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Entropy calculation: Basic ingredients
[Smolin ’95; Krasnov ’96; Rovelli ’96; Ashtekar, Baez, Corichi, Krasnov ’97-; . . . ; Engle, Noui, Perez ’09-; . . . ]

Isolated horizon boundary of spacetime
Connection variables → boundary degrees of freedom

Idea: Count boundary degrees of freedom in agreement with total area

Important observation for BH entropy from LQG:

SBH ∝
1

γ
AH

γ = Barbero-Immirzi parameter, AH = horizon area

Ingredients on horizon slice H

Boundary symplectic structure
∫
H
δ1A

i ∧ δ2Ai

Boundary condition F i (A) = Σi (E)

Area spectrum 8πGγ
√

j(j + 1)
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Higher dimensions: Results in short

Known:

Isolated horizon (IH) framework extendable to higher dimensions
[Lewandowski, Pawlowski gr-qc/0410146; Korzynski, Lewandowski, Pawlowski gr-qc/0412108]

[Ashtekar, Pawlowski, v. d. Broeck gr-qc/0611049; Liko, Booth 0705.1371]

LQG extendable to higher dimensions
[NB, Thiemann, Thurn 1106.1103]

New:

Boundary symplectic structure on IH can be derived

Boundary condition can be derived

Quantum theory can be formulated

State counting problem can be reduced almost to the 3 + 1 dim. one

Dimension independent log. correction in accordance with Carlip

Extendable to Lanczos-Lovelock gravity and non-minimal coupling of scalars
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Going to higher dimensions: Canonical variables
3 + 1 dimensions: Bulk variables

SU(2) connection
�� ��(γ)Aai , densitized triad

�� ��(γ)E bj , {Aai ,E
bj} = δba δ

j
i

(γ)Eai (γ)Ebi = 1/γ2qqab γ ∈ R Barbero-Immirzi parameter, (γ)Aai = Γai + γKai , a, b = 1, 2, 3, i, j = 1, 2, 3

↓ ↓
D + 1 dimensions: Bulk variables

SO(D + 1) connection
�� ��AaIJ , densitized hybrid vielbein

�� ��πbKL , {AaIJ , π
bKL} = δba δ

KL
IJ

πaIJπb
IJ = 1/β22qqab , β ∈ R free parameter, AaIJ = ΓaIJ + β 2n[IKa|J] + . . ., nI = internal normal

a, b = 1, . . . ,D, I , J = 0, . . . ,D

↓ ↓
Holonomies from 1-forms∫

c

AaIJ τ
IJdxa

c = curve, τ IJ = generators of SO(D + 1),

Fluxes from D − 1 forms∫
S

πaIJ nIJεab1...bD−1dx
b1 ∧ . . . ∧ dxbD−1

S = D − 1 surface, nIJ smearing functions

→ Holonomy-Flux algebra with SO(D + 1) structure
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Going to higher dimensions: Constraints

List of constraints (all first class before using holonomies / fluxes)

Hamiltonian constraint

spatial diffeomorphism constraint

Gauß constraint (solved by using spin networks)

Simplicity constraint πa[IJπb|KL] = 0 (no torsion constraints, gauge unfixing)

→ Most interesting here: Simplicity constraint.

Action of spin network edges:

Selects “simple” SO(D + 1) representations [Freidel, Krasnov, Puzio hep-th/9901069]

Labelled by single non-negative integer λ (λ = 1 ⇔ j+ = j− = 1/2)

Action of spin network vertices:
later... important for entropy calculation
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Going to higher dimensions: Canonical analysis
Start with Palatini action: SO(1,D) connection AIJ and D + 1-bein e I .

D+1 split of the Palatini action∫
∗(e I ∧ eJ) ∧ FIJ(A)⇔

∫
R
dt

∫
σ

dDx

(
1

2
πaIJ ȦaIJ − NH− NaHa −

1

2
λIJG

IJ − cMabS
ab
M

)
H = Hamiltonian constraint, Ha=spatial diffeomorphism constraint, G IJ=Gauss constraint, Sab

M
=simplicity constraint

πaIJ=momentum of AaIJ , σ = spatial slice, N=lapse function, Na = shift vector, M = M1 . . .MD−3 = multiindex

nI eaI = 0,
√

q =
√

det qab , qab = eIae
J
bηIJ = spatial metric, a = 1, . . . ,D spatial tensorial indices

Sab
M

= πaIJπbKLεIJKLM = 0 ⇒ πaIJ = 2n[I√qeaJ]
[Freidel, Krasnov, Puzio hep-th/9901069]

Apply Dirac’s stability algorithm [Peldan gr-qc/9305011]

Everything works, but one more constraint appears: {H,Sab
M
} = Dab

M
.

Second class partner for the simplicity constraint: {Sab
M
,Dcd

N
} = invertible

Remove Dcd
N

via gauge unfixing. → Modify Hamiltonian constraint for consistency.

Perform canonical transformation to SO(D + 1) as gauge group.
Works because ADM phase space of Lorentzian and Euclidean gravity is the same.
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Going to higher dimensions: Area operator

The usual construction of the area operator generalizes directly

Idea: area operator ∼
√

flux2 integrated over (D − 1)-surface

Area operator diagonal on edges labelled with λ:

Eigenvalues 8πGβ
√
λ(λ+ D − 1), λ ∈ N

First expectation for entropy:

Calculation goes through as in 3 + 1 dimensions

Horizon is modeled as a boundary of the spatial slice

We count different possibilities to distribute the horizon area

Area gap ensures finite entropy

Arguments for statistics of the punctures are the same in higher dimensions

(Actual calculation of course more detailed...)
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“Dimensional” analysis

Boundary condition in 3 + 1 dim.: F i(A) = Σi(E)

Boundary: Curvature 2-form F (A)i

Bulk: 2-form Σi build from densitized triad as Σi
ab = E ciεabc

Higher dimensions

Boundary: Curvature 2-form F (A)IJ

Bulk: (D − 1)-form πcIJεa1...aD−1c → mismatch in tensor structure

Two possibilities:

Modify form of boundary condition

επIJ ∼ (F (A) ∧ . . . ∧ F (A))IJ (with appropriate internal index contraction)

Use different variables on the horizon (i.e. not a connection)

επIJ = LIJ ε
⇐

(LIJ ε
⇐

= internal horizon bi-normal as (D − 1)-form )
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Geometry of the problem: Two pictures

i0

Δ=isoalted horizon

Σ1

Σ2

H 1=Σ1∩Δ

H 2=Σ2∩Δ
horizon slices

spatial slices

spatial slice normal
nI H=∂Σ

codimension
2

n I spatial slice normal

s I
horizon slice normal

n I s
I=0

Show that action principle is well defined
using the isolated horizon boundary condition
on Δ .

...

...

within Σ

Covariant picture

Perform canonical transformations to e.g.
Chern-Simons type variables. 
Switch gauge group to SO(D+1) .

Canonical picture
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Action principle and covariant canonical framework

Start with the D + 1-dimensional Lorentzian Palatini action

S = S [A, e] =

∫
ΣIJ(e) ∧ F (A)IJ , ΣIJ ∼ ∗(e I ∧ eJ)

No additional boundary contribution on ∆.

Use that ∆ is a non-rotating isolated horizon

⇒
∫

∆

Σ
←

IJ ∧ δA
←

IJ = 0, ⇒ usual equations of motion are enforced

Second variation on ∆ reduces to a boundary contribution on H2,H1:∫
∆

δ[1Σ
←

IJ ∧ δ2]A←IJ =

(∫
H2

−
∫
H1

)
Boundary symplectic structure

→ Leads to a boundary contribution in the symplectic structure.
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Boundary symplectic structure and boundary condition

Bulk variables:

SO(D + 1) connection
�� ��AaIJ , densitized hybrid vielbein

�� ��πbKL , {AaIJ , π
bKL} = δba δ

KL
IJ

nI = internal normal, πaIJ ≈ 2/βn[I EaJ], s I = saeIa = horizon slice normal, s̃ I =
√
h s I ,

√
h = area density on H

Boundary symplectic structure 3+1:
∫
H
δ[1e

i ∧ δ2]ei ∝
∫
H
δ[1A

i ∧ δ2]Ai∫
H

δ[1s̃
I δ2]nI ∝

AH

χ β

∫
H

εIJKLM2N2...MnNn

(
δ[1Γ0

IJ

)
∧
(
δ2]Γ

0
KL

)
∧ R0

M2N2 ∧ ... ∧ R0
MnNn

DnI = Ds I = D e
⇐

I = 0, D = ∂ + Γ0, R0
IJ = R(Γ0)IJ , AH = horizon area, χ = Euler characteristic of H, n = (D − 1)/2

Boundary condition 3+1: F i (A) = Σi (E)

ŝaπ
aIJ ε
⇐
∝ 2

β
n[I s̃J] ε

⇐
∝ AH

χ β
εIJK1L1...KnLnR0

K1L1 ∧ . . . ∧ R0
KnLn

Two choices of boundary variables

Connection (Chern-Simons-theory): hard, local DOF for D > 3, D + 1 even

Metric variables nI , s̃ I : easier to handle, dimension independent treatment
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Higher dimensions: Problems with Chern-Simons theory

Symplectic structure

AH

χ β

∫
H

εIJKLM2N2...MnNn

(
δ[1Γ0

IJ

)
∧
(
δ2]Γ

0
KL

)
∧ R0

M2N2 ∧ ... ∧ R0
MnNn

→ In general very complicated Poisson brackets

Boundary condition: area-related degrees of freedom

ŝaπ
aIJ BC

= LIJ := 2/βn[I s̃J] ∝ εIJI2J2...InJnR0
I2J2
∧ . . . ∧ R0

InJn{
LIJ(x), LKL(y)

}
= 4 δ(D−1)(x − y) δL][JLI ][K (x)

Same result from bi-normal symplectic structure and Chern-Simons symplectic structure

Other phase space functions in the Chern-Simons theory seem physically irrelevant for
the entropy computation. Remove them with stronger boundary condition?

Problem is avoided from the beginning when sticking to bi-normals as variables.
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Higher dimensions: Quantization

Smeared binormals: Algebra of fluxes

Use
�� ��LIJ

S =
∫
S

2/βn[I s̃J] {LIJ
S , L

KL
S } = 4 δL][JL

I ][K
S → so(D + 1) Lie algebra

SU(2) case: [Engle, Noui, Perez, Pranzetti 1006.0634]

Boundary Hilbert space

Product of SO(D + 1) representation spaces

→ Non-trivial at points where bulk spin network punctures boundary

→ Related to bulk rep. by boundary condition
�� ��ŝaπ

aIJ = LIJ

Off-diagonal horizon simplicity constraints

Non-rotating isolated horizon → Off-diagonal simplicity constraints

�� ��L
[IJ
S1
L
KL]
S2
≈ 0

D
⇐

k I = 0 and LIJ ∝ l [I kJ], k I ∝ (nI + s I ), demand off-diagonal simplicity on two contractible charts

→ Breaks local gauge invariance to global invariance on H.

Locally covariant quantization in the context of Chern-Simons theory?
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Higher dimensions: Quantization

Restrictions on horizon Hilbert space

Gauge invariance / tracing: SO(D + 1) intertwiner See also [Rovelli, Krasnov 0905.4916]

Bulk simplicity: Simple representations of SO(D + 1) on H, label λ ∈ N
[Freidel, Krasnov, Puzio hep-th/9901069]

Off-diagonal simplicity:
�� ��Simple intertwiner (Intertwining repr. simple)

1 to 1 mapping of simple SO(D + 1) and SU(2) intertwiners

→ Using dimension formulas from SU(2) counting: S = const(D)
AH

β
− 3

2
LogAH

→ (Up to β) Same result as Carlip and Solodukhin using CFT methods
[Carlip hep-th/9812013, gr-qc/0005017; Solodukhin hep-th/9812056; log correct.: Kaul and Majumdar gr-qc/0002040]

Compatible with generalized theories S ∝ SWald

Compatible with analytic continuation of β S = AH/(4G) + corrections
[Frodden, Geiller, Noui, Perez 1212.4060]
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Generalized gravity theories: Wald entropy

SGeneralized =

∫ √
−g L

L = L
(
gµν ,Rµνρσ,∇ξ1Rµνρσ, . . . ,∇(ξ1

. . .∇ξn)Rµνρσ, ψ,∇ξ1ψ, . . . ,∇(ξl . . .∇ξl )ψ
)

Entropy from classical first law [Wald gr-qc/9307038]

SWald =
1

4G

∫
H

√
h
−δL
δRµνρσ

εµνερσ 6=
AH

4G L = Lagrangian,
√
h = area density on H

εµν = 2n[µsν] = horizon slice bi-normal

Here:

Restrict to GR phase space plus standard matter (no higher time derivatives):

Lanczos-Lovelock gravity plus non-minimally coupled scalars

Presentation in 3 + 1, works also in higher dimensions
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Generalized gravity theories

Pure GR
The connection and the momentum both have standard geometric interpretation!

Aai = Γai + γKai , 1/γ2qqab = E aiE b
i , {Aai ,E

bj} = δba δ
j
i

Γai = spin connection, Kai = extrinsic curvature, γ = Barbero-Immirzi parameter, qab = spatial metric

Generalized theory

The momentum Pai conjugate to Aai = Γai + γKai is not the densitized triad E ai !

Pai ∝ ∂L
∂Ȧai

⇒ {Aai ,P
bj} = δba δ

j
i

e.g. non-minimally coupled scalar: L = a(Φ)R + ... ⇒ Pai = a(Φ)E ai

(More discussion on this in the Loops13 talk, available at pirsa.org)
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Area → Wald entropy√
(ŝaPa)2 = Wald entropy density on horizon slice H

ŝa P
ai ∝ ∂L

∂Rµνρσ
εµνερσ × ŝa E

ai

∝ Wald entropy density

area density
× ŝa E

ai︸ ︷︷ ︸
vector-valued area density

εµν = binormal on horizon slice, L undensitized Lagrangian, ŝa = horizon slice co-normal

Generalized area operator

Idea: Ãrea ∝
∫ √
|P|2

�
�

�
�⇒ Spec(

̂̃
Area) = γ

√
j(j + 1), j ∈ N0/2

Generalized area density ∝ Wald entropy density

Isolated horizon framework
Calculations as before, just with Wald entropy instead of area

(Horizon connection build from some (D + 1)-bein with area density ∼ Wald entropy density)
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Discussion / Remarks

Area operator → “Wald entropy operator” (on isolated horizon only)

I The only operator from which we know that is has an “easy” spectrum
measures Wald entropy. Interpretation of spin networks?

I Twisted geometry interpretation for generalized theories?
Faces labelled by entropy, not area

Quantization of Wald entropy expected from general arguments
[Bekenstein gr-qc/9710076; Kothawala, Padmanabhan, Sarkar 0807.1481]

Most important ingredient in the horizon theory: area density
Lots of freedom for canonical transformations, different connections, different free parameter on horizon, . . .
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Omitted points / further research
Omitted points:

Ambiguity in the choice of horizon connection variables
See Loops13 talk available at pirsa.org and [NB, Stottmeister, Thurn 1203.6525, NB, Neiman 1304.3025]

Polyhedral interpretation
Generalizing [Bianchi, Dona’, Speziale 1009.3402] to higher dimensions

Further research:

Issue of obtaining prefactor 1/4 appears also in higher dimensions
See [Gosh, Frodden, Perez 11-; Frodden, Geiller, Noui, Perez 1212.4060; NB, Stottmeister, Thurn 1203.6525, NB,

Neiman 1303.4752, Pranzetti 1305.6714]

Quantization of higher-dim. Chern-Simons theory on boundary
More rigorous quantization? Gauge invariance and simplicity constraint?

Extension to generic isolated horizons
(Non-rotating condition used only on the covariant side and for Wald entorpy)

Topology corrections
3 + 1 dim. [Kloster, Brannlund, DeBenedictis: gr-qc/0702036]

Supergravity
Isolated horizon: [Liko, Booth 0712.3308]
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Summary

1 Classical results:
I Start: Non-rotating isolated horizon
I Action principle well defined
I Boundary symplectic structure
I Boundary condition

2 Generalized theory of gravity:

I
√

flux2 ∝ Wald entropy density

⇒ Entropy S ∝ SWald

3 Quantization

I Chern-Simons theory description possible, but hard to quantize
I Largely dimension-independent result from using densitized bi-normals
I Useful for studying how to impose simplicity constraints

Thank you for your attention!
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Non-rotating isolated horizon

Definition
A sub-manifold ∆ of (M, g) is said to be a non-expanding horizon (NEH) if

1 ∆ is topologically R× H and null.

2 Any null normal l of ∆ has vanishing expansion θl := hµν∇µlν
3 All field equations hold at ∆ and −Tµ

ν l
ν is a future-causal vector for any future

directed null normal l .

Definition
A pair (∆, [l ]), where ∆ is a NEH and [l ] an equivalence class of null normals, is said to
be a weakly isolated horizon (WIH) if for any l ∈ [l ]

4. Llω =̂ 0. (∇µ
←
lν =̂ ωl

µl
ν)

Definition
1 A non-rotating isolated horizon (NRIH) is a WIH where to each l ∈ [l ] there is a k
with the property “good foliation” (see paper for details), such that

5. k is shear-free with nowhere vanishing spherically symmetric expansion and
vanishing Newman - Penrose coefficients πJ =̂ lµmν

J∇µkν on ∆.
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