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In this talk: Convex polytopes in

4d geometry from 2d bivectors



  

I Motivation

Spin Foam models:

Based on simplicity constraints (GR as constrained BF theory)

Basis: spin network functions

+ closure constraint

Reconstruction of 4d polytopes      from 3d boundary data:

 

Simplicity constraints: conditions on bivectors         s.t. 4d polytope     exists

[Barrett, Crane ‘97, Livine, Speziale ‘07, Engle et al ‘07, Freidel, Krasnov ‘07, Barrett et al ‘08, Kaminski et al ‘09, Dittrich, Ryan ‘10,
 Bianchi et al ‘11]

crit. stationary pt. in asymptotics



  

I Motivation

Problem: 

For general polytopes    , reconstruction is unknown

→ simplicity constraints for general polytopes?

→ EPRL-FK-KKL model: 
underconstrained (volume simplicity not implemented)

In this talk: How to reconstruct the 4-volume      from face bivectors

→ General formula requires knotting information of graph
(generalisation of Han’s simplex construction + proofs)

[Han ‘11, Dona et al ‘17, BB, Belov ‘17, BB, Rabuffo ‘18, BB, ‘18]
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II Volume of a 4d polyhedron

Bivectors

Oriented graphs

nodes    , oriented links 

A bivector geometry: 

graph      

bivectors to links

diagonal simplicity:

cross-simplicity: for links adjacent to the same node:

closure: for all nodes



  

II Volume of a 4d polyhedron

Projection onto the plane:

2d graph with crossings      

For one crossing      , define:

Hodge operator:

For the whole graph     , define the number:



  

II Volume of a 4d polyhedron

Claim:      does not depend on 2d projection

Proof: Reidemeister moves:

1.) 2.)

3. 4.)

5.)
trivial



  

II Volume of a 4d polyhedron

Every 4-dim convex polytope                uniquely determines a bivector geometry.

polytope        → boundary graph        
(dual to 3d boundary polyhedron)

2d faces    of        ↔       links    of 

face+orientation → bivector

→ bivector geometry (diagonal-, cross-simplicity + closure automatically satisfied) 

Claim: For a 4d polytope

Sketch for proof:
1.) Show that it is true for 4-simplex
2.) Show how the invariant behaves under cutting of polytopes
3.) Show that every polytope can be cut successively into simplices



  

II Volume of a 4d polyhedron

1.) True for a 4-simplex:

By direct calculation

Spanned by four vectors 

Only one crossing in the boundary graph:

→ Claim proven for 4-simplices

[Han ‘11]



  

II Volume of a 4d polyhedron

2.) Cutting/glueing of polytopes (graph surgery)

two graphs          

with mirrored nodes

(identical bivectors, but 
reverse orientations)

graphs can be merged together, to one big graph

Easy to show:

under this procedure,      is additive:

[BB ‘18]



  

II Volume of a 4d polyhedron

2.) Cutting/glueing of polytopes (graph surgery)

Cutting of one convex polytope
with hyperplane into two polytopes
(3d analogue of image):

Boundary graph gets split up.

Regain old bdy graph with two moves:
(~ trivial subdivision of bdy polytopes)

1.)

2.)

Moves leave     invariant  → 



  

II Volume of a 4d polyhedron

3.) Remains to show: 

Every convex     -polytope can be successively cut 
into   -simplices via             hyperplanes.

Proof: induction over the dimension    :

a) Fix internal vertex 
b) Subdivide polytope by the hyperplane      spanned by    and             face
c) → Pyramids over             polytopes → subdivide those

For           the process leads to 2-simplices (triangles):

→ done



  

II Volume of a 4d polyhedron

This finishes the proof:

For every convex 4d polytope      , the 4-volume can be computed by its bivectors:

→ Needs knotting information of the boundary graph!
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III Quantum amplitude and asymptotics

EPRL-FK-KKL model:

Boundary states:            -spin network functions

Boosting map:
(insert into highest / lowest weight)

Amplitude: inner product between 
boosted boundary state and       vacuum state

Isomorphism →       derivative operators on 

[Engle, Pereita, Rovelli, Livine ‘07, Freidel, Krasnov ‘07, Kaminski, Kisielowski, Lewandowski ‘09]



  

III Quantum amplitude and asymptotics

Deformed amplitude:

Deformation parameter 

Deformed amplitude factorizes (Euclidean signature,           )

Note: usually, cosmological constant is incorporated via quantum groups (state 
sum, boundary Hilbert space) → Here we stay with classical groups

[Han ‘11, Haggard et al ‘15, Dittrich, Geiller ‘16, BB, Rabuffo ‘18]



  

III Quantum amplitude and asymptotics

Claim: Large j asymptotics of             : same critical & stationary points as the one 
for normal amplitude          , and Hessian matrix is also the same!

Sketch of proof: First we expand the exponential into a sum, then we make the 
assumption that we can in actuality exchange the sum and the asymptotic limit.

Calculation can be performed for        sectors separately

Livine-Speziale coherent states on boundary:

Undeformed amplitude (one sector), for links        :

Deformed amplitude contains, for each crossing (e.g. plus-sector):



  

III Quantum amplitude and asymptotics

Expansion of the exponential:

Insert resolution of identity          times:

using

we get:

with

→ Here we exchange asymptotic limit and infinite sum



  

III Quantum amplitude and asymptotics

Integration variables:

critical stationary points:

Hessian matrix: same matrix as 
undeformed case



  

III Quantum amplitude and asymptotics

Finally, the total Hessian matrix:

It follows:
undeformed Hessian

same matrix as 
undeformed case



  

III Quantum amplitude and asymptotics

Asymptotics:

(for +-sector, one critical stationary point)

undeformed amplitude

[Barrett et al ‘08, Conrady, Freidel ‘08, Han ‘11, BB, Rabuffo ‘18]



  

III Quantum amplitude and asymptotics

Assume that boundary data allows for two distinct solutions

(e.g. “Regge boundary data”, allowing only one 4d-polyhedron of volume      )

→ mixed terms give volume term, same-sign terms cancel

→ For the full amplitude:

Careful: In general more solutions, which all appear in the asymptotics
(same 3d boundary data can allow for several different 4d polyhedra)
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IV Quadratic volume simplicity constraint

For general 4d-polytopes, the EPRL-FK-KKL model is underconstrained.

For a 4-simplex, there is no problem:

diagonal simplicity

cross simplicity

volume simplicity

EPRL-FK-KKL-model construction only rests on
diagonal-, cross-simplicity constraint + closure constraint (gauge invariance)

→ Implemented on boundary Hilbert space

For a 4-simplex, these are enough:

diagonal- + cross-simplicity + closure imply  volume-simplicty
(in particular: reconstruction of 4-simplex form bivectors)

But: For general 4d polytopes: volume-simplicity constraint is missing!

[Barrett, Crane ‘97, Engle et al ‘07, Freidel, Krasnov ‘07, BB, Steinhaus ‘15]



  

IV Quadratic volume simplicity constraint

Note: There is an additional under-constrained-ness due to twisted geometries

→ e.g. area-angle constraints, ensure face-matching in the 4-simplex case
→ these “twisted” degrees of freedom are suppressed in the large-    asymptotics

These are not related to the volume-simplicity constraint!

For more general 4d-polytopes, the volume-simplicity problem adds even more
non-metric degrees of freedom.

These also manifest in non-face-matching
But: cannot be removed via area-angle-constraints (“conformal d.o.f.”)

[Dittrich, Speziale ‘08, Freidel, Speziale ‘10, Freidel, Ziprick ‘13, BB, Steinhaus ‘15, Dona et al ‘17, BB, Belov ‘17]



  

IV Quadratic volume simplicity constraint

Example: 4d-hypercubic graph:

Consider a certain bivector geometry on that boundary graph

cuboidal: each polyhedron is a 3d cube in      . All bivectors

along great circles coincide. Six great circles → six areas

However: hypercuboid is only specified by four numbers.

→ There are more bivector geometries than hypercuboids.

[BB, Steinhaus ‘15]



  

IV Quadratic volume simplicity constraint

Consider the three Hopf links                    
of the hypercuboidal boundary graph. 

Hopf link: Only crossings 
with each other!

Define Hopf-link volume:

For the hypercuboidal bivector geometry, one gets:

Total volume is the sum of these:

For an actual hypercuboid → all equal → Volume constraint on Hopf links

[BB, Belov ‘17]



  

IV Quadratic volume simplicity constraint

This implies: discretisation of simplicity constraints:

constraint:

diagonal simplicity

cross simplicity

volume simplicity

The Hopf-link-volume has to agree for each Hopf-link in the boundary graph.

→ General polytopes?

discretised on:

links

nodes

Hopf-links



  

How to impose Hopf link volume simplicity constraint on the quantum level?

a) problem: dynamics vs kinematics:

diagonal-simplicity and cross-simplicity constraints are kinematical: can be 
formulated within one vertex (intertwiner). 

volume simplicity constraint is dynamical: need information about 4d shape
→ need information about (flat) dynamics: amplitude.

b) problem: cosine problem

Amplitude      contains contributions from both orientations of        → volume
counts positive and negative. → all                                are zero in asymptotic
limit.
→ possible solution: proper vertex?

→ our solution: use even function of volume

[Barrett et al ‘08, Engle ‘13, Engle, Zipfel ‘15]

IV Quadratic volume simplicity constraint



  

Boundary state: can be chosen to represent 
quantum version of hypercuboid

satisfies (quantum versions of) linear simplicity constraint

Livine-Speziale Intertwiners:

spins ↔ areas

intertwiner ↔ 3d shapes

depends on six spins:

[Livine, Speziale ‘07, Bianchi ‘08, Doná, Speziale ‘11, BB, Steinhaus ‘15]

IV Quadratic volume simplicity constraint



  

Large j asymptotics: hypercuboid

Here is a polynomical in the                of degree 21

Large j asymptotics: Hopf link volumes

→ Demand that Hopf link volumes agree: linear condition → subspace of all 
spin network functions satisfying linear simplicity. 

In the large j limit, hypercuboids with geometricity appear to satisfy
this constraint → eliminated non-geometric degrees of freedom!

[BB, Steinhaus ‘15]

IV Quadratic volume simplicity constraint
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V Summary and Outlook

Summary:

* Proof of a formula for volume of 4-polytope in terms of its bivectors
and crossings in its boundary graph

* Can be used to define a deformation of the EPRL-FK-KKL-amplitude
with cosmological constant term
Asymptotics: → weird terms & Hessian matrix unchanged!

* EPRL-KF-KKL-model underconstrained: no (quadratic) volume simplicity

→ Constraint can be discretized over Hopf links in bdy graph

works in examples



  

V Summary and Outlook

Outlook:

* So far volume formula only for convex polytopes
→ proof easy to generalise to non-convex case
→ Non-convex polytopes appear in asymptotics of EPRL-FK-KKL model!

(linear volume-simplicity constraint?)

* Connection to Haggard et al: Chern-Simons theory?

* Deformed amplitude: sensitive to graph knotting → physical IP!

* Connection to quantum groups?

* Hopf-link-volume simplicity constraint: general polytopes?

[BB ‘11, Haggard, Han, Kaminski, Riello ‘15, Dittrich, Geiller ‘16, Dona et al ‘17]
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