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Summary

1 Separability: some basic concepts.
2 Separable & non-separable Hilbert spaces.
3 Separability, QFT and QM.

Non-equivalent representations of the CCR’s in QM.

4 Polymer Quantum Mechanics.
5 The polymerized harmonic oscillator re-revisited.

Energy spectrum: bands.
Statistical mechanics.

6 Comments (relevance for LQG and LQC).

Purpose of the talk

Discuss the physical role of separability in QFT & QM.

Consequences of trying to use non-separable Physical Hilbert spaces.
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Separability: a topological concept

(X , T ) topological space is separable if it has a dense, countable subset.

Useful characterizations:

It is possible to find a countable subset Y ⊂ X such that Y = X .

Second countable spaces (i.e. those with countable basis) are always
separable [take a basis Vn, n ∈ N, choose xn ∈ Vn for each n ∈ N and
consider Y = ∪n∈N{xn} which is obviously countable and dense].

In metrizable spaces separability is equivalent to second countability.
Examples:

Any finite topological space.

(R, Tu), i.e. the reals with the standard topology [Q = R].

(X , Ttrivial) is separable (for any X ); [Y = X ∀Y ⊂ X , Y 6= ∅].
C ([0, 1]) with the metric topology defined by the distance d(f , g) =
supx∈[0,1]|f (x)− f (y)|, [Q[x ] = C ([0, 1])].

(X , Tdiscrete) with X uncountable is non-separable (every proper sub-
set of X is closed).
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Separability & Hilbert spaces

Hilbert spaces are particular examples of topological spaces with open sets
buit as union of balls Br (x0) = {x ∈ H : ‖x − x0‖ < r}.
A useful characterization of separable Hilbert spaces: A Hilbert space H is
separable iff it has a countable complete orthonormal set. Remember
{vj} with j ∈ J is and orthonormal basis if:

〈vi , vj〉 = δij , ∀i , j ∈ J.

span{vj}j∈J = H ⇔ span{vj}j∈J dense in H.

Comments

All infinite dimensional, separable, complex Hilbert spaces are isome-
trically isomorphic to `2(N) := {(an)n∈N : an ∈ C ,

∑
n∈N |an|2 <∞}.

Countable direct sums of separable Hilbert spaces are separable.
In particular, Fock spaces built from separable one-particle Hilbert
spaces are separable.
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Separability & Hilbert spaces

Separability and QFT

One could naively expect to need “bigger” Hilbert spaces in QFT but
traditional axiomatic approaches to QFT (Wightman) rely on sepa-
rable Hilbert spaces.
In fact, after some discussion Streater and Wightman state that:

“All these arguments make it clear that there is no evidence that
separable Hilbert spaces are not the natural state spaces for quan-
tum field theory.” [Streater and Wightman in PCT, Spin and
Statistics, and All That, Princeton University Press (2000).]

(Obviously they did not have LQG in mind...)

Tensor products of countably many separable Hilbert spaces of di-
mension higher than one are not separable (mentioned also by Streater
and Wightman, see also Wald’s book on QFT in curved spacetimes).

These could be natural choices to quantize an infinite chain of qbits.
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Separability & Hilbert spaces: QFT

Separability and QFT (continued)

Observables involving all the particles can only be defined on separable
subspaces of the full tensor product.

“Thus, while it may be a matter of convenience to regard this
state space as part of an infinite tensor product, it is not neces-
sary.” (Streater and Wightman, ibid.)

The most well-known and widespread application of non-separable
Hilbert spaces is certainly within LQG & LQC.

What about Quantum Mechanics?
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Separability & QM

Separability appears explicitly in the postulates of quantum mechan-
ics. von Neumann mentions it in his formalization of the mathematical
basis of QM (his Mathematical Foundations of Quantum Mechanics).

There are not many reasons to renounce this (simplifying) assumption,
but, from a foundational/phylosophical/interpretational point of view
it is interesting to see what happens if we drop it.
Mathematicians have studied the Schrödinger eq. in non-separable
Hilbert spaces since the sixties (Burnat, Krupa, Zawisza, Chojnacki,...).

Halvorson (a Philosopher/Mathematician) [circa 2001] discussed the
Bohr complementarity principle fron this perspective.
Bohr complementarity principle: A particle can never have both a
sharp position and a sharp momentum.
This principle can be contemplated from the perspective of the exis-
tence of representations of the CCR’s.
It is possible to introduce a framework where particles can either have
precise positions or precise momenta.
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Separability & QM

Key idea

Circumvent the conclusions of the Stone-von Neumann theorem (regarding
the uniqueness of the Schrödinger representation of the CCR’s) by relaxing
a crucial hypothesis: the separability of the representation Hilbert space.

Once this is done it is possible to build concrete representations of the CCR’s
capable of allowing states with precise position or momentum values

.

Comments

A detailed discussion of measurement issues is necessary because finite
experimental resolution implies that it is impossible to measure “abso-
lutely sharp” positions (notice, however, that we have no such qualms
regarding precise energy measurements, say in atomic systems).

The loss of uniqueness in the representations of the CCR’s is familiar
from standard QFT.
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Representations of the Weyl algebra

A useful non-separable complex Hilbert space where non-unitary repre-
sentations of the CCR’s in Weyl form can be easily built is

`2(R) := {Ψ : R→ C :
∑
x∈R
|Ψ(x)|2 <∞}

with scalar product 〈Ψ1,Ψ2〉`2(R) =
∑

x∈R Ψ1(x)Ψ2(x).

As the sums extend over the whole real line, the set {x ∈ R : Ψ(x) 6= 0}
must be finite or countable for each Ψ ∈ `2(R).

Theorem (Halvorson, 2001)

The Weyl algebra, U(p)V (q) = e−ipqV (q)U(p) , ∀q, p ∈ R, admits uni-
tarily inequivalent irreducible representations in `2(R).
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Representations of the Weyl algebra

Position representation on `2(R)
U(p)δq0 := e ipq0δq0 , V (q)δq0 := δq0−q , ∀p, q, q0 ∈ R
q 7→ V (q) is not weakly continuous (no momentum operator).

p 7→ U(p) is weakly continuous  there is a position operator
(self-adjoint & unbounded) Q := −iU ′(0), satisfying Qδq = qδq in
D(Q) := {Ψ ∈ `2(R) :

∑
q∈R q2|Ψ(q)|2 <∞}.

Momentum representation on `2(R)
U(p)δp0 := δp0+p , V (q)δp0 := e iqp0δp0 , ∀q, p, p0 ∈ R.

p 7→ U(p) is not weakly continuous (no position operator).

q 7→ V (q) is weakly continuous  there is a momentum operator
(self-adjoint & unbounded) P := −iV ′(0), satisfying Pδp = pδp in
D(P) := {Ψ ∈ `2(R) :

∑
p∈R p2|Ψ(p)|2 <∞}.
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Representations of the Weyl algebra

Theorem (Halvorson, 2001)

In any representation of the CCR’s in Weyl form if Q exists and has an
eigenvector then P does not exist [and viceversa].

Proof: Let Ua, Vb a representation of the Weyl algebra, then, if Vbφ = λbφ,
∀b ∈ R we have e iab〈φ,Uaφ〉 = 〈φ,Uaφ〉 and hence 〈φ,Uaφ〉 = Cδ0a and
a 7→ Ua is discontinuous.

Comments

These representations built in `2(R) have no analogue in `2(N)

They were independently found and discussed by Ashtekar, Fairhurst
and Willis.
The non-existence of either momentum or position operators make it
difficult to build observables of physical interest (Hamiltonians,...).

This difficulty can be circumvented by polymerization (this is well
known within the community, in particular by LQC practicioners.)

A natural physical model to study the consequences of polymerization in
simple quantum mechanical systems is the Harmonic Oscillator.
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Polymer quantum mechanics

Polymeric HO  Toy model for LQC & LQG.
Understand the role of non-separability in simple quantum mechanical
systems.

To what extent the standard 1-d harmonic oscillator and the poly-harmonic
oscillator are similar?

Do we recover the standard energy levels (n+ 1
2)~ω in an appropriate limit?

What about degeneracies? Statistical Mechanics? Physical applications?

An important comment: the spectrum for the poly-HO cannot be a
pure-point one and countable because the countable set of eigenvectors
cannot provide a Hilbert basis for the non-separable Hilbert space of the
poly-HO (any such orthonormal basis should be uncountable).
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Polymer Hilbert spaces

The Hilbert spaces used to study the poly-HO, L2(bR, νbR) (the Bohr
compactification of the real line) or the Hilbert space of almost periodic
functions AP(R,C), are unitarily isomorphic to `2(R).

The Hilbert space AP(R,C) consists of (complex) almost periodic

functions [f (x) =
∑

n∈N ane
iλnx , an ∈ C, λn ∈ R,

∑
n∈N
|an|2 < +∞].

with scalar product 〈ψ1, ψ2〉AP = lim
T→∞

1

2T

∫ T

−T
ψ1(y)ψ2(y) dy .

By using appropriate linear isomorphisms (such as the Fourier-Bohr
transform), both the position and the momentum representations de-
scribed above can be implemented in L2(bR, νbR) or AC (R,C).

If we use L2(bR, νbR) as the carrier of the position representation,
the operator Q is a derivative operator and its square is (minus) the
Laplacian −∆.

See, for instance (Chojnacki) and references therein.
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Polymerized Hamiltonians

Let W : R → R be a periodic piecewise continuous function. W defines,
by multiplication in the algebra of almost periodic functions, a bounded
operator W (potential) in AP(R,C). The operator H = −∆ + W is self-
adjoint and unbounded in an appropriate domain.

The crucial result to obtain the spectrum of H (Chojnacki):

H has only pure point spectrum that coincides with the spectrum of the
operator H = −∆ + W , with periodic potential W , defined on L2(R, µR) .

We can then use the well-known theorems (that encapsulate the Bloch
theorem of the physicists or the Floquet theory of the mathematicians) to
show that the spectrum of H = −∆ + W consists of bands.

The eigenvalue equations (say, for the Hamiltonian) can be equivalently
written as difference equations in `2(R) or as differential equations in
L2(bR, νbR) or AP(R,C).
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The polymeric harmonic oscillator

Classical Hamiltonian

H(q, p) =
~2

2m`2
p2 +

m`2ω2

2
q2 , (p , q dimensionless).

Position representation: Introduce a length scale q0`

H(q0) :=
~2

2m(2q0`)2

(
2− V (2q0)− V (−2q0)

)
+

m`2ω2

2
Q2.

Momentum representation: Introduce a momentum scale p0~/`

H(p0) :=
~2

2m`2
P2 +

m`2ω2

2(2p0)2

(
2−U(2p0)−U(−2p0)

)
.

By requiring ~
`p0 = mωq0` the spectra coincide.
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Different reps for the poly-HO

The eigenvalue equation in the `2(R) position representation is

~2

2m(2q0`)2

(
2Ψ(q)−Ψ(q+2q0)−Ψ(q−2q0)

)
+
m`2ω2

2
q2Ψ(q) = EΨ(q) ,

with
∑
q∈R
|Ψ(q)|2 <∞ ,

∑
q∈R

q4|Ψ(q)|2 <∞, (a difference equation).

The eigenvalue equation in L2(bR, νbR) is the differential equation

ψ′′(p) +

(
2E

m`2ω2
− ~2

m2`4ω2q20
sin2(q0p)

)
ψ(p) = 0 .

with ψ ∈ L2(bR, νbR) in the domain of Q2 = −∆.

A change of variables gives the Mathieu equation

ϕ′′(x) +

(
E

2mω2(q0`)2
− 1

2

(
~

2mω(q0`)2

)2

(1− cos x)

)
ϕ(x) = 0 .
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Different reps. for the poly.-HO

The simplest way to model the poly-HO in the position representation is

by approximating p2 as P(q0)2 :=

(
i

2q0

(
V (q0)− V (−q0)

))2

There is a huge ambiguity here (Corichi, Vukašinac & Zapata). In the
position representation on L2(bR, νbR), one can use any π/q0-periodic
function W (·|q0) : R→ R such that

lim
q0→0

W (p|q0) =
~2

m2`4ω2
p2 (pointwise) .

A very simple such choice is the π/q0-periodic extension of a purely
quadratic (pq) potential

Wpq(p|q0) :=
~2

m2`4ω2
p2 , p ∈

[
− π

2q0
,
π

2q0

]
.
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Main features of the poly-HO spectrum

Band structure for H = −∆ +Wpq where
Wpq is the periodic potential satisfying
Wpq(x) = x2 for x ∈ [−4, 4].

This corresponds to choosing q0 = π/8
and ` = ~ = m = ω = 1.

The plot shows the potential in one pe-
riod, the bands that constitute the spec-
trum σ(H), and the trace of the transfer
matrix M(E ) that determines the position
of the bands as those values of the energy
for which TrM(E ) = ±2.

The narrow lowest energy bands closely
correspond to the lowest quantum har-
monic oscillator eigenvalues.
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Main features of the poly-HO spectrum

It is a band spectrum similar to the one obtained for 1-dim periodic
potentials in standard quantum mechanics formulated in separable Hilbert
spaces. It is qualitatively equal to the one given by the Mathieu equation.

All the points in the bands are actual eigenvalues (i.e. are associated
with “normalizable states”). Notice that the band spectrum corresponding
to a periodic potential in L2(R, µR) is a continuous spectrum!

Although the lowest lying part of the spectrum of the poly-HO resembles the
spectrum of the standard HO (the energies are close to the values (n+ 1

2)~ω
in the limit when the “polymer length” goes to zero) there are some crucial
differences (infinite degeneracy). These may be relevant:

From the point of view of statistical mechanics (how do you define the
microcanonical or canonical ensembles in this case?).

Fock quantization of the polymerized scalar field.
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Statistical mechanics: comments

Neither the microcanonical nor the canonical ensembles are well defined.

The statistical entropy for the system as a function of the energy is

Ω(E ) := Tr
( ∑
ε∈σ(H)∩(−∞,E ]

PH(ε)
)

=
∑

ε∈σ(H)∩(−∞,E ]

d(ε)

where d(E ) is the degeneracy of the energy eigenvalue E . The continu-
ous sums written above are ill defined owing to the uncountable number
of energy eigenstates of the system.

Likewise the canonical partition function is also ill-defined.

Z (β) = Tr(e−βH) =
∑

E∈σ(H)

d(E )e−βE =∞,

and, hence, also the thermal density matrix ρ =
e−βH

Tr(e−βH)
.
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Statistical mechanics: comments

The situation is conceptually different from the one corresponding to a
standard Hamiltonian H = −∆ +W in L2(R, µR) for a one-dimensional
periodic potential W .

The spectrum of H is purely absolutely continuous, bounded from below,
and the operators e−βH are trace class for β > 0.

The microcanonical entropy is Ω(E ) =

∫
σ(H)∩(−∞,E ]

g(ε)dε, (g(E ) is

the density of states per energy interval).

The partition function is Z (β) =

∫
σ(H)

g(E )e−βEdE .

We have no problem now because there are no energy eigenvalues.
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Some comments relevant to LQG and LQC.

The kinematical Hilbert spaces originally used in LQG are non-separable.
The expectation is that Physical Hilbert spaces are separable.

The polymer quantization of the parameterized scalar field (Laddha &
Varadarajan) supports this view.

Working with abstract graphs from the start may be the way to avoid
non-separable kinematical Hilbert spaces in LQG (though in the end this
may not even be necessary).

A word of caution: It is difficult to understand how non-separable
Hilbert spaces could be Physical Hilbert spaces. One should be very
careful when using them as toy models!!

Superselection rules (if applicable) may be used to avoid some prob-
lems.

One has to find physical criteria to eliminate most of the eigenstates
of the Hamiltonian and leave a countable number of them.

Separability & QM J. Fernando Barbero G. (IEM-CSIC) ILQGS, April 21, 2015 22/23



References

1 H. Halvorson, Studies in Hist. and Phil. of Mod. Phys. 35 (1) (2004) 45-56.

2 A. Ashtekar, S. Fairhurst and J. L. Willis, Class. Quant. Grav. 20 (2003)
1031-1062.
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