Holographic signatures of

resolved cosmological singularities

Norbert Bodendorfer

LMU Munich

based on work in collaboration with Andreas Schäfer, John Schliemann

International Loop Quantum Gravity Seminar

March 21, 2017

TALK IN A NUTSHELL

Aim:

Use LQG for AdS/CFT:

Holographic dual of resolved singularity

Results:

- Proof of principle
 - Necessary computations possible
 - Singularity resolution ⇔ better behaved dual CFT
- Many simplifications
 - Allow for analytic computation
 - Otherwise numerics necessary

Long term focus:

Strongly coupled finite N gauge theories via holography

Related work: [Freidel '08; Ashtekar, Wilson-Ewing '08; NB, Thiemann, Thurn '11; Dittrich, Hnybida '13; Bonzom, Costantino, Livine '15; Bonzom, Dittirch '15; NB '15; Smolin '16; Han, Hung '16; Chirco, Oriti, Zhang '17, ...]

PLAN OF THE TALK

- Setting and strategy
- 2 Holographic signatures of cosmological singularities
- Quantum corrected Kasner-AdS

OUTLINE

Setting and strategy

2 Holographic signatures of cosmological singularities

3 Quantum corrected Kasner-AdS

GAUGE / GRAVITY

Gauge / Gravity in a nutshell

- Conjectured duality between gauge and (quantum) gravity theories
- Dictionary for computations
- Practical importance: Tool for QFT
- Theoretical importance: Quantum gravity model
- Main example: AdS/CFT [Maldacena '97, ...]

Why bother?

- AdS/CFT mostly applied for classical gravity
 - Infinite number of colours N in dual CFT
 - Singularities in classical gravity
- Quantum gravity
 - Singularity resolution
 - Quantum corrections \leftrightarrow finite N

GAUGE / GRAVITY

Gauge / Gravity in a nutshell

- Conjectured duality between gauge and (quantum) gravity theories
- Dictionary for computations
- Practical importance: Tool for QFT
- Theoretical importance: Quantum gravity model
- Main example: AdS/CFT [Maldacena '97, ...]

Why bother?

- AdS/CFT mostly applied for classical gravity
 - Infinite number of colours N in dual CFT
 - Singularities in classical gravity
- Quantum gravity
 - Singularity resolution
 - Quantum corrections \leftrightarrow finite N

The Maldacena conjecture

[MALDACENA '97; GUBSER, KLEBANOV, POLYAKOV '98; WITTEN '98]

Conjectured exact equivalence

Type IIB String Theory on $AdS^5 \times S^5$

String coupling g_s , String length l_s

- weak string coupling (only tree level)
- small string length (only massless states)

 $\mathcal{N} = 4$ Super Yang-Mills Theory in 4d

't Hooft coupling λ , number of coulors N

- 1. large number of colours (only planar diagrams)
- 2. large 't Hooft coupling

Well tested low energy equivalence

Type IIB Supergravity asympt. AdS⁵×S⁵

 $g_s
ightarrow 0, \quad l_s
ightarrow 0$

Planar 4d, $\mathcal{N} = 4$ Super Yang-Mills at strong 't Hooft coupling

```
\lambda \to \infty, N \to \infty
```

The Maldacena conjecture

[MALDACENA '97; GUBSER, KLEBANOV, POLYAKOV '98; WITTEN '98]

Conjectured exact equivalence

Type IIB String Theory on $AdS^5 \times S^5$

 $\mathcal{N} = 4$ Super Yang-Mills Theory in 4d

String coupling g_s , String length l_s

't Hooft coupling λ , number of coulors N

Working hypothesis 1: effective string theory description

Well tested low energy equivalence

Type IIB Supergravity asympt. AdS⁵×S⁵

 $g_s
ightarrow 0$, $l_s
ightarrow 0$

Planar 4d, $\mathcal{N} = 4$ Super Yang-Mills at strong 't Hooft coupling

```
\lambda \to \infty, N \to \infty
```

ADS/CFT: GEOMETRY AND DICTIONARY

D	i		Fi	in	n	а	rν	1
-		-		· •		~	• •	

CFT (boundary)	Gravity (bulk)			
2-point correlator	Green's function /			
	geodesics			
Entanglement entropy	Minimal surfaces			
Energy-momentum	On-Shell action			

Working hypothesis 2: dictionary

Extends to quantum corrected effective geometries

See also [Ashtekar, Wilson-Ewing '08]

ADS/CFT: GEOMETRY AND DICTIONARY

. . .

Dicti	onary		
CFT (boundary)	Gravity (bulk)		
2-point correlator	Green's function		
	geodesics		
Entanglement entropy	Minimal surfaces		

On-Shell action

Distingues.

Working hypothesis 2: dictionary

Extends to quantum corrected effective geometries

See also [Ashtekar, Wilson-Ewing '08]

Energy-momentum

Setting and strategy

2 Holographic signatures of cosmological singularities

3 Quantum corrected Kasner-AdS

TWO-POINT CORRELATORS IN KASNER

[Engelhardt, Horowitz '14; Engelhardt, Horowitz, Hertog '15]

Boundary:
$$ds_4^2(t) = -dt^2 + \sum_{i=1}^3 t^{2p_i} dx_i^2$$
, $p_i \in \mathbb{R}$
Bulk: $ds_5^2 = \frac{R^2}{z^2} \left(dz^2 + ds_4^2(t) \right)$

Geodesic approximation: (heavy scalar operators)

 $\langle \mathcal{O}(x)\mathcal{O}(-x)
angle = \exp(-\Delta L_{\mathsf{ren}})$

 Δ : conformal weight of \mathcal{O} L_{ren} : renormalised geodesic length

Caution:

- Geodesics may intersect the singularity
- Multiple geodesics for same boundary endpoints
- Complex solutions

Here: consider only real and classically singular solutions, $p_{i,singular} < 0$

TWO-POINT CORRELATORS IN KASNER

[Engelhardt, Horowitz '14; Engelhardt, Horowitz, Hertog '15]

Boundary:
$$ds_4^2(t) = -dt^2 + \sum_{i=1}^3 t^{2p_i} dx_i^2$$
, $p_i \in \mathbb{R}$
Bulk: $ds_5^2 = \frac{R^2}{z^2} \left(dz^2 + ds_4^2(t) \right)$

Geodesic approximation: (heavy scalar operators)

$$\langle \mathcal{O}(x)\mathcal{O}(-x)
angle = \exp(-\Delta L_{\mathsf{ren}})$$

Caution:

- Geodesics may intersect the singularity
- Multiple geodesics for same boundary endpoints
- Complex solutions

Here: consider only real and classically singular solutions, $p_{i,singular} < 0$

TWO-POINT CORRELATORS IN KASNER

[Engelhardt, Horowitz '14; Engelhardt, Horowitz, Hertog '15]

Boundary:
$$ds_4^2(t) = -dt^2 + \sum_{i=1}^3 t^{2p_i} dx_i^2$$
, $p_i \in \mathbb{R}$
Bulk: $ds_5^2 = \frac{R^2}{z^2} \left(dz^2 + ds_4^2(t) \right)$

Geodesic approximation: (heavy scalar operators)

$$\langle \mathcal{O}(x)\mathcal{O}(-x)
angle = \exp(-\Delta L_{\mathsf{ren}})$$

 $\Delta: \text{ conformal weight of } \mathcal{O} \\ L_{\text{ren}}: \text{ renormalised geodesic length}$

Caution:

- Geodesics may intersect the singularity
- Multiple geodesics for same boundary endpoints
- Complex solutions

Here: consider only real and classically singular solutions, $p_{i,singular} < 0$

HOLOGRAPHIC SIGNATURE OF COSM. SINGULARITY

[Engelhardt, Horowitz '14; Engelhardt, Horowitz, Hertog '15]

Finite distance pole in two-point correlator!

HOLOGRAPHIC SIGNATURE OF COSM. SINGULARITY

[Engelhardt, Horowitz '14; Engelhardt, Horowitz, Hertog '15]

OUTLINE

Setting and strategy

2 Holographic signatures of cosmological singularities

Quantum corrected Kasner-AdS

- In principle: derive from given model
- Here: guess quantum corrected metric

Classical metric

$$ds_5^2 = rac{R^2}{z^2} \left(dz^2 + ds_4^2(t)
ight), \qquad ds_4^2(t) = -dt^2 + \sum_{i=1}^3 t^{2p_i} dx_i^2.$$

No large curvatures associated with z-direction

• Curvature singularity in *t*-direction

Idea:

- 1. z-direction classical
- 2. effective LQC for the 4d part [Gupt, Singh '12]

- In principle: derive from given model
- Here: guess quantum corrected metric

Classical metric

$$ds_5^2 = rac{R^2}{z^2} \left(dz^2 + ds_4^2(t)
ight), \qquad ds_4^2(t) = -dt^2 + \sum_{i=1}^3 t^{2p_i} dx_i^2.$$

- No large curvatures associated with z-direction
- Curvature singularity in t-direction

Idea:

- 1. z-direction classical
- 2. effective LQC for the 4d part [Gupt, Singh '12]

- In principle: derive from given model
- Here: guess quantum corrected metric

Classical metric

$$ds_5^2 = rac{R^2}{z^2} \left(dz^2 + ds_4^2(t)
ight), \qquad ds_4^2(t) = -dt^2 + \sum_{i=1}^3 t^{2p_i} dx_i^2.$$

- No large curvatures associated with z-direction
- Curvature singularity in *t*-direction

Idea:

- 1. z-direction classical
- 2. effective LQC for the 4d part [Gupt, Singh '12]

Quantum corrected Kasner from effective LQG [Gupt, Singh '12]

- Singularity resolution
- Kasner transitions (pi change across the bounce)
- Results obtained numerically

Here: analytic treatment \rightarrow need simplification

1. No Kasner transitions

$$ds_4^2 = -dt^2 + a(t)^2 dx^2 + \dots, \qquad a(t) = \frac{a_{\text{ext}}}{\lambda_p} \left(t^2 + \lambda^2\right)^{p/2}$$

2. 4d Planck scale in bulk, not 5d (more later)

Quantum corrected Kasner from effective LQG [Gupt, Singh '12]

- Singularity resolution
- Kasner transitions (pi change across the bounce)
- Results obtained numerically

Here: analytic treatment \rightarrow need simplification!

1. No Kasner transitions

$$ds_4^2 = -dt^2 + a(t)^2 dx^2 + \dots, \qquad a(t) = \frac{a_{\text{ext}}}{\lambda^p} \left(t^2 + \lambda^2\right)^{p/2}$$

2. 4d Planck scale in bulk, not 5d (more later)

Solution to geodesic equations

Solutions can be found in closed form:

- Completely in non-affine parametrisation: z(t), x(t)
- Partially in affine parametrisation: z(s), s = geodesic length

E.g.:
$$z(t) = \sqrt{z(t_*)^2 - \left(\int_{t_*}^t dt' \frac{{\tau'}^{p/2}}{\sqrt{1 - {\tau'}^p}}\right)^2}, \qquad \tau' = \left(\frac{{t'}^2 + \lambda^2}{t_*^2 + \lambda^2}\right)$$

 $s(z = \epsilon) \stackrel{\epsilon \ll 1}{=} 2 \log (2z(t_*)) - 2 \log(\epsilon), \qquad \epsilon = ext{boundary regulator}$

This suffices to compute everything needed analytically!

Solution to geodesic equations

Solutions can be found in closed form:

- Completely in non-affine parametrisation: z(t), x(t)
- Partially in affine parametrisation: z(s), s = geodesic length

E.g.:
$$z(t) = \sqrt{z(t_*)^2 - \left(\int_{t_*}^t dt' \frac{{\tau'}^{p/2}}{\sqrt{1 - {\tau'}^p}}\right)^2}, \qquad \tau' = \left(\frac{{t'}^2 + \lambda^2}{t_*^2 + \lambda^2}\right)$$

 $s(z = \epsilon) \stackrel{\epsilon \ll 1}{=} 2 \log (2z(t_*)) - 2 \log(\epsilon), \qquad \epsilon = \text{boundary regulator}$

This suffices to compute everything needed analytically!

Solution to geodesic equations

Solutions can be found in closed form:

- Completely in non-affine parametrisation: z(t), x(t)
- Partially in affine parametrisation: z(s), s = geodesic length

E.g.:
$$z(t) = \sqrt{z(t_*)^2 - \left(\int_{t_*}^t dt' \frac{{\tau'}^{p/2}}{\sqrt{1 - {\tau'}^p}}\right)^2}, \qquad \tau' = \left(\frac{{t'}^2 + \lambda^2}{t_*^2 + \lambda^2}\right)$$

 $s(z = \epsilon) \stackrel{\epsilon \ll 1}{=} 2 \log (2z(t_*)) - 2 \log(\epsilon), \qquad \epsilon = \text{boundary regulator}$

This suffices to compute everything needed analytically!

HOLOGRAPHIC SIGNATURE OF RESOLVED COSMOLOGICAL SINGULARITY [NB, Schäfer, Schliemann '16]

No finite distance pole in two-point correlator!

HOLOGRAPHIC SIGNATURE OF RESOLVED COSMOLOGICAL SINGULARITY [NB, Schäfer, Schliemann '16]

Asymptotic behaviour

Short distance behaviour

$$\langle \mathcal{O}(x)\mathcal{O}(-x)\rangle \xrightarrow{x \to 0} (\mathcal{L}_{\mathrm{bdy}})^{-2\Delta}.$$

Typical (short distance) behaviour in conformal field theory

Asymptotic behaviour

Long distance behaviour

• Complex geodesics:

$$\langle \mathcal{O}(x)\mathcal{O}(-x)\rangle \xrightarrow{x \to \infty} \propto (\mathcal{L}_{\mathrm{bdy}})^{-\frac{2\Delta}{1-p}}$$

 $\blacktriangleright \neq \left(\mathcal{L}_{\mathsf{bdy}}\right)^{-2\Delta}$ due to Kasner background breaking conformal symmetry

• Real singularity-free geodesic (*p* < 0):

$$\langle \mathcal{O}(x)\mathcal{O}(-x)\rangle \xrightarrow{x \to \infty} \propto \lambda^{-2p\Delta} (\mathcal{L}_{bdy})^{-2\Delta}$$

- Subdominant to complex contribution
- Vanishes as $\lambda \to 0$
- Non-analytic in λ

Asymptotic behaviour

Long distance behaviour

• Complex geodesics:

$$\langle \mathcal{O}(x)\mathcal{O}(-x)\rangle \xrightarrow{x \to \infty} \propto (\mathcal{L}_{\mathrm{bdy}})^{-\frac{2\Delta}{1-p}}$$

 $\blacktriangleright \neq \left(\mathcal{L}_{\mathsf{bdy}}\right)^{-2\Delta}$ due to Kasner background breaking conformal symmetry

• Real singularity-free geodesic (*p* < 0):

$$\langle \mathcal{O}(x)\mathcal{O}(-x)\rangle \xrightarrow{x \to \infty} \propto \lambda^{-2p\Delta} (\mathcal{L}_{bdy})^{-2\Delta}$$

- Subdominant to complex contribution
- Vanishes as $\lambda \to 0$
- Non-analytic in λ

4D VS. 5D PLANCK SCALE

$$ds_{5}^{2} = \frac{R^{2}}{z^{2}} \left(dz^{2} + \underbrace{-dt^{2} + \frac{a_{\text{ext}}}{\lambda_{0}^{p}} \left(t^{2} + \lambda(z)^{2}\right)^{p/2} dx^{2} + \dots}_{ds_{4}^{2}(t,z)} \right)$$

CFT background metric: $ds_4^2(t, z = 0)$

4d Planck scale: $\lambda(z) = \lambda_0$

5d Planck scale: $\lambda(z) \propto z$

$$-dt^2 + \frac{a_{\text{ext}}^2}{\lambda_0^{2p}} \left(t^2 + \lambda_0^2\right)^p dx^2 + \dots$$

Singularity free

 $dt^- + \frac{dx}{\lambda_0^{2p}} t^{-p} dx^- + .$

Singular

Usual AdS/CFT logic: 5d Planck scale

Bulk quantum gravity from CFT on classical (singular) background

• ds_5^2 not singular at t = z = 0 due to $R_{\text{Kretschmann}}^{(5)} = z^4 R_{\text{Kretschmann}}^{(4)} + \dots$

4D VS. 5D PLANCK SCALE

$$ds_{5}^{2} = \frac{R^{2}}{z^{2}} \left(dz^{2} + \underbrace{-dt^{2} + \frac{a_{\text{ext}}}{\lambda_{0}^{p}} \left(t^{2} + \lambda(z)^{2}\right)^{p/2} dx^{2} + \dots}_{ds_{4}^{2}(t,z)} \right)$$

CFT background metric: $ds_4^2(t, z = 0)$

4d Planck scale: $\lambda(z) = \lambda_0$

5d Planck scale: $\lambda(z) \propto z$

$$-dt^2 + \frac{a_{\text{ext}}^2}{\lambda_0^{2p}} \left(t^2 + \lambda_0^2\right)^p dx^2 + \dots$$

Singularity free

 $-dt^2+\frac{a_{\rm ext}^2}{\lambda_0^{2p}}t^{2p}dx^2+\ldots$

Singular

Usual AdS/CFT logic: 5d Planck scale

- Bulk quantum gravity from CFT on classical (singular) backgrounc
- ds_5^2 not singular at t = z = 0 due to $R_{\text{Kretschmann}}^{(5)} = z^4 R_{\text{Kretschmann}}^{(4)} + \dots$

4D VS. 5D PLANCK SCALE

$$ds_{5}^{2} = \frac{R^{2}}{z^{2}} \left(dz^{2} + \underbrace{-dt^{2} + \frac{a_{\text{ext}}}{\lambda_{0}^{p}} \left(t^{2} + \lambda(z)^{2}\right)^{p/2} dx^{2} + \dots}_{ds_{4}^{2}(t,z)} \right)$$

CFT background metric: $ds_4^2(t, z = 0)$

4d Planck scale: $\lambda(z) = \lambda_0$

5d Planck scale: $\lambda(z) \propto z$

$$-dt^2+rac{a_{ ext{ext}}^2}{\lambda_0^{2p}}\left(t^2+\lambda_0^2
ight)^p dx^2+\ldots$$

Singular

 $-dt^2 + \frac{a_{\text{ext}}^2}{\lambda_{2p}^{2p}}t^{2p}dx^2 + \dots$

Singularity free

Usual AdS/CFT logic: 5d Planck scale

- Bulk quantum gravity from CFT on classical (singular) background
- ds_5^2 not singular at t = z = 0 due to $R_{\text{Kretschmann}}^{(5)} = z^4 R_{\text{Kretschmann}}^{(4)} + \dots$

OUTLINE

Setting and strategy

2 Holographic signatures of cosmological singularities

3 Quantum corrected Kasner-AdS

CONCLUSION

- Proof of principle
 - Merging effective LQG with AdS/CFT possible

• Many simplifications made

- 4d instead of 5d Planck scale
- No Kasner transitions

• Future improvements

- Fix the above
- Go beyond Kasner, e.g. black holes ...
- Go beyond geodesic approximation (Green's functions)

Long term goal:

Strongly coupled gauge theory at finite number of colours

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

20