

4-volume in spin foam models from knotted boundary graphs

Benjamin Bahr
II. Institute for Theoretical Physics
University of Hamburg
Luruper Chaussee 149
22761 Hamburg

International Loop Quantum Gravity Seminar 25th September 2018

in collab with Vadim Belov, Giovanni Rabuffo In this talk: Convex polytopes in \mathbb{R}^4

4d geometry from 2d bivectors

Spin Foam models:

Based on simplicity constraints (GR as constrained BF theory)

Basis: spin network functions

$$j_{ab}, \iota_a \leftrightarrow j_{ab}, \vec{n}_{ab}$$
 + closure constraint

crit. stationary pt. in asymptotics

Simplicity constraints: conditions on bivectors B_{ab} s.t. 4d polytope P exists

Problem:

For general polytopes P, reconstruction is unknown

- → simplicity constraints for general polytopes?
- → EPRL-FK-KKL model: underconstrained (volume simplicity not implemented)

In this talk: How to reconstruct the 4-volume V from face bivectors B_{ab}

→ General formula requires knotting information of graph (generalisation of Han's simplex construction + proofs)

- **I** Motivation
- Il Volume of a 4d polyhedron
- III Quantum amplitude and asymptotics
- IV Quadratic volume simplicity constraint
- V Summary and outlook

II Volume of a 4d polyhedron

Bivectors $B \in \mathbb{R}^4 \wedge \mathbb{R}^4 \simeq \mathfrak{so}(4)$

Oriented graphs $\Gamma \subset S^3$

nodes n , oriented links ℓ

A bivector geometry:

graph Γ

bivectors to links $\{B_\ell\}_\ell$

diagonal simplicity: $B_{\ell} \wedge B_{\ell} = 0$

cross-simplicity: $B_{\ell} \wedge B_{\ell'} = 0$ for links ℓ, ℓ' adjacent to the same node:

closure: $\sum_{\ell \supset n} [n,\ell] \, B_\ell \, = \, 0$ for all nodes $\, n \,$

$$[n,\ell] = +1 \qquad [n,\ell] = -1$$

II Volume of a 4d polyhedron

Projection onto the plane:

2d graph with crossings C

For one crossing $\,C\,$, define:

$$V_C := \sigma(C) * \left(B_{\ell_1} \wedge B_{\ell_2} \right)$$

Hodge operator:

$$*: \wedge^4 \mathbb{R}^4 \longrightarrow \mathbb{R}$$

For the whole graph Γ , define the number:

$$V_{\Gamma} := \frac{1}{6} \sum_{C} V_{C}$$

$$\sigma(C) = -1$$

$$\sigma(C) = -1$$
 $\sigma(C) = +1$

Claim: $V_{\Gamma} = \frac{1}{6} \sum_{C} \sigma(C) * (B_{\ell_1} \wedge B_{\ell_2})$ does not depend on 2d projection

Proof: Reidemeister moves:

$$B_{\ell} \wedge B_{\ell} = 0$$

$$\sigma(C_1) = -1$$
3.
$$(C_1) = -1$$

$$A.) \qquad B_{\ell} \wedge B_{\ell'} = 0$$

trivial
$$\sum [n,\ell]$$

II Volume of a 4d polyhedron

Every 4-dim convex polytope $P \subset \mathbb{R}^4$ uniquely determines a bivector geometry.

polytope
$$P \to \text{boundary graph } \Gamma \subset S^3$$
 (dual to 3d boundary polyhedron)

2d faces f of $P \leftrightarrow \mathsf{links} \ \ell$ of Γ

face+orientation → bivector

$$B_{\ell} = N \wedge M \qquad N, M \in \mathbb{R}^4$$

$$Area(f) = |N| |M| \sin \langle (N, M)|$$

→ <u>bivector geometry</u> (diagonal-, cross-simplicity + closure automatically satisfied)

Claim: For a 4d polytope
$$\operatorname{Vol}(P) = V_{\Gamma} = \frac{1}{6} \sum_{C} \sigma(C) * (B_{\ell_1} \wedge B_{\ell_2})$$

Sketch for proof:

- 1.) Show that it is true for 4-simplex
- 2.) Show how the invariant behaves under cutting of polytopes
- 3.) Show that every polytope can be cut successively into simplices

II Volume of a 4d polyhedron

1.) True for a 4-simplex:

By direct calculation

Spanned by four vectors $e_1, e_2, e_3, e_4 \in \mathbb{R}^4$

$$B_1 = \frac{1}{2}e_1 \wedge e_2 \qquad B_2 = \frac{1}{2}e_3 \wedge e_4$$

Only one crossing in the boundary graph:

$$V_{\Gamma} = \frac{1}{24} * (e_1 \wedge e_2 \wedge e_3 \wedge e_4) = V$$

→ Claim proven for 4-simplices

2.) Cutting/glueing of polytopes (graph surgery)

two graphs Γ_1, Γ_2

with mirrored nodes n_1, n_2

(identical bivectors, but reverse orientations)

 Γ_1

graphs can be merged together, to one big graph

Easy to show:

under this procedure, V_{Γ} is additive:

$$V_{\Gamma_1 \#_{(n_1, n_2)} \Gamma_2} = V_{\Gamma_1} + V_{\Gamma_2}$$

$$\Gamma_1 \#_{(n_1,n_2)} \Gamma_2$$

2.) Cutting/glueing of polytopes (graph surgery)

Cutting of one convex polytope with hyperplane into two polytopes (3d analogue of image):

 Γ_{P_1}

Boundary graph gets split up.

$$\Gamma_{P_1} \#_{(p,q)} \Gamma_{P_2} \sim \Gamma_P$$

Regain old bdy graph with two moves: (~ trivial subdivision of bdy polytopes)

Moves leave V_{Γ} invariant $\rightarrow V_{\Gamma_P} = V_{\Gamma_{P_1}} + V_{\Gamma_{P_2}}$

3.) Remains to show:

Every convex n -polytope can be successively cut into n-simplices via (n-1) hyperplanes.

Proof: induction over the dimension n:

- a) Fix internal vertex v
- b) Subdivide polytope by the hyperplane H_f spanned by v and (n-2) face f
- c) \rightarrow Pyramids over (n-1) polytopes \rightarrow subdivide those

For n=2 the process leads to 2-simplices (triangles):

 \rightarrow done

This finishes the proof:

For every convex 4d polytope P, the 4-volume can be computed by its bivectors:

$$V_P = \frac{1}{6} \sum_C \sigma(C) * \left(B_{\ell_1} \wedge B_{\ell_2} \right)$$

→ Needs knotting information of the boundary graph!

- **I** Motivation
- II Volume of a 4d polyhedron
- III Quantum amplitude and asymptotics
- IV Quadratic volume simplicity constraint
- V Summary and outlook

EPRL-FK-KKL model:

Boundary states: SU(2) -spin network functions $\psi \in \mathcal{H}_{SU(2)}$

$$\mathcal{H}_{\mathrm{SU}(2)} = \bigoplus_{k_{\ell}} \left(\bigotimes_{n} \mathrm{Inv}_{SU(2)} (V_{k_1} \otimes \cdots V_{k_m}) \right)$$

$$\mathcal{H}_{SU(2)\times SU(2)} = \bigoplus_{j_{\ell}^{\pm}} \left(\bigotimes_{n} \operatorname{Inv}_{SU(2)\times SU(2)} (V_{j_{1}^{\pm}} \otimes \cdots V_{j_{m}^{\pm}}) \right)$$

Boosting map: $\beta: \mathcal{H}_{\mathrm{SU}(2)} \longrightarrow \mathcal{H}_{\mathrm{SU}(2) \times \mathrm{SU}(2)}$ $j_{\ell} \pm = \frac{1}{2} |1 \pm \gamma| k_{\ell}$ (insert into highest / lowest weight)

$$j_{\ell} \pm = \frac{1}{2} |1 \pm \gamma| k_{\ell}$$

$$\mathcal{A}(\psi) := \langle \Psi_0 \, | \, \beta \psi \rangle$$

Amplitude: inner product between boosted boundary state and BF vacuum state $\Psi_0 \sim \prod_\ell \delta^{m_\ell^\pm}{}_{n_\ell^\pm}$

Isomorphism $\mathbb{R}^4 \wedge \mathbb{R}^4 \simeq \mathfrak{su}(2) \oplus \mathfrak{su}(2) \to \hat{B}$ derivative operators on $\mathcal{H}_{\mathrm{SU}(2) \times \mathrm{SU}(2)}$

Deformed amplitude:
$$\hat{V} := \frac{1}{6} \sum_{C} \sigma(C) * (\hat{B}_1 \wedge \hat{B}_2) \qquad B \sim (\vec{b}^+, \vec{b}^-)$$

$$= \frac{1}{6} \sum_{C} \sigma(C) \delta_{IJ} \Big(\hat{b}_1^{+,I} \hat{b}_2^{+,J} - \hat{b}_1^{-,I} \hat{b}_2^{-,J} \Big)$$

$$= \frac{1}{6} \sum_{C} \sum_{\epsilon = \pm} \frac{\epsilon 4 \gamma^2}{(1 \epsilon \gamma)^2} \sum_{I=1}^{3} D_{(j_L^{\epsilon})}(X_I^{\epsilon}) \otimes D_{(j_{L'}^{\epsilon})}(X_I^{\epsilon})$$

Deformation parameter ω

$$\mathcal{A}^{\omega}(\psi) := \left\langle \Psi_0 \middle| \exp\left(i\omega\hat{V}\right)\beta\psi\right\rangle = \mathcal{A}^{\omega,+}\mathcal{A}^{\omega,-}$$

Deformed amplitude factorizes (Euclidean signature, $\gamma < 1$)

Note: usually, cosmological constant is incorporated via quantum groups (state sum, boundary Hilbert space) → Here we stay with classical groups

Claim: Large j asymptotics of $\mathcal{A}^{\omega}(\psi)$: same critical & stationary points as the one for normal amplitude $\mathcal{A}(\psi)$, and Hessian matrix is also the same!

Sketch of proof: First we expand the exponential into a sum, then we make the assumption that we can in actuality exchange the sum and the asymptotic limit.

Calculation can be performed for \pm sectors separately

Livine-Speziale coherent states on boundary: $|j, \vec{n}\rangle = g_{\vec{n}}|j, j\rangle$

Undeformed amplitude (one sector), for links (ab):

$$\mathcal{A}(\psi) = \int_{SU(2)^{N_{\Gamma}}} dg_a \prod_{b \to a} \langle j_{ab}, n_{ab} | (g_a)^{-1} g_b | j_{ab}, n_{ba} \rangle$$

Deformed amplitude contains, for each crossing (e.g. plus-sector):

$$\langle \Psi | = \langle j_{ab}, n_{ab} | (g_a)^{-1} \otimes \langle j_{a'b'}, n_{a'b'} | (g_{a'})^{-1} \qquad \langle \Psi | \exp \left(\frac{4i\omega}{(1+\gamma)^2} \sum_{I=1}^3 X_I \otimes X_I \right) | \Phi \rangle$$
$$| \Phi \rangle = g_b | j_{ab}, n_{ba} \rangle \otimes g_{b'} | j_{a'b'}, n_{b'a'} \rangle$$

Expansion of the exponential:

$$\sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{4i\omega}{(1+\gamma)^2} \right)^n \sum_{I_1,I_2,\dots,I_n=1}^{3} \langle j_{ab}, n_{ab} | (g_a)^{-1} X_{I_1} X_{I_2} \cdots X_{I_n} g_b | j_{ab}, n_{ba} \rangle$$
$$\times \langle j_{a'b'}, n_{a'b'} | (g_{a'})^{-1} X_{I_1} X_{I_2} \cdots X_{I_n} g_{b'} | j_{a'b'}, n_{b'a'} \rangle$$

Insert resolution of identity n-1 times: $(2j+1)\int_{S^2}d^2n\;|j,\,n\rangle\langle j,\,n|\;=\;1_{V_j}$ using $\langle j,\,n|X_I|j,\,n'\rangle\;=\;j\langle n|\sigma_I|n'\rangle\;\langle n|n'\rangle^{2j-1}$

we get:

$$\langle j_{ab}, n_{ab} | (g_a)^{-1} X_{I_1} X_{I_2} \cdots X_{I_n} g_b | j_{ab}, n_{ba} \rangle = \int_{(S^2)^{n-1}} d^2 n_i \ a(n_i, g_a, g_b) \ e^{S(n_i, g_a, g_b)}$$

with

$$a(n_{i}, g_{a}, g_{b}) = (2j+1)^{n-1} j^{n} \frac{\langle n_{ab} | (g_{a})^{-1} \sigma_{I_{1}} | n_{1} \rangle}{\langle n_{ab} | (g_{a})^{-1} | n_{1} \rangle} \frac{\langle n_{1} | \sigma_{I_{2}} | n_{2} \rangle}{\langle n_{1} | n_{2} \rangle} \cdots \frac{\langle n_{n-1} | \sigma_{I_{n}} g_{b} | n_{ba} \rangle}{\langle n_{n-1} | g_{b} | n_{ba} \rangle}$$

$$S(n_{i}, g_{a}, g_{b}) = 2j \left(\ln \langle n_{ab} | (g_{a})^{-1} | n_{1} \rangle + \ln \langle n_{1} | n_{2} \rangle + \cdots + \ln \langle n_{n-1} | g_{b} | n_{ba} \rangle \right)$$

→ Here we exchange asymptotic limit and infinite sum

Integration variables: $g_a = e^{ix_a^I \sigma_I} g_a^{(c)}, n_i(\phi_i, \theta_i), n_i'(\xi_i, \chi_i)$

critical stationary points: $\operatorname{Re}(S) = 0$ $\partial S = 0$

$$g_a n_{ab} = g_b n_{ba}$$
 $n_i = g_b n_{ba}$, $n'_i = g_{b'} n_{b'a'}$ for all i .

Hessian matrix:
$$\tilde{H}_{IJ}^{cd} := \frac{\partial^2 S}{\partial x_c^I \partial x_d^J} \qquad \text{same matrix as}$$

$$\frac{\partial^2 S}{\partial \phi_i^2} = \frac{\partial^2 S}{\partial \theta_i^2} = -j_{ab} \qquad \frac{\partial^2 S}{\partial \xi_i^2} = \frac{\partial^2 S}{\partial \chi_i^2} = -j_{a'b'}$$

$$\frac{\partial^2 S}{\partial \theta_i \partial \theta_{i+1}} = \frac{\partial^2 S}{\partial \phi_i \partial \phi_{i+1}} = \frac{j_{ab}}{2}, \qquad \frac{\partial^2 S}{\partial \phi_i \partial \theta_i} = 0$$

$$\frac{\partial^2 S}{\partial \phi_i \partial \theta_{i+1}} = i \frac{j_{ab}}{2}, \qquad \frac{\partial^2 S}{\partial \phi_{i+1} \partial \theta_i} = -i \frac{j_{ab}}{2}$$

$$\frac{\partial^2 S}{\partial x_b^I \partial \phi_1} = -\frac{\partial^2 S}{\partial x_a^I \partial \phi_1} = j_{ab} \Big(i V_2^I - V_1^I \Big)$$

$$\frac{\partial^2 S}{\partial x_b^I \partial \theta_1} = -\frac{\partial^2 S}{\partial x_a^I \partial \theta_1} = j_{ab} \Big(i V_1^I + V_2^I \Big)$$

$$G := (g_b g_{n_{ba}})^{-1}$$

$$G := (g_b g_{n_{ba}})^{-1}$$

Finally, the total Hessian matrix:
$$H=\left(\begin{array}{cc}A&B\\B^T&\tilde{H}\end{array}\right)$$

$$A\in\mathbb{C}^{2(n-1)\times 2(n-1)}$$

$$B\in\mathbb{C}^{4(n-1)\times 3(N-1)}$$

$$\det(H) = \det(A) \det(\tilde{H} - B^T A^{-1} B)$$

$$= (i_{ab} i_{a'b'})^{2(n-1)} = 0$$

$$A \in \mathbb{C}^{2(n-1)\times 2(n-1)}$$

$$B \in \mathbb{C}^{4(n-1)\times 3(N-1)}$$

$$\tilde{H} \in \mathbb{C}^{3(N-1)\times 3(N-1)}$$

same matrix as undeformed case

It follows:

$$\det(H) = (j_{ab}j_{a'b'})^{2(n-1)}\det(\tilde{H}).$$

undeformed Hessian

Asymptotics:

$$j \to \lambda j$$

$$j \to \lambda j, \qquad \omega \to \lambda^{-2} \omega$$

(for +-sector, one critical stationary point)

$$\begin{split} \mathcal{A}^{\omega} & \rightarrow \mathcal{A} \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{4i\omega\lambda^{-2}}{(1+\gamma)^2} \right)^n \left(\frac{1}{4\pi} \right)^{2(n-1)} \left(\frac{2\pi}{\lambda} \right)^{2(n-1)} \\ & \times \sum_{I_1,I_2,\dots,I_n=1}^{3} 4^{n-1} \frac{(\lambda j_{ab})^{2n-1}(\lambda j_{a'b'})^{2n-1}}{\sqrt{(j_{ab}j_{a'b'})^{2(n-1)}}} \prod_{i=1}^{n} (\tilde{n}_{ba})^{I_i} \left(\tilde{n}_{b'a'} \right)^{I_i} \\ & = \mathcal{A} \sum_{n=0}^{\infty} \frac{\lambda^{2n}}{n!} (j_{ab}j_{a'b'})^n \left(\frac{4i\omega\lambda^{-2}}{(1+\gamma)^2} \right)^n \left(\sum_{I=1}^{3} (\tilde{n}_{ba})^I \left(\tilde{n}_{b'a'} \right)^I \right)^n \\ & = \mathcal{A} e^{i\omega\vec{X}_{ab}\cdot\vec{Y}_{a'b'}} \\ & \stackrel{\bullet}{\mathbf{X}}_{ab} = k_{ab} \, \tilde{n}_{ab}, \, \vec{Y}_{a'b'} = k_{a'b'} \, \tilde{n}_{a'b'} \\ & \text{undeformed amplitude} \end{split}$$

Assume that boundary data allows for two distinct solutions $g_a^{(c)}=g_a^\pm$

(e.g. "Regge boundary data", allowing only one 4d-polyhedron of volume V_{\parallel})

- → mixed terms give volume term, same-sign terms cancel
- → For the <u>full</u> amplitude:

$$\mathcal{A} \longrightarrow \frac{1}{W} + \frac{1}{W^*} + \frac{1}{|D|} \cos(S_{\text{Regge}})$$

$$\mathcal{A}^{\omega} \longrightarrow \frac{1}{W} + \frac{1}{W^*} + \frac{1}{|D|} \cos(S_{\text{Regge}} - \omega V)$$

Careful: In general more solutions, which all appear in the asymptotics (same 3d boundary data can allow for several different 4d polyhedra)

- **I** Motivation
- II Volume of a 4d polyhedron
- III Quantum amplitude and asymptotics
- IV Quadratic volume simplicity constraint
- V Summary and outlook

For general 4d-polytopes, the EPRL-FK-KKL model is underconstrained.

For a 4-simplex, there is no problem:

$$B_f \wedge B_f = 0$$
 diagonal simplicity

$$B_f \wedge B_{f'} = 0$$
 cross simplicity

$$B_f \wedge B_{f'} = V$$
 volume simplicity

→ Implemented on boundary Hilbert space

For a 4-simplex, these are enough:

diagonal- + cross-simplicity + closure <u>imply</u> volume-simplicty (in particular: reconstruction of 4-simplex form bivectors)

But: For general 4d polytopes: volume-simplicity constraint is missing!

Note: There is an <u>additional</u> under-constrained-ness due to twisted geometries

- → e.g. area-angle constraints, ensure face-matching in the 4-simplex case
- \rightarrow these "twisted" degrees of freedom are suppressed in the large- j asymptotics

These are <u>not</u> related to the volume-simplicity constraint!

For more general 4d-polytopes, the volume-simplicity problem adds even more non-metric degrees of freedom.

These also manifest in non-face-matching
But: cannot be removed via area-angle-constraints ("conformal d.o.f.")

IV Quadratic volume simplicity constraint

Example: 4d-hypercubic graph: Γ

Consider a certain bivector geometry on that boundary graph cuboidal: each polyhedron is a 3d cube in \mathbb{R}^4 . All bivectors along great circles coincide. Six great circles \to six areas

$$a_1,\ldots,a_6$$

However: hypercuboid is only specified by four numbers.

→ There are more bivector geometries than hypercuboids.

$$B_1 = a_1 (e_y \wedge e_z), \quad B_2 = a_2 (e_z \wedge e_x), \quad B_3 = a_3 (e_x \wedge e_y),$$

$$B_4 = a_4 (e_z \wedge e_t), \quad B_5 = a_5 (e_t \wedge e_y), \quad B_6 = a_6 (e_x \wedge e_t),$$

Consider the three Hopf links H_1 , H_2 , H_3 of the hypercuboidal boundary graph.

 $V_C = \sigma(C) * (B_{\ell_1} \wedge B_{\ell_2})$

Define Hopf-link volume:

$$V_H := \frac{1}{6} \sum_{C \delta H} V_C$$

For the hypercuboidal bivector geometry, one gets:

$$V_{H_1} = \frac{1}{3}a_1a_6 \qquad V_{H_2} = \frac{1}{3}a_2a_5 \qquad V_{H_3} = \frac{1}{3}a_3a_4$$

Total volume is the sum of these: $V_{\rm tot}=\frac{1}{3}ig(a_1a_6+a_2a_5+a_3a_4ig)$

For an actual hypercuboid → all equal → Volume constraint on Hopf links

$$V_{H_1} = V_{H_2} = V_{H_3}$$

This implies: discretisation of simplicity constraints:

The Hopf-link-volume has to agree for each Hopf-link in the boundary graph.

→ General polytopes?

How to impose Hopf link volume simplicity constraint on the quantum level?

a) problem: dynamics vs kinematics:

diagonal-simplicity and cross-simplicity constraints are *kinematical*: can be formulated within one vertex (intertwiner).

volume simplicity constraint is dynamical: need information about 4d shape → need information about (flat) dynamics: amplitude.

$$V_{\Psi} := \mathcal{A}(\hat{V}\Psi), \qquad V_{H,\Psi} := \mathcal{A}(\hat{V}_{H}\Psi),$$

b) problem: cosine problem

Amplitude \mathcal{A} contains contributions from both orientations of $\mathbb{R}^4 \to \text{volume}$ counts positive and negative. \to all $V_{H,\Psi} = \mathcal{A}(\hat{V}_H \Psi)$ are zero in asymptotic limit.

- → possible solution: proper vertex?
- ightarrow our solution: use even function of volume $V_{H,\Psi}^2 := \mathcal{A}(\hat{V}_H^2 \Psi),$

Boundary state: can be chosen to represent quantum version of hypercuboid $\gamma \in (0,1)$

satisfies (quantum versions of) linear simplicity constraint

$$\psi^{\pm}(h_e^{\pm}) = \langle \otimes_e D_{j_e^{\pm}}(h_e^{\pm}), \otimes_v \iota_v^{\pm} \rangle \qquad j^{\pm} = \frac{1 \pm \gamma}{2} j$$

$$j^{\pm} = \frac{1 \pm \gamma}{2} j$$

Livine-Speziale Intertwiners:

spins \leftrightarrow areas $a \sim \gamma j$

intertwiner ↔ 3d shapes

$$\iota_{j_{a_1}j_{a_2}j_{a_3}}^{\pm} = \int_{SU(2)} dg \ g \triangleright \left[\bigotimes_{i=1}^{3} |j_{a_i}^{\pm}, e_i\rangle \langle j_{a_i}^{\pm}, e_i| \right]$$

depends on six spins: $j_1 \ldots, j_6$

Large j asymptotics: hypercuboid

$$\mathcal{A}(\Psi) \sim \left(\frac{1}{D} + \frac{2}{|D|} + \frac{1}{D^*}\right),$$

Here D is a polynomical in the j_1, \ldots, j_6 of degree 21

Large j asymptotics: Hopf link volumes

$$\mathcal{A}(\hat{V}_{H_1}^2 \Psi) \sim \gamma^4 (j_1 j_6)^2 \left(\frac{1}{D} + \frac{1}{D^*}\right),$$

 $\mathcal{A}(\hat{V}_{H_2}^2 \Psi) \sim \gamma^4 (j_2 j_5)^2 \left(\frac{1}{D} + \frac{1}{D^*}\right),$

$$\mathcal{A}(\hat{V}_{H_3}^2\Psi) \sim \gamma^4(j_3j_4)^2 \left(\frac{1}{D} + \frac{1}{D^*}\right),$$

→ Demand that Hopf link volumes agree: linear condition → subspace of all spin network functions satisfying linear simplicity.

$$j_1 j_6 = j_2 j_5 = j_3 j_4$$

In the large j limit, hypercuboids with geometricity appear to satisfy this constraint → eliminated non-geometric degrees of freedom!

- I Motivation
- II Volume of a 4d polyhedron
- III Quantum amplitude and asymptotics
- IV Quadratic volume simplicity constraint
- V Summary and outlook

Summary:

- * Proof of a formula for volume of 4-polytope in terms of its bivectors and crossings in its boundary graph
- * Can be used to define a deformation of the EPRL-FK-KKL-amplitude with cosmological constant term
 Asymptotics: → weird terms & Hessian matrix unchanged!
- * EPRL-KF-KKL-model underconstrained: no (quadratic) volume simplicity
 - → Constraint can be discretized over Hopf links in bdy graph works in examples

Outlook:

- * So far volume formula only for convex polytopes
 - → proof easy to generalise to non-convex case
 - → Non-convex polytopes appear in asymptotics of EPRL-FK-KKL model! (linear volume-simplicity constraint?)
- * Connection to Haggard et al: Chern-Simons theory?
- * Deformed amplitude: sensitive to graph knotting → physical IP!
- * Connection to quantum groups?
- * Hopf-link-volume simplicity constraint: general polytopes?