

where the leading order action S(0) is

S(0) =

Z

ı

4⇡G
⌃AB ^ FAB +

�

12⇡G2

e

� e

4g2YM

FA0B0

µ⌫ FA0B0⇢�g
µ⇢g⌫� � ı⇥FA0B0 ^ FA0B0

+
9G2

(16⇡)2�2e
(F

(A0B0 ^ FC0D0
)

)2 . (33)

In this latter expression the Yang-Mills coupling constant is

� 1

4g2YM

= g2


�⇠ �⇠

✓

⇠
⇡2

3
� 1

64
� 74

◆

+ �⇠

�

, (34)

while the ⇥ angle is

⇥ = g2


(�2⇠ + �2

⇠ )

✓

⇠
⇡2

6
� 1

128
� 37

◆

+ �⇠

�

. (35)
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⇣
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Leptonic Coupling

determines the homomorphism between SO(1, 3)– and SL(2,C)–transformations.

We see from this that the Lagrangian density (16) is invariant under a local Lorentz trans-
formation that transforms connection, field strength, tetrads and inner products as follows:

AL → ΛAL Λ−1 + ∂ΛΛ−1 ,

FL → ΛFL Λ−1 ,

EI
µ → EJ

µ (Λ−1)J I ,

s → Λ†−1 s Λ−1 ,

(18)

3 Fermionic Sector

In this section we will demonstrate how chiral interactions with Fermions arise naturally in
the Isogravity theory. This happens because, as stated above, the isospin and the chiral
connection transform in the same representation. In formulating our gauge theory we were
forced to choose one connection

For the fermionic content of the theory, we take a fermion field in the (2, 0) representation
(called ψL). It will become evident below why the fermionic statistics is consistent with this
representation assignment. The fermion coupling is chosen as

Lfermion = det(E)
(

iψL
ȧḃ EI

µ σI
aȧ sbḃ DµψL

ab + h.c.
)

(19)

with the covariant derivative given by

DµψL
ab = ∂µψL

ab + AL
µ

a
c ψL

cb + AL
µ

b
d ψL

ad (20)

(21)

We can translate (19) to matrix notation as

Lfermion = det(E)
(

iψ†
L EI

µ σI s DµψL + h.c.
)

(22)

(23)

it is important to keep in mind that this notation somewhat does not explicitly indicate that
the σ’s only contract with the first index of the ψ’s, while s contracts only with the second
index of the ψ’s.

So that the total Lagrangian is invariant under gauge transformations (18), the fermions have
to transform as

ψL
ab → Λa

c Λb
d ψL

cd ,

φL
a → Λa

c φL
c ,

ψRȧḃ → (Λ−1)ċȧ (Λ−1)ḋḃ ψRċḋ ,

φRȧ → (Λ−1)ċȧ φRċ .

(24)

5

Isospin indexSpin index

where all fermions are massless and the weak singlets are absent. Furthermore, we
ignore strong interactions and consider only one weak (left) doublet

ψL =
(

νL eL

)

.

All other doublets can be treated in the same way.
The central observation is the following. Because these fields are complex, they au-

tomatically carry a representation of the complexified Lorentz and weak groups. The
algebra of the complexified Lorentz group SO(3, 1, C) consists of real linear combina-
tions of the rotation generators Lj , the boost generators Kj and their purely imagi-
nary counterparts iLj and iKj. In the case of the chiral fermion fields, the physical
rotations and boosts are realized by the generators M+

j = Lj + iKj and iM+
j respec-

tively, which together generate a group SL(2, C)+. The generators M−
j = Lj − iKj

of SO(3, 1, C) commute with the M+
j and can therefore be identified with physical

operations on spinors that have nothing to do with Lorentz transformations. In our
simplified model we will identify SL(2, C)+ with the Lorentz group, and the group gen-
erated by the M−

j with the weak isospin gauge group SU(2)L. The generators iM−
j are

related to the weak isospin generators in the same way as the boosts are related to the
rotations, therefore we will call them “isoboosts” and we will call the group SL(2, C)−
generated by M−

j and iM−
j the “isolorentz group”. It is just the complexification of

the isospin group. The isoboosts are not symmetries of the world and we will discuss
their fate later on. The whole group SO(3, 1, C) ≡ SO(4, C) = SL(2, C)+×SL(2, C)−,
which contains both Lorentz and isolorentz transformations, will be called the “gravi-
weak” group.

To make this more explicit, we can arrange the components of ψL as a 2×2 matrix
whose columns are (left) chiral spinors under the Lorentz group and whose rows are
chiral spinors under the weak group:

ψL =

(

ν1
L e1

L
ν2

L e2
L

)

(5)

The Lorentz group acts on this matrix by multiplication from the left and the isolorentz
group acts by transposed multiplication from the right (notice that this is called math-
ematically a left action).

The field ψL is therefore a bispinor: it carries a bi-index (Aα), the first acted
upon by Lorentz and the second by isolorentz transformations. It can also be seen as
a vector of the graviweak group:

ψa
L = σ̂a

Aαψ
Aα
L , ψAα

L = σ̂Aα
a ψa

L , (6)

where a = 1, 2, 3, 4, σ̂Aα
a are the van der Waerden symbols: σ̂j = σj (j = 1, 2, 3) are

the Pauli matrices and σ̂4 = 14. The matrices σ̂a
Aα are their “inverses”.

In this notation the Lorentz and isolorentz groups act on ψL with the following
generators:

Lorentz : M+
j = σj ⊗ 12 ≡ σj

A
B δ

α
β (7)

isolorentz : M−
j = 12 ⊗ σj ≡ δA

B σj
α
β . (8)
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I. INTRODUCTION

While current cosmological data supports a ⇤CDM
model, it plausible that the source of the current acceler-
ation is due to an unknown fluid with a baryotropic index
w ⇠ �1 or an IR modified version of general relativity.
Many models, mainly motivated by a fundamental scalar
fields (such as quintessence) have been proposed to ac-
count for the late time acceleration. On the other hand,
most Dark energy models are challenged with the ”why
now” , or coincidence problem. If the dark energy was
due to a cosmological constant then we are faced with a
fine tuning of the bare cosmological constant in a part of
10120. If the dark energy is an unknown degree of free-
dom that is homogenous, we will have to understand the
coincidence in the current epoch as to why ⇢DE ⇠ 2⇢DM .

A few years ago Arkani-Hamed et. al pointed out a
curious relationship between the scale of Dark Energy
and two fundamental scales, namely the weak and Planck
scale. Accordingly, the dark energy coincidence problem
can be resolved if one finds a physical mechanism that
interrelates the geometric mean between the dark energy

and the planck scale: MDE ' (M
2
W

MPl
). In this note we

find such a mechanism wheiren sterile neutrinos play a
central role.

For awhile, the community have suspected that there
might be a connection between neutrinos and dark en-
ergy since the Atmospheric neutrino mass di↵erences are
proportional to the dark energy scale. This relationship
was made concrete by relating the evolution of the dark
energy through a Yukawa-like interaction between the
quintessence field and a sterile neutrino; leading to a mass
variation of neutrinos. However, these models can exhibit
instabilities on small scales. In this letter, we will revisit
this connection between dark energy and neutrinos and
provide a way to overcome these instabilities. In this let-
ter, we show that at the end of inflation a dark copy of
an abelian gauge field interacting with a sterile neutrino
dynamically leads to an accelerating space-time.

The key to the onset of late time acceleration stems
from a self consistent set of interactions. First, Sterile
neutrinos, in an expanding space-time, experience a one-
loop tadpole correction, which enhances the sterile neu-
trino charge density. This charge in-turn soures an ex-
ponential amplification of a constant gauge field mode.
As a result the gauge-fermion interaction contribution
dominates the energy-momentum and leads to late time
acceleration. Furthermore, the perturbations of the neu-
trinos and gauge field exhibits oscillatory behavior and
will be stable.

II. THE THEORY

 a ⌦  b =  ab (1)

In this model, we assume that there is a dark copy of
abelian gauge field interacting with the fermionic current
whose symmetry group is U(1) [1].

S = SD+

Z

M4

d4x
p
�g

"
M2

p R

8⇡
� 1

4
F↵�F

↵�

#
, (2)

where SD is the covariant Dirac action

S⌫ =

Z

M4

d4x
p
�g

�
�i⌫ /r⌫ + c.c.+M⌫ ⌫̄⌫ + q ⌫ �Ie⌫I⌫ Aµ

�
.

The tensor Fµ⌫=@
[µA ⌫] is the field strength tensor[2] of

Aµ. We denote as q a dimensionless coupling constant.
The fermionic current is J µ ⌘ ⌫̄ �IeµI ⌫, being ⌫ and ⌫̄
Dirac spinors and �I with I = 0, ...3 Dirac matrices. We
refer to Mp as the Planck mass, M⇤ is the mass scale
of the pseusoscalar decay constant, and ✓ is the pseudo
scalar responsible for CP violation. For the purpose of
e�ciency of the presentation we will evaluate the dynam-
ics of ✓ field in Sec. ?? and show that its energy density is
ten orders of magnitude smaller than the gauge-fermion
interaction, making it insignificant for driving inflation.
To understand which are the relevant terms necessary to
generate inflation, let us first compute the energy mo-
mentum tensor of the Lagrangian of eq. (2),

L̃ = Tr


�1

4
g↵�g��F

��F↵� + q Aµ J µ

�
.

Using the relation Tµ⌫ = � 2p
�g

�
p
�g ˜L

�gµ⌫
, we find that the

energy-momentum tensor is:

Tµ
⌫ = Tr

h
� q �µ⌫A⇢J ⇢ + F µ

↵ F↵
⌫ (3)

�1

4
�µ⌫ g

↵⇢g��F↵�F⇢� � q A
(⌫J µ)

i
. (4)

In this mechanism, we will show that inflation is driven
by the purely time-like components of the gauge field A

0

and fermionic charge J
0

. The condition for the gauge
field is similar to scalar field driven inflation, where
one assumes that inflation is driven by a spatially ho-
mogenous classical part plus quantum perturbations[3],
�(x, ⌘) = �

0

(⌘) + ��(x, ⌘). In our case

Aµ(⌘, ~x) = A(0)

µ (⌘) + �Aµ(⌘, ~x) . (5)

SU(2) SU(2)

Since the inner products are hermitian, positive definite and of determinant 1, we can always
find a gauge transformation that rotates one of them to the identity matrix, say s = 1. Let
us do this and also set

νL
a = ψL

a1 , eL
a = ψL

a2 ,

Then, the Lagrangian to be quantized is

Lgauge+fermion (77)

= −
1

4g2

(

tr

[

−F̃L
µνF̃

Lµν − [BL
µ , BL

ν ]2 +
(

D̃µBL
ν − D̃νBL

µ

)2
− F̃L

µν [BLµ, BLν ]

])

(78)

+
m2

2
tr

(

BL
)2

+ h.c. (79)

+ i νL
ȧ EI

µ σI
aȧ

[

∂µν
a
L +

(

ÃL
µ

a
b + BL

µ
a
b

)

νL
b +

(

ÃL
µ

1
1 ÃL

µ
1
2

ÃL
µ

2
1 ÃL

µ
2
2

)(

νL
a

eL
a

)

(80)

+

(

BL
µ

1
1 BL

µ
1
2

BL
µ

2
1 BL

µ
2
2

)(

νL
a

eL
a

)]

+ h.c. (81)

+ i eL
ȧ EI

µ σI
aȧ

[

∂µea
L +

(

ÃL
µ

a
b + BL

µ
a
b

)

eL
b +

(

ÃL
µ

1
1 ÃL

µ
1
2

ÃL
µ

2
1 ÃL

µ
2
2

)(

νL
a

eL
a

)

(82)

+

(

BL
µ

1
1 BL

µ
1
2

BL
µ

2
1 BL

µ
2
2

)(

νL
a

eL
a

)]

+ h.c. (83)

(84)

In this way, we obtain a Lagrangian that contains interaction terms of the standard model as
well as non-standard terms.

We choose the mass m sufficiently large, so that the effects of the B-particles are unobservable
in present accelerators. Thus, we drop all terms involving BL. The remaining minimal
coupling terms are of two types: one type is standard model–like, namely,

i νL
ȧ EI

µ σI
aȧ

[

∂µν
a
L +

(

ÃL
µ

1
1 ÃL

µ
1
2

ÃL
µ

2
1 ÃL

µ
2
2

)(

νL
a

eL
a

)]

, (85)

and similarly for eL.

The second type of minimal coupling term is non–standard: if we introduce a basis σi/2,
i = 1, 2, 3, in the Lie algebra su(2), we can write them as

i νL
ȧ EI

µ σI
aȧ ÃL

µ
a
b νL

b + h.c. (86)

= i νL
ȧ EI

µ σI
aȧ ÃLi

µ (σi)
a
b νL

b + h.c. (87)

= i ν†L EI
µ σIÃLi

µ σi νL + h.c. , (88)

and similarly for eL.
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Matter Coupling

which implies B = 0. So this extension of the gauge group is only possible in the extended
(as opposed to the unextended) Plebanski action. We then have no choice but to shift the
U(1) fields:

B = �⇡Gg2 (�⇠11 + �⇠ ?) f + g6 b , B0 = �⇡Gg2 (�⇠11 + �⇠ ?) f 0 + g6 b0 . (59)

Again this gives a zeroth order action plus an action for the auxiliary fields, b and b0.
Below we only write the U(1)C part of the leading order action:

S
U(1)C
(0)

=
e

4g2YM

(fµ⌫f⇢� + f 0
µ⌫f

0
⇢�)g

µ⇢g⌫� +⇥(f ^ f + f 0 ^ f 0) +

+
9 g2 G2

256 ⇠2e

⇣

(f̃ ^ f̃)2 + (f̃ 0 ^ f̃ 0)2 + (f̃ ^ f̃ 0)2 � 4(f̃ ^ FAB)
2 +

�4(f̃ ^ FA0B0)2 � 4(f̃ 0 ^ FAB)
2 � 4(f̃ 0 ^ FA0B0)2

⌘

, (60)

where we have used the short hand notations f̃ = (�⇠11 + �⇠ ?) f and f̃ 0 = (�⇠11 + �⇠ ?) f 0.
We see the following interesting features:

• the two U(1) factors have the same Yang-Mills coupling constant as the SU(2)L fac-
tor, so there is coupling constant unification;

• however they will couple differently to matter as we will see;

• there is a universal four point coupling of vector potentials of the form (F ^ F )2

which has a universal coupling

�
4�point

=
9 g2 G2

256 ⇠2e
⇠ 9 g2

256M4

p ⇠
2e

(61)

which is quite small.

7 Matter couplings

Matter couplings are tricky to write because there is no metric or frame field initially (as
of instance in [28]), but only a BAB field. Couplings to scalars and additional gauge fields
can be done through the Urbantke metric, but they involves non-polynomial couplings.
The simplest coupling is to chiral spinors, with the following action [23]:

SDirac

L =

Z

BAB ^ ⇢A ^ (D�)B + ⌧ABC ^B(AB ^ ⇢C) . (62)

This works like the Plebanski actions above, but here ⌧ABC = ⌧ (ABC) is a Lagrange multi-
plier 1-form whose variation, together with the leading order solution for BAB, yields

⌃(AB ^ ⇢C) = 0 , (63)
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which is solved by inventing a complex conjugate spinor, �̄A0 such that

⇢A = eAA0
�̄A0 . (64)

Putting this back into the action we find an effective action

SDirac

L =

Z

�̄A0eA
0

A ^ ⌃AB ^ (D�)B , (65)

which yields the Weyl theory for a right handed spinor �A.

Let us now consider the right handed side. By symmetry, we must start the same way:

SDirac

R =

Z

BA0B0 ^ ⇢0A ^ (D�)0B + ⌧A0B0C0 ^ B(A0B0 ^ ⇢C
0
) . (66)

Note that there is no relation between �A0 and �̄A0 , indeed the latter is not even a field in
the fundamental action.

In the symmetric solution things work the same way on the right side as the left, and
the result is that the fields combine to make a Dirac spinor. But on the symmetry breaking
side things on the right side are not so simple. Instead of (63) we have

F (A0B0 ^ ⇢C
0
) = 0 , (67)

which does not have any simple general solution.
In terms of its transformation properties, in the symmetry broken phase, �A0 is a space-

time scalar and weak spinor, so it has the quantum numbers of the Higgs boson.

8 Conclusion

Ever since the discovery and experimental success of the standard electroweak theory,
the origin of the weak interaction’s chirality has remained a mystery. In this work we
we have reached an astonishing conclusion that a parity symmetric theory of gravity
holds the key to the chiral origin and maximal parity violation of the weak interaction. In
particular, we describe a parity symmetric theory of gravity that has a symmetry broken
phase, which organizes the degrees of freedom to give rise to general relativity coupled
to a SU(2) Yang-Mills theory. The emergence of gravity and the weak interaction is made
possible because gravity has been shown to be completely described in terms of purely
left-handed variables [9]. This leaves the right handed connection to function as the weak
interaction connection.

One concern is that the expansion in which we understand the symmetry broken
phase involves small g and large � — the dimensionless cosmological constant. (See (25)
and (34).) Since � is the bare cosmological constant, it might be possible to imagine that
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Putting this back into the action we find an effective action

SDirac

L =

Z

�̄A0eA
0

A ^ ⌃AB ^ (D�)B , (65)

which yields the Weyl theory for a right handed spinor �A.

Let us now consider the right handed side. By symmetry, we must start the same way:

SDirac

R =

Z

BA0B0 ^ ⇢0A ^ (D�)0B + ⌧A0B0C0 ^ B(A0B0 ^ ⇢C
0
) . (66)

Note that there is no relation between �A0 and �̄A0 , indeed the latter is not even a field in
the fundamental action.

In the symmetric solution things work the same way on the right side as the left, and
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• the two U(1) factors have the same Yang-Mills coupling constant as the SU(2)L fac-
tor, so there is coupling constant unification;

• however they will couple differently to matter as we will see;

• there is a universal four point coupling of vector potentials of the form (F ^ F )2

which has a universal coupling

�
4�point

=
9G2

256 ⇡2�2e
⇠ 9

256 ⇡2M4

p�
2e

(60)

which is quite small.

7 Matter couplings

Matter couplings are tricky to write because there is no metric or frame field initially (as
of instance in [20]), but only a BAB field. Couplings to scalars and additional gauge fields
can be done through the Urbantke metric, but they involves non-polynomial couplings.
The simplest coupling is to chiral spinors, with the following action [16]:
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By Symmetry Right Handed Fermions:

In the symmetric solution things work the same way on the right side as the left, and
the result is that the fields combine to make a Dirac spinor. But on the symmetry breaking
side things on the right side are not so simple. Instead of (62) we have

F (A0B0 ^ ⇢C
0
) = 0 , (66)

which does not have any simple general solution.
In terms of its transformation properties, in the symmetry broken phase, �A0 is a space-

time scalar and weak spinor, so it has the quantum numbers of the Higgs boson.

8 Conclusion

Ever since the discovery and experimental success of the standard electroweak theory,
the origin of the weak interaction’s chirality has remained a mystery. In this work we
we have reached an astonishing conclusion that a parity symmetric and chiral theory
of gravity holds the key to the chiral origin and maximal parity violation of the weak
interaction. In particular, we find that a parity symmetric theory of gravity contains a
symmetry broken phase, which organizes the degrees of freedom to give rise to general
relativity and a SU(2) Yang-Mills theory. This unified Plebanski gravity theory, contains
a space-time connection of the Lorentz group SL(2,C)C in which the usual gravitational
degrees of freedom are doubled. The emergence of gravity and the weak interaction is
made possible because, gravity has been shown to be completely described in terms of
purely left-handed variables [7]. This leaves the right handed connection to function as
the weak interaction connection.

Extending the SL(2,C)C symmetry group to GL(2,C)C, enables us to account for two
additional U(1) sectors, one of them describing the U(1)Y and the other accounting for
an extra abelian gauge group that may be eventually related to dark matter. We further
speculate that this extra U(1) may shed new light into the reported di-photon excess seen
at the LHC [22, 23]. In our model, the Higgs boson arises with the correct quantum
numbers and in the symmetry restored gravitational theory is identified with a sterile
neutrino under a party transformation. It is important to see any effects of the symmetry
breaking in the neutrino and Higgs sector, such as new interaction vertices; we leave this
question to future work. In this work, we did not provide a mass generation’s mechanism,
such as spontaneous symmetry breaking (SSB), although it is not difficult to implement
this into our model. We will address the issue of SSB in a forthcoming paper [21], together
with the role of the extra U(1) gauge sector, in order to unveil its consequences for current
and upcoming LHC experiments.
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The primed fermions obey

Which has no simple
general solution



Reality Conditions
Initially we regard all fields as complex (for the lorentzian case), and then specify reality conditions 
which are to be imposed on the solutions of the equations of motion.

The standard reality conditions are to take the three metric as real,

q̃ab ⇤ = q̃ab . (36)

while the connection satisfies the non-linear condition.

A(L)i
a + A(R)i

a = 2�(e)ia , (37)

Here we indicate the left and right connection by

AAB
a = A(L)i

a �AB
i , AA0B0

a = A(R)i
a �A0B0

i , (38)

where the i index labels the three Pauli matrices �i.
These bind the left and the right parts of the connection and so prevent the theory

from existing in the parity broken phase. In that asymmetric phase, we might impose
different reality conditions:

(A(L)i
a )⇤ + A(L)i

a = 2�(e)ia, (A(R)i
a )⇤ = A(R)i

a . (39)

However the reality conditions are part of the definition of the theory. They determine
the inner product of the quantum theory. If the symmetry breaking is to be dynamical we
do not want to impose different reality conditions on different phases of the theory. We
want instead a single set of reality conditions that governs the whole theory. We can do
this the following way:

We differentiate the right and left two forms as

BA0B0
= BL i �A0B0

i , BAB = BR i �AB
i . (40)

We then use these to define the left and right Urbantke metrics [15]:

g̃Rab = BRi
acB

Rj
bd B

Rk
ef "ijk✏

bdef , (41)

g̃Lab = BLi
acB

Lj
bd B

Lk
ef "ijk✏

bdef . (42)

Note that in the symmetric solution

g̃Lab = det(e) eAA0

a eBb A0 , (43)

while on the right
g̃Rab = det(f) fAA0

a fB
b A0 . (44)

In the asymmetric solution (43) holds but instead of (44) we have a cubic in the Yang-
Mills field strength

g̃Rab = �27
G3

�3

F i
acF

j
bdF

k
ef✏ijk"

bdef . (45)
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In either case the correct reality conditions are

g̃Lab = (g̃Lab)
⇤ , (46)

g̃Rab = (g̃Rab)
⇤ . (47)

In the symmetric case this tells us that both left and right handed metrics are real, whereas
in the asymmetric solution we learn that g̃Rab is real and the Yang-Mills connection !i

a is
real and hence in SU(2).

These can be implemented by adding these reality conditions to the action so they
become equations of motion which arise by varying new Lagrange multipliers �ab

L,R:

Swrc =

Z

ı

4⇡G

⇢

BAB ^ FAB � BA0B0 ^ FA0B0 +
�

6G
(BAB ^BAB � BA0B0 ^ BA0B0

)

�1

2
 ABCDB

(AB ^ BCD) +
1

2
 A0B0C0D0B(A0B0 ^BC0D0

) � A0B0ABB
A0B0 ^BAB

�

+
ıg2

2
( 2

ABCD + 2

A0B0C0D0 + 2

ABA0B0)(BAB ^BAB � BA0B0 ^BA0B0
)

+�ab
R

⇣

g̃Rab � (g̃Rab)
⇤
⌘

+ �ab
L

⇣

g̃Lab � (g̃Lab)
⇤
⌘

. (48)

The B equation of motion (8) is modified by

FAB =  ABCD BCD + ABA0B0 BA0B0 � (
�

3G
+ 4⇡Gg2 2)BAB + 4⇡ı G�ef

R

�g̃Ref
�BAB

. (49)

But the new term vanishes because the equation of motion for BAB⇤ yields

�ef
R

�g̃R⇤
ef

�BAB⇤ = 0 , (50)

which implies that �ab
R vanishes. Meanwhile, variation of �ab

R enforces the reality of g̃Ref .

6 Adding U(1) factors: photons

We can incorporate electro-weak unification by adding a U(1) factor. This is done most
naturally by extending the SL(2,C)L gauge symmetry to2 GL(2,C)L, and similarly for the
right component gauge group. The gauge fields AA0B0 are then no longer symmetric in
AB.

AA0B0
= A(A0B0

) + "A
0B0

a0 (51)

defining the U(1) gauge field a0. If we want to continue to follow our hypothesis that
left-right breaking occurs only spontaneously we should do this on the left as well, so

AAB = A(AB) + "ABa . (52)
2A subgroup of GL(2,C)L is SL(2,C)L ⇥ U(1)L.
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6 Adding U(1) factors: photons

We can incorporate electro-weak unification by adding a U(1) factor. This is done most
naturally by extending the SL(2,C)L gauge symmetry to2 GL(2,C)L, and similarly for the
right component gauge group. The gauge fields AA0B0 are then no longer symmetric in
AB.

AA0B0
= A(A0B0

) + "A
0B0

a0 (51)

defining the U(1) gauge field a0. If we want to continue to follow our hypothesis that
left-right breaking occurs only spontaneously we should do this on the left as well, so

AAB = A(AB) + "ABa . (52)
2A subgroup of GL(2,C)L is SL(2,C)L ⇥ U(1)L.
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New Prediction

Left handed spinor transforms like
a weak doublet scalar, what entity carries this quantum 

number?

Right handed spinor transforms like a weak singlet spin 1/2 
particle, what is this?

These two particles transform into each other under parity



New Interactions
Dark Hypercharge

which implies B = 0. So this extension of the gauge group is only possible in the extended
(as opposed to the unextended) Plebanski action. We then have no choice but to shift the
U(1) fields:

B = �⇡Gg2 (�⇠11 + �⇠ ?) f + g6 b , B0 = �⇡Gg2 (�⇠11 + �⇠ ?) f 0 + g6 b0 . (59)

Again this gives a zeroth order action plus an action for the auxiliary fields, b and b0.
Below we only write the U(1)C part of the leading order action:

S
U(1)C
(0)

=
e

4g2YM

(fµ⌫f⇢� + f 0
µ⌫f

0
⇢�)g

µ⇢g⌫� +⇥(f ^ f + f 0 ^ f 0) +

+
9 g2 G2

256 ⇠2e

⇣

(f̃ ^ f̃)2 + (f̃ 0 ^ f̃ 0)2 + (f̃ ^ f̃ 0)2 � 4(f̃ ^ FAB)
2 +

�4(f̃ ^ FA0B0)2 � 4(f̃ 0 ^ FAB)
2 � 4(f̃ 0 ^ FA0B0)2

⌘

, (60)

where we have used the short hand notations f̃ = (�⇠11 + �⇠ ?) f and f̃ 0 = (�⇠11 + �⇠ ?) f 0.
We see the following interesting features:

• the two U(1) factors have the same Yang-Mills coupling constant as the SU(2)L fac-
tor, so there is coupling constant unification;

• however they will couple differently to matter as we will see;

• there is a universal four point coupling of vector potentials of the form (F ^ F )2

which has a universal coupling

�
4�point

=
9 g2 G2

256 ⇠2e
⇠ 9 g2

256M4

p ⇠
2e

(61)

which is quite small.

7 Matter couplings

Matter couplings are tricky to write because there is no metric or frame field initially (as
of instance in [28]), but only a BAB field. Couplings to scalars and additional gauge fields
can be done through the Urbantke metric, but they involves non-polynomial couplings.
The simplest coupling is to chiral spinors, with the following action [23]:

SDirac

L =

Z

BAB ^ ⇢A ^ (D�)B + ⌧ABC ^ B(AB ^ ⇢C) . (62)

This works like the Plebanski actions above, but here ⌧ABC = ⌧ (ABC) is a Lagrange multi-
plier 1-form whose variation, together with the leading order solution for BAB, yields

⌃(AB ^ ⇢C) = 0 , (63)

13
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• the two U(1) factors have the same Yang-Mills coupling constant as the SU(2)L fac-
tor, so there is coupling constant unification;

• however they will couple differently to matter as we will see;

• there is a universal four point coupling of vector potentials of the form (F ^ F )2

which has a universal coupling

�
4�point

=
9G2

256 ⇡2�2e
⇠ 9

256 ⇡2M4

p�
2e

(60)

which is quite small.

7 Matter couplings

Matter couplings are tricky to write because there is no metric or frame field initially (as
of instance in [20]), but only a BAB field. Couplings to scalars and additional gauge fields
can be done through the Urbantke metric, but they involves non-polynomial couplings.
The simplest coupling is to chiral spinors, with the following action [16]:

SDirac

L =

Z

BAB ^ ⇢A ^ (D�)B + ⌧ABC ^ B(AB ^ ⇢C) . (61)

This works like the Plebanski actions above, but here ⌧ABC = ⌧ (ABC) is a Lagrange multi-
plier 1-form whose variation, together with the leading order solution for BAB, yields

⌃(AB ^ ⇢C) = 0 , (62)

which is solved by inventing a complex conjugate spinor, �̄A0 such that

⇢A = eAA0
�̄A0 . (63)

Putting this back into the action we find an effective action

SDirac

L =

Z

�̄A0eA
0

A ^ ⌃AB ^ (D�)B , (64)

which yields the Weyl theory for a right handed spinor �A.

Let us now consider the right handed side. By symmetry, we must start the same way:

SDirac

R =

Z

BA0B0 ^ ⇢0A ^ (D�)0B + ⌧A0B0C0 ^B(A0B0 ^ ⇢C
0
) . (65)

Note that there is no relation between �A0 and �̄A0 , indeed the latter is not even a field in
the fundamental action.
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Conclusion
• Chirality and Parity Violation in EW Theory arises from its 

other gravitational “hand”

• Quantum Numbers of Higgs and Sterile neutrino arise 
naturally.

•  We expect new predictions for upcoming LHC (or existing 
LHC experiments)

• The Cosmological constant plays an important role in parity 
violation.

• What are the cosmological consequences of this modified 
gravity theory?

• What is the indentity of the Auxillary fields? (S.A, E. Livine, A. 
Marciano)






