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TALK IN A NUTSHELL

@ Aim:

» Symmetry reduce at quantum level
» Extract dynamics from full theory

@ Results:

> Reduction to LQC
e Bianchi | [NB'14]
e k=0 FRW [nB 15
> Reduction to spherical symmetry

e SU(2) variables [NB, Lewandowski, Swiezewski '14-]
e Commutators in SU(2) vars. [NB, Zipfel '15]
e Abelian connections [NB '15]

@ What else?

> Simplified coarse graining & dynamics



PLAN OF THE TALK

© Strategy

© Example of the formalism
© /i scheme in the full theory
@ Spherical symmetry and SU(2)

© Conclusion



OUTLINE

© Strategy



STRATEGY

[asy

. Suitable classical starting point

> Gauge fix

2. ldentify reduction constraints

» Symmetry = fi(p,q) =0

3. Quantise a la LQG

4. Impose reduction constraints
> W) =0, [Oym, f]=0

sym

5. Extract dynamics




OUTLINE

© Example of the formalism



PHASE SPACE & GAUGE FIXING

® ADM  {qas, P} = 8(,6)

!

@ Diagonal metric gauge

g O 0
Qab = 0 gy O
0 0 qzz

Gauge fixes spatial diffeo constraint C; =0

G=0 = P7q.,P")

!

@ Gauge fixed phase space: {qaa, Pbb} =4°



ADAPTED VARIABLES

Full theory

2 P*qu + P”qy + P¥qz:

= V QxxQyy Qzz Pa = =
> 3 VGxGyy Gzz

Relation to LQC

/ouxv, P, x b
b

xx 1
B =P g — P”qy, Pﬁ::ilog% B=P;=0
XX 2z 1 qzz
V:ZP qu—P qzz Pﬂ,:zilogq— ’y_P,y:()
{a7P0¢}:{/67P5}:{77P’Y}:§(3) {b,V}O(].



CONSEQUENCES OF SYMMETRY

T3 FRW model

0=B8=Psg=y=P, & P =0

4

First class subset

@ f=7=0

@ Spatial diffeomorphisms: [; d*c (PoLgo+ PyLgp) =0



QUANTUM KINEMATICS AND REDUCTION

Scalar fields [Thiemann, QSD5]

Pa(o

@ Point holonomies h2> := e~ o ) pa €R

° <hga h§%>

o a(R) M) = [ralhes) = palhs) VoeR

= 50,0’6%@’@

kin

Reduction: \l/ ﬂ/(\R) = '@ =0 + diff. invariance

Single vertex states

PasPs\ —ipaPea —f PaPé
’hdiff >_Za€):‘e ipaPal(o)e IP¢¢(U)>' <hdiff

’ ’
ParPg _
hyige > _5%7#3594,,9’4)
diff
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REDUCED OPERATORS

Diagonal operators
T | PP PosP
a(X) | ™) = pa |hg ")

Po(E) |5 = po | Wi "*)

Polymerised “shift” operators

1o By, o (e
5 (sin(APa)a) (X) |y ™) = 20\ (

Pa—N,pg
hdiff > -

PatA pg
hdifF

[/\ <> cutoff for matter energy density o Pij




QUANTUM DYNAMICS I

1. [FRW part of Hamiltonian)

2. Other terms vanish

Dynamics

Pa(®) (W) = o ((sin(ONPR)Ial) (%)) | R5i")

\U/ rescaling of variables

LQC difference equation in (v, b) variables [Ashtekar, Corichi, Singh '07]

3rG
03 v, 9) =T VI(Iv +2X v + 4,9) + v = 2\l |v = 4,¢) = (Iv + 2\ + v = 2] [v, ¢) )
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QUANTUM DYNAMICS 11

1. FRW part of Hamiltonian
2. [Other terms vanish]

x P?*, but not « P,

x B,7y=0

Spatial derivatives

finite differences = vanish on single vertex states

13



OUTLINE

© /i scheme in the full theory

14



T3 BIANCHI I: CLASSICAL PREPARATIONS

ADM  {qa, P} = 5¢,5%) 1

@ Diagonal metric gauge

!

Gauge fixed phase space: {qaa, P} = 62

New variables:

€2€a2 = Qaa; E? = /det qea, K, = Kabeb,

15



T3 BIANCHI I: REDUCTION CONSTRAINTS

T3 Bianchi | model

0,EP=0=0,Ky, & P7"=0

4

First class subset

@ Spatial diffeos: J5 d*c (E°LgK. + PsLyg) =0

® Abelian GauB law: Jyd*oc wd,E* =0
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QUANTUM KINEMATICS & REDUCTION

Standard LQG quantisation for U(1): [Corichi, Krasnov '97]

L. Holonomies b4 = exp (ip [, Kuds®),  fluxes E(S) = [; Ecapcdx” A dx°

2. Reduction = gauge / spatial diffeo invariance

!

Single vertex states

lpxs pys pz) <> |p1, P2, P3>|_Qc
[Ashtekar, Wilson-Ewing '09]

Reduced operators

@ Areas A(T2), A(Ti), A(T2)
@ Reduced Wilson loops
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QUANTUM DYNAMICS

Polymerisation [ K,ds? ~ sin(X [ K.ds?)/A
@ Ul) — A=1 = “old" LQC dynamics

[Ashtekar, Bojowald, Lewandowski '03, has been formulated using Rgop,]

® Rgonr — AER <« "new” LQC dynamics

1/« = size of universe in x-direction [Ashtekar, Pawlowski, Singh '06; Ashtekar, Wilson-Ewing '09]

Full theory lessons
@ LQG on fixed graph [Giesel, Thiemann '06] <>  U(1)

> Problems for coarse states (?)
» FRW: f Kads? o< /pg X distance  see also [Charles, Livine '15]

@ [i dynamics from coarse graining? [Gielen, Oriti, Sindoni '13; Alesci, Cianfrani '14]
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OUTLINE

@ Spherical symmetry and SU(2)
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SPHERICAL SYMMETRY: CLASSICAL PREPARATIONS

1. Radial gauge gr, = 0rs

[Duch, Kamirski, Lewandowski, Swiezewski '14]

[NB, Lewandowski, Swiezewski '14, '15]

2. [SU(Z) connection variables A/, EJ-BJ

3. GG=0 = P"(ALEP)

Reduction constraints

P? =0 <« spatial difffomorphisms preserving s?
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QUANTUM KINEMATICS & REDUCTION 5, Lewandonski, $wieiewski '14]

Standard LQG quantisation
1. Kinematics = spin networks C 5,21 Uu...u 5,2,,

2. Reduction = diff invariance on S?

SZ

==[0,00)x 5*

Symmetric operators

1. Areas of the S? — R(r)? = & [ d’0+/detqas
2. Averaged trace of momenta — Pr(r) = 5t [s d*0 P Bqap
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REGULARISING [R, P,] INB, Zipfl 15

Poisson bracket tricks [Thiemann: QSD1, QSD4]
R(r)20</2 V VKV, Pr(r) < R(r )/ d’0 {H, V}
Sr

€k EJ-A EE €AB

K ijk =A =B i i AB i
V* x " E ' E eas H:= Fagn'e n' = e
e EAE sl

Simplest non-trivial spin network:

@ Operators non-trivial at kink

@ Graph-preserving regularisation >
J

@ Graphical calculus [Alesci, Liegener, Zipfel '13] Kink state
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RESULTS OF [R, P,]

APR _g—iAPR

Pr = 2N

<~

i —1
FAB ~ haAB 7 huAB

Classical reduction <p:|: A ’ [R\‘, ﬁ’R] ‘ p> =057

Quantum reduction <J e >

j> ~01i4+03G™")

Several problems

@ Strong regularisation dependence
@ Kink state degenerate

@ Problems absent for trivalent vertex

—

future work

[NB, Zipfel '15]
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OUTLINE

© Conclusion
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CONCLUSION

@ Strategy
> Gauge fixing
> i W)ym =0, [Oym,f]=0

sym
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