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Preamble
• Space-like singularities are taken to be the absolute beginning or end of
space-time in GR. Geodesics of test particles end there. Tidal forces between them
become infinite. But what if one uses quantum probes? It has been long argued
that singularities may be tamer for physically more realistic probes. Examples:

Horowitz and Marolf (1995): In certain static space-times with time-like singularities: Dynamics

of test quantum particles well-defined in some cases.)

Ishibashi & Hoyasa (1999); Stalker& Tahvildar-Zadeh (2004):Dynamics of classical fields

well-defined across certain time-like singularities.

Hofmann and Schneider (2015): The Schwarzschild space-like singularity probed with test

quantum fields. Found to be tame. But the arguments are formal; infinite number of degrees of

freedom did not receive due care.

• Goal: Revisit the issue for the physically most important dynamical singularities
with precision required to handle the infinite number of DOF of QFT carefully.
Due to time limitation, this talk focuses on the Big Bang/Big Crunch singularities
in the FLRW models. Very similar results on the Schwarzschild singularity.

• Main Question: Do test quantum fields φ̂(x) and observables constructed from
them such as 〈φ̂(x) φ̂(x ′)〉, 〈φ̂2(x)〉ren, 〈T̂ab(x)〉ren remain regular in the sense of QFT
across the big bang?
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• Apparent Problem: In the Friedmann-Lemâıtre-Robertson-Walker (FLRW)
space-times, φ̂(x) is given by

φ̂(x) =
∫

d3k
(2π)3

[
A(~k)e(k, η) +A†(−~k)e?(k, η)

]
ei
~k·~x

but the mode functions e(k, η) diverge at the Big Bang!

• Recall, however, that already in Minkowski space, φ̂(x) is not an operator but
an operator-valued (tempered) distribution (OVD):

∫
M̊ φ̂◦(x) f(x) d4V̊ is an operator of

the Fock space on all test functions f(x) ∈ S, the Schwartz space. (Since f ∈ C∞0 ⇒ f ∈ S, a

tempered distribution is in particular an (ordinary) distribution.)

• Main results: In all cosmological FLRW models, φ̂(x) remains well-defined
across the big bang as OVDs. I will focus on the k=0, radiation and dust filled universes and

summarize results in more general cases. In particular, the expectation values
〈φ̂(x) φ̂(x ′)〉 are well-defined bi-distributions in the extended space-time.
Interestingly, correlations between fields evaluated at spatially and temporally separated points

exhibit an asymmetry that is reminiscent of the Belinskii, Khalatnikov, Lifshitz behavior. The
renormalized products of fields 〈φ̂2(x)〉ren and 〈T̂ab(x)〉ren also remain well-defined as
distributions. Conformal coupling is not necessary for these considerations to hold.
Thus, when probed with observables associated with quantum fields, the big bang
(and the big crunch) singularities are quite harmless.
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• LQG perspective: First reaction: Why care? We know that non-perturbative
quantum geometry effects resolve space-like singularities. True, BUT:

(i) QFT in CST has a vast Damian of applicability. Usually one just says it fails in the Planck

regime. How exactly does LQG cure semi-classical gravity? To answer this, we need to know:

What exactly fails in QFT?

(ii) In some LQG scenarios of BH evaporation, there is a large portion of the ‘transition surface’

in which the geometry is ‘adiabatic, slowly varying’. What happens to the stress-energy tensor of

the modes that fell into the DH as one approaches Planck curvature? What is their

back-reaction likely to do to the geometry?

Organization

1. Nature of QFs in Minkowski space-time

2. FLRW space-times: Radiation filled universes

3. FLRW space-times: Dust filled universes

4. Summary, Generalizations and Broader Perspective
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1. Nature of Quantum Fields: Minkowski Space

• In Minkowski space (M̊, g̊ab) is an (OVD) :

φ̂◦(x) =
∫

d3k
(2π)3

[
Â(~k) e

−iωη
√

2ω
+ Â†(−~k) e

iωη
√

2ω

]
ei
~k·~x with x ≡ (~x, η)

satisfying (�̊ −m2)φ̂◦(x) = 0. That is,
∫
M̊ d4V̊ φ̂◦(x)(�−m2)f(x) = 0, for all test

functions f(x) ∈ S, the Schwartz space.

• The distributional character is not a mere technicality but is conceptually
important. For example in

[φ̂◦(x), φ̂◦(x ′) ] = i~ (Gad −Gret)(x, x ′) Î and
〈φ̂◦(x) φ̂◦(x ′)〉◦ = ~

4π2
1

|~x−~x ′|2−((η−η ′)−iε)2

the right sides are genuine distributions; not functions. Meaning of iε: first integrate

〈φ̂◦(x) φ̂◦(x ′)〉◦ smeared with a test function and then take the limit ε→ 0. More importantly,

products φ̂2(x) have to be regularized precisely because φ̂(x) is an OVD. The textbook
terminology of ‘field operators’ and ‘2-point functions’ (and Dirac ‘δ function’) can be
very misleading if taken literally.

• So the question is: Do quantum fields φ̂(x) continue to be well-defined across
the big-bang as OVDs ? For example, in 3-d, 1/r is singular as a function but C∞ as a

tempered distribution (satisfying ~∇2(1/r) = 4πδ3(~r)).
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2. FLRW space-times

• Extending space-time beyond the Big Bang: Recall that every FLRW
space-time (M, gab) is conformally flat: If K=0:

gabdx
adxb = a2(η) g̊abdx

adxb ≡ a2(η) (−dη2 + d~x2) with a(η) = aβ η
β ; β ≥ 0.

η > 0 on M , and the big bang corresponds to η = 0. We can extend a2(η) and
hence gab to the full Minkowski manifold M̊ with η ∈ (−∞, ∞) as a continuous
tensor field (degenerate at η = 0). Similarly for Schwarzschild (D’Ambrosio & Rovelli).

• Systematic Rationale: The traditional (ADM) Hamiltonian framework for the
initial value problem of full GR based on 3-metrics and their momenta breaks
down if the 3-metric becomes degenerate. But equations satisfied by (‘connection’

variables ) do not. The two are equivalent when the 3-metric is non-degenerate but
connection variables allow for degenerate metrics. (AA, Henderson & Sloan). In
FLRW (as well as Bianchi models and the Schwarzschild solution) this procedure enables
one to evolve across the singularity unambiguously (Koslowski, Mercati & Sloan;

Mercati; AA & Valdes).

In FLRW models, the extension yields just the simple prescription given above. As
a tensor field, gab is smooth if β ∈ Z (but not invertible at η = 0) .
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QFT in FLRW Space-times
• For definiteness, consider the massless scalar field: �φ = 0. Since a(η) = aβ η

β ,

on M , φ◦ = a(η)φ(x) satisfies a simple equation with respect to the Minkowski
metric g̊ab in presence of a ‘universal’ time dependent potential:

(�̊− V (η))φ◦(x) = 0 with V (η) = β(β − 1)/η2.

The operator algebra can be constructed unambiguously but we need new input to
build a ‘Fock’ representation since the potential is time dependent.

Rigorous Result: Because of the form of the potential, one can introduce a
canonical ± frequency decomposition (i.e. a canonical Kähler structure) on the
space of classical solutions and write the general solution as

φ◦(x) =
∫

d3k
(2π)3

[
z(~k)̊e(k, η) + z?(−~k)̊e?(k, η)

]
ei
~k·~x

where e̊(k, η) are the positive-frequency modes and z(~k) are regular coefficients (in

S). Then the putative OVD on FLRW space-time is given by:

φ̂(x) = 1
a(η)

φ̂◦(x) = 1
a(η)

∫
d3k

(2π)3

[
Â(~k)̊e(k, η) + Â†(−~k)̊e?(k, η)

]
ei
~k·~x.

• The mode functions e̊(k, η) are explicitly known. Generically they diverge at
η = 0. For example, for dust (β = 2), they are (eikη/

√
2k)(1− i/kη). As functions,

they diverge at the big bang. And there is another 1/a(η) overall factor in φ̂(x).

Is φ̂(x) nonetheless well-defined as an OVD across the big bang on full M̊?
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K = 0 Radiation-filled Universe

• Is φ̂(f) =
∫
M̊ d4V φ̂(x)f(x) well-defined on the extended space-time, and satisfy∫

M̊ d4V φ̂(x)(�f) = 0 ∀f ∈ S i.e. for all η ∈ (−∞,∞) ?

• Radiation-filled universe: We have a(η) = a1 η (i.e. β = 1) ⇒ V (η) = 0, whence,
φ̂◦(x) = a(η) φ̂(x) now satisfies �̊φ̂◦ = 0 in Minkowski space! Hence mode functions
e̊(k, η) same as in Minkowski space; trivially regular for η ∈ (−∞,∞). But the
physical field on FLRW space-time is φ̂(x) = a−1(η) φ̂◦(x) and a(η) = 0 at η = 0!
How could it then be regular on Minkowski Fock space?

Answer: The physical volume element is d4V = a4 d4x. Hence:

φ̂(f) =
∫
M̊ d4V φ̂(x)f(x) =

∫
M̊ d4x φ̂◦(x) (a3(η)f(x))

and a3(η)f(x) ∈ S if f ∈ S. Hence φ̂(f) is in fact a well-defined operator on the

Minkowski Fock space ⇒ φ̂(x) well defined OVD for all η ∈ (−∞,∞)!

Next, the expectation value of the product of fields

〈φ̂(x) φ̂(x ′)〉 = 1
a21ηη

′ 〈φ̂◦(x) φ̂◦(x ′)〉◦ = 1
a21ηη

′
~

4π2
1

r2−(t−iε)2

(where r = |~x− ~x ′| and t = η − η ′) is also a well-defined bi-distribution because
d4V = (a4

1η
4) d4x and d4x is well defined on all of M̊ .
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Renormalized operator products
• In the radiation filled case, 〈φ̂2(x)〉ren = 0 (could have been expected on dimensional

grounds since R = 0 in this case). But 〈T̂ab(x)〉ren is non-trivial:
〈T̂ab(x)〉ren = ~

720π2a21 η
6 ∇aη∇bη + ~

576π2 a21 η
6 g̊ab.

Since d4V = (a4
1 η

4) d4x the product a4(η)〈T̂ab(x)〉ren diverges at the big-bang
as η−2. Is it nonetheless a well-defined distribution on the extended space-time?

• Two basic properties: (i) Every locally integrable function is a (Schwartz)
distribution; and (ii) (Schwartz) Distributions are infinitely differentiable.
Now, ln |η| is a locally integrable function (since

∫
ln η dη = η ln η − η). Hence all its

derivatives are tempered distributions! Therefore, as a distribution,

η−m :=
(−1)m−1

(m−1)!
dm ln |η|

dηm
i.e., η−m : f → − 1

(m−1)!

∫
dη ln |η|d

m f
dηm

.

is well-defined on (R, dη). They satisfy intuitively expected properties, including
d
dη
η−m = −mη−m−1 and, η η−m = η−m+1 .

• This is why even when a4(η) 〈φ̂2(x)〉ren & a4(η) 〈T̂ab(x)〉ren diverge as functions
(as they do in general FLRW models), they can be well-defined tempered
distributions on the extended space-time. Recall: Even in Minkowski space-time,
observables of quantum fields are tempered distributions, not functions. Cannot
ask them to be better at singularities!!
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3. K = 0 Dust-filled FLRW Universe
• More interesting case: Dust-filled universe where a(η) = a2 η2. Hence

(
1/a(η))

diverges faster at η = 0 and mode functions e̊k(η) = (eikη/
√

2k)(1− i/kη) also
diverge at the big bang (unlike in the radiation-filled case).

• Now, the 1-particle Hilbert space is built out of solutions:

φ(x) = 1
a(η)

∫
d3k

(2π)3

[
z(~k)̊e(k, η) + z?(−~k)̊e?(k, η)

]
ei
~k·~x with z(~k) ∈ S̃

and they all diverge at η = 0. So how can there be a well-defined Fock space?
There is, because the 1-particle norm ||φ(x)|| is perfectly finite (and non-zero) at
η = 0 because the divergence in the value of φ(x) is precisely compensated by the
vanishing of the 3-volume element there!

||φ(x)||2 = 1
~
∫

d3k
(2π)3

|z?(~k)|2.

This is analogous to the QM fact that while Ψ(~x) := (1/r)e−αr is divergent as a function, it

represents a well-defined state in H := L2(R3), because the volume element d3x goes as r2.

• Since d4V = a4
2η

8 d4x, φ̂(x) is a well-defined OVD. ( However, there is an infrared

subtlety (Ford and Parker (1977)). Already for η > 0, the action of φ̂(x) is well-defined on a

co-dimension 1 subspace S1 of S and there is a 1-parameter freedom in extending its action on

full S, representing an infrared cutoff `. But this cutoff has nothing to do with the big bang.

Once φ̂(x) is defined for η > 0 with an IR regulator, it continues to be well-defined for η ≤ 0 ).
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Dust filled Universe: ‘BKL Behavior’

• The expectation value of the product of fields is given by
〈φ̂(x) φ̂(x ′)〉 = ~

4π2
1

a22η
2η′ 2

[
1

(r2−(t−iε)2)
+ 1

2ηη ′ [2(1− γ) + ln
r2−(t−iε)2

`2
]

(where r = |~x− ~x′|; t = |η − η′| and γ the Euler-Mascheroni constant.) It is a well-defined
bi-distribution, i.e.,

∫
M̊ d4V d4V ′ 〈φ̂(x) φ̂(x ′)〉 f1(x)f2(x) is well-defined because

d4V = a4
2η

8d4x, and d4x is well-defined on all of M̊ .

Now, for space-like and time-like separated points, one interprets 〈φ̂(x) φ̂(x ′)〉 as a
‘correlation function’. In Minkowski space, correlations decay as 1/Dist2 for both
space-like and time-like separations.

• Now, there is an interesting space vs time asymmetry as one approaches the
singularity: Consider points that are space-like or time-like separated by a fixed
proper (geodesic) distance D. As one approaches the big bang, space-like

correlations dominate over time-like ones: limη◦→0
〈φ̂(~x,ηo) φ̂(~x ′,η◦)〉
φ̂(~x◦,ηo)φ̂(~x◦,η)

=∞ (as

2D/a2η3). Strong correlations ∼ smaller variations ⇒ smaller derivatives.
Therefore, “time derivatives dominate over space-derivatives” as in the well-known
BKL behavior of GR. But one has to keep in mind that conceptually these are quite different

statements: this behavior refers to test quantum fields on a given FLRW background while the

BKL behavior refers to the gravitational field itself.
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Dust filled Universe: Operator-Products
• φ̂(x) is a ‘dimension 1’ OVD, while 〈φ̂2(x)〉ren is a ‘dimension 2’ OVD and
〈T̂ab(x)〉ren a ‘dimension 4’ OVD. So, a priori the fact that φ̂(x) is well-behaved
across the big bang does not mean that these operator-products would be
well-defined. Are they?

• Older works (Bunch, Davies, . . . ) imply 〈φ̂2(x)〉ren = ~R
288π2 (5− 2 ln 2R

3a2`3µ3 ). At the
big bang, R ∼ 1/η6 is divergent as a function (but a C∞ tempered distribution). Since
d4V = a4

2η
8d4x, η8〈φ̂2(x)〉ren(x) is in fact a C2 function! Unlike in the

radiation-filled case, it does not vanish because R 6= 0.

• Older works also provide the expression of 〈T̂ab(x)〉ren. Being a ‘dimension 4’
OVD, it involves products and second derivatives of curvature tensors. The explicit
expression is long but has the simple form 〈T̂ab(x)〉ren = T1(η)∇aη∇bη + T2(η)̊gab,
where the most divergent term in T1 and T2 go as (η−8 ln |η|). Now, d4V ∼ η8 and

η8T1 ∼ η8T2 ∼ ln |η|, which is a locally integrable function and hence in particular, a
C∞ tempered distribution!

• Summary: Dynamics of φ̂ is much more non-trivial in the dust-filled case: It
represents the generic case where the scalar curvature does not vanish. Still, φ̂ is
a well-defined OVD in every sense one asks in QFT in CST!
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Summary and Generalizations
• Summary: There is a long history of probing classical GR singularities with classical fields

and quantum particles. But most analyses were for (conformally) static space-times with

time-like singularities.

• Here we considered time-dependent space-times with space-like singularities,
which are also physically far more interesting. But time-dependence forces one to
consider quantum fields as probes. Somewhat surprisingly, the big bang and big
crunch singularities are remarkably tamer when probed with observables
associated with quantum fields, when one keeps in mind that these are OVDs.

Classical fields φ(x) that define 1-particle states do diverge at the big bang singularity. But their

norm in the 1-particle Hilbert space is finite because the shrinking of the volume element exactly

compensates for this divergence. Recall from QM: the wave function Ψ(~r) = (1/r)e−r/ro

diverges at the origin but is a well-defined element of the Hilbert space H = L2(R3). Similarly,

the mode functions that enter the expansion of φ̂(x) diverge but it is a well-defined OVD:

smeared operators φ̂(f) are well defined. 〈φ̂(x) φ̂(x ′)〉 –and even 〈φ̂2(x)〉ren and 〈T̂ab(x)〉ren–

are well defined tempered distributions, just as they are in Minkowski space.

• Generalization: The main results on tame behavior of linear, test quantum fields
extend to other FLRW models with β > 0. I used Radiation and dust filled cases
because the mode functions are sufficiently simple to display explicit results.
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Generalizations: K = ±1 FLRW models

• Open and closed FLRW models have also been investigated in detail. Again,
the big-bang/crunch is tame. However, some differences arise in the analysis:

1. The FLRW metric is again conformally flat. But if written as gab = a2(η)ḡab, the metric ḡab

is non-flat (but ultra-static). Therefore, while the K = 0 procedure goes through, the spatial

dependence of basis functions is no longer exp (i~x · ~k); it is much more complicated.

2. One has to use C∞0 test functions in place of S, and hence ordinary distributions rather than

tempered.

3. Infrared divergences don’t arise even in the dust-filled case; K provides an effective IR cutoff.

So the closed and open FLRW models are simpler that the spatially flat one!

4. The bi-distribution 〈φ̂(x) φ̂(x ′)〉 continues to have the Hadamard form not only away from

the η = 0 surface, but also when x, x′ lie on the two sides of the η = 0 surface! (If either lies on

the η = 0 surface, the notion breaks down.)

5. Expressions of 〈φ̂2(x)〉ren and 〈T̂ab(x)〉ren are more complicated. a4(η) 〈φ̂2(x)〉ren continues

to be a regular function on the full extended space-time. But, regarded as a function,

a4(η) 〈T̂ab(x)〉ren diverges as in the k = 0 case. Hence it is again well-defined as a distribution.

Non-trivial check: It is conserved, as in the k = 0 case.
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Generalizations: Contd
• Higher spins: Since FLRW space-times are conformally flat, quantum (as well
as classical) Maxwell fields are trivially regular across the big bang and big crunch.
Results on the massless scalar field imply that tameness persists also for spin 2
(i.e. linearized gravitational) fields.

• Bianchi models: allowing anisotropies, but retaining homogeneity. Ae expect
similar results. Nice open problem for those who have already studied quantum
fields in these space-times.

• What about black hole singularities? (Work in Progress with del Rio and Schneider)

The Schwarzschild singularity: One can focus on the ‘interior’ region inside the
horizon (Kontowski-Sachs metric). We have analytic expressions of mode functions as
infinite convergent series. Work is in progress to identify the states in the ‘interior
region’ that correspond to the Unruh (and Hartle-Hawking) vacuum of the (right)
asymptotic region, and compute 〈φ̂(x) φ̂(x ′)〉, 〈φ̂2(x)〉ren, 〈T̂ab(x)〉ren in these states
at the singularity. Should be completed in the near future.

However: Generic BH singularities are expected to be null (Cauchy horizon
instability) rather than space-like. This case seems much more difficult technically.
But there is no obvious obstacle ‘of principle’. Nice problem for researchers
familiar with scalar fields on Kerr space-time.
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Broader Perspective
• Extension of QFT in CST: Since (M̊, gab) includes the big-bang, it is not globally hyperbolic.

Yet we could meaningfully extend the QFT to it. The procedure suggests an avenue to go

beyond global-hyperbolicity that has been a bed-rock of QFT in CST.

• Semi-classical gravity: gab classical; φ̂(x) an OVD subject to eqns:

�φ̂(x) = 0 and Gab = 8πGN 〈T̂ab(x)〉ren.

But 〈T̂ab(x)〉ren is no longer smooth. It is a genuine distribution, forcing us to seek

distributional semi-classical solutions gab. Existence is not obvious because of non-linearity of

Einstein’s equations. But quite possible; examples are known. Possibility opened up because the

investigation pin-pointed what exactly is different in QFT on CST at the big-bang: Einstein’s

equations have to be solved in a distributional sense, whence we have to allow the semi-classical

gab to be a genuine distribution.

• Full QG: In the Planck regime, excitations of quantum geometry have support in
2 (space-time) dimensions in many approaches (see, e.g., Carlip’s 2009 short review). A
concrete example is provided by the distributional nature of quantum geometry in
loop quantum gravity and spinfoams. Interesting Challenge: Can we systematically
show that the semi-classical distributional geometry is an approximation to the
LQG distributional geometry? Advances along this direction would provide a
concrete bridge between LQG and the mathematical QFT community.
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