Symmetry reductions in loop quantum gravity

based on classical gauge fixings

Norbert Bodendorfer

University of Warsaw

based on work in collaboration with J. Lewandowski, J. Świeżewski, and A. Zipfel

International Loop Quantum Gravity Seminar

December 8, 2015
Talk in a nutshell

Aim:
- Symmetry reduce at quantum level
- Extract dynamics from full theory

Results:
- Reduction to LQC
 - Bianchi I [NB '14]
 - $k = 0$ FRW [NB '15]
- Reduction to spherical symmetry
 - SU(2) variables [NB, Lewandowski, Świeżewski '14-]
 - Commutators in SU(2) vars. [NB, Zipfel '15]
 - Abelian connections [NB '15]

What else?
- Simplified coarse graining & dynamics
Plan of the talk

1. Strategy
2. Example of the formalism
3. ¯μ scheme in the full theory
4. Spherical symmetry and SU(2)
5. Conclusion
Strategy

1. **Suitable classical starting point**
 - Gauge fix

2. **Identify reduction constraints**
 - Symmetry $\Rightarrow f_i(p,q) = 0$

3. **Quantise à la LQG**

4. **Impose reduction constraints**
 - $\hat{f}_i |\psi\rangle_{\text{sym}} = 0$, $[\hat{O}_{\text{sym}}, \hat{f}_i] = 0$

5. **Extract dynamics**
Outline

1. Strategy
2. Example of the formalism
3. \(\bar{\mu} \) scheme in the full theory
4. Spherical symmetry and SU(2)
5. Conclusion
Phase space & gauge fixing

- **ADM** \[\{ q_{ab}, P^{cd} \} = \delta_c^a \delta^d_b \]

\[\downarrow \]

- **Diagonal metric** gauge

\[q_{ab} = \begin{pmatrix} q_{xx} & 0 & 0 \\ 0 & q_{yy} & 0 \\ 0 & 0 & q_{zz} \end{pmatrix} \]

Gauge fixes spatial diffeo constraint \(C_a = 0 \)

\[C_a = 0 \quad \Rightarrow \quad P^{a\neq b}(q_{aa}, P^{bb}) \]

\[\downarrow \]

- **Gauge fixed phase space:** \(\{ q_{aa}, P^{bb} \} = \delta_b^b \)
Adapted variables

<table>
<thead>
<tr>
<th>Full theory</th>
<th>Relation to LQC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha := \sqrt{q_{xx} q_{yy} q_{zz}})</td>
<td>(P_\alpha := \frac{2}{3} \frac{P^{xx} q_{xx} + P^{yy} q_{yy} + P^{zz} q_{zz}}{\sqrt{q_{xx} q_{yy} q_{zz}}}) (\integral \alpha \propto v, \quad P_\alpha \propto b)</td>
</tr>
<tr>
<td>(\beta := P^{xx} q_{xx} - P^{yy} q_{yy})</td>
<td>(P_\beta := \frac{1}{2} \log \frac{q_{yy}}{q_{xx}}) (\beta = P_\beta = 0)</td>
</tr>
<tr>
<td>(\gamma := P^{xx} q_{xx} - P^{zz} q_{zz})</td>
<td>(P_\gamma := \frac{1}{2} \log \frac{q_{zz}}{q_{xx}}) (\gamma = P_\gamma = 0)</td>
</tr>
</tbody>
</table>

\(\{\alpha, P_\alpha\} = \{\beta, P_\beta\} = \{\gamma, P_\gamma\} = \delta^{(3)}\) \(\integral \{b, v\} \propto 1\)
Consequences of symmetry

\mathbb{T}^3 FRW model

$$0 = \beta = P_\beta = \gamma = P_\gamma \quad \& \quad P^{a \neq b} = 0$$

First class subset

- $\beta = \gamma = 0$
- Spatial diffeomorphisms: $\int_{\Sigma} d^3 \sigma \left(P_\alpha \mathcal{L}_{\vec{N}} \alpha + P_\phi \mathcal{L}_{\vec{N}} \phi \right) = 0$
Quantum kinematics and reduction

Scalar fields [Thiemann, QSD5]

- Point holonomies \(h^\rho_\sigma \) := \(e^{-i\rho_\alpha P_\alpha(\sigma)} \), \(\rho_\alpha \in \mathbb{R} \)

- \(\left\langle h^\rho_\sigma \mid h'^\rho_\sigma \right\rangle_{\text{kin}} = \delta_{\sigma,\sigma'} \delta_{\rho_\alpha,\rho'_\alpha} \)

- \(\hat{\alpha}(R) \mid h^\rho_\sigma \rangle := \int_R \alpha \mid h^\rho_\sigma \rangle = \rho_\alpha \mid h^\rho_\sigma \rangle \quad \forall \sigma \in R \)

Reduction: \(\downarrow \quad \hat{\beta}(R) = \hat{\gamma}(R) = 0 \quad + \quad \text{diff. invariance} \)

Single vertex states

\[
\left| h^\rho_\sigma, \rho_\phi \right\rangle = \sum_{\sigma \in \Sigma} \left| e^{-i\rho_\alpha P_\alpha(\sigma)} e^{-i\rho_\phi \phi(\sigma)} \right\rangle, \quad \left\langle h^\rho_\sigma, \rho_\phi \mid h'^\rho_\sigma, \rho'_\phi \right\rangle_{\text{diff}} = \delta_{\rho_\alpha,\rho'_\alpha} \delta_{\rho_\phi,\rho'_\phi}
\]
Reduced operators

Diagonal operators

\[
\alpha(\Sigma) | h_{\text{diff}}^{\rho_{\alpha}, \rho_{\phi}} \rangle = \rho_{\alpha} | h_{\text{diff}}^{\rho_{\alpha}, \rho_{\phi}} \rangle
\]

\[
P_{\phi}(\Sigma) | h_{\text{diff}}^{\rho_{\alpha}, \rho_{\phi}} \rangle = \rho_{\phi} | h_{\text{diff}}^{\rho_{\alpha}, \rho_{\phi}} \rangle
\]

Polymerised “shift” operators

\[
\frac{1}{\lambda} (\sin(\lambda P_{\alpha})\alpha)(\Sigma) | h_{\text{diff}}^{\rho_{\alpha}, \rho_{\phi}} \rangle = \frac{\rho_{\alpha}}{2i\lambda} \left(| h_{\text{diff}}^{\rho_{\alpha}-\lambda, \rho_{\phi}} \rangle - | h_{\text{diff}}^{\rho_{\alpha}+\lambda, \rho_{\phi}} \rangle \right)
\]

\[\lambda \leftrightarrow \text{cutoff for matter energy density } \propto P_{\alpha}^2\]
Quantum dynamics I

1. FRW part of Hamiltonian

2. Other terms vanish

\[
\left\langle \hat{P}_\phi(\Sigma)^2 \right| h^\rho_\alpha, \rho_\phi \right\rangle = \frac{3}{2\lambda^2} \left(\sin(\lambda \hat{P}_\alpha) |\alpha| (\Sigma) \right)^2 \left| h^\rho_\alpha, \rho_\phi \right\rangle
\]

\[\downarrow \quad \text{rescaling of variables}\]

LQC difference equation in \((v, b)\) variables [Ashtekar, Corichi, Singh '07]

\[
\partial^2_{\phi} |v, \phi \rangle = \frac{3\pi G}{4\lambda^2} |v| \left(|v + 2\lambda| |v + 4, \phi \rangle + |v - 2\lambda| |v - 4, \phi \rangle - (|v + 2\lambda| + |v - 2\lambda|) |v, \phi \rangle \right)
\]
Quantum dynamics II

1. FRW part of Hamiltonian
2. Other terms vanish

\[\propto P^{ab}, \text{ but not } \propto P_{\alpha} \]

\[\propto \beta, \gamma = 0 \]

Spatial derivatives

finite differences \(\Rightarrow\) vanish on single vertex states
Outline

1 Strategy
2 Example of the formalism
3 $\bar{\mu}$ scheme in the full theory
4 Spherical symmetry and SU(2)
5 Conclusion
\mathbb{T}^3 Bianchi I: classical preparations

- ADM \(\{ q_{ab}, P^{cd} \} = \delta^c_{(a} \delta^d_{b)} \)

- Diagonal metric gauge

- Gauge fixed phase space: \(\{ q_{aa}, P^{bb} \} = \delta^b_a \)

- New variables: \(\{ K_a, E^b \} = \delta^b_a \)

\[
e_a e_a = q_{aa}, \quad E^a = \sqrt{\det q} e^a, \quad K_a = K_{ab} e^b,
\]
T^3 Bianchi I: reduction constraints

T^3 Bianchi I model

\[\partial_a E^b = 0 = \partial_a K_b \quad \& \quad P^{a \neq b} = 0 \]

First class subset

- **Spatial diffeos:**
 \[\int_\Sigma d^3\sigma \left(E^a \mathcal{L}_{\vec{N}} K_a + P_\phi \mathcal{L}_{\vec{N}} \phi \right) = 0 \]

- **Abelian Gauß law:**
 \[\int_\Sigma d^3\sigma \omega \partial_a E^a = 0 \]
Quantum kinematics & reduction

Standard LQG quantisation for U(1): [Corichi, Krasnov '97]

1. Holonomies $h^\rho_\gamma = \exp \left(i \rho \int_\gamma K_a ds^a \right)$, fluxes $E(S) = \int_S E^a \epsilon_{abc} dx^b \wedge dx^c$

2. Reduction \Rightarrow gauge / spatial diffeo invariance

Single vertex states

$|\rho_x, \rho_y, \rho_z\rangle \leftrightarrow |p_1, p_2, p_3\rangle_{LQC}$

[Ashtekar, Wilson-Ewing '09]

Reduced operators

- Areas $A(\mathbb{T}^2_x), A(\mathbb{T}^2_y), A(\mathbb{T}^2_z)$
- Reduced Wilson loops
Quantum dynamics

Polymerisation $\int K_a ds^a \approx \sin(\lambda \int K_a ds^a)/\lambda$

- $U(1) \rightarrow \lambda = 1 \Rightarrow \text{“old” LQC dynamics}$

 [Ashtekar, Bojowald, Lewandowski '03, has been formulated using R_{Bohr}]

- $R_{\text{Bohr}} \rightarrow \lambda \in \mathbb{R} \Leftarrow \text{“new” LQC dynamics}$

$1/\lambda_x = \text{size of universe in } x\text{-direction}$ [Ashtekar, Pawlowski, Singh '06; Ashtekar, Wilson-Ewing '09]

Full theory lessons

- LQG on fixed graph [Giesel, Thiemann '06] $\leftrightarrow U(1)$

 - Problems for coarse states (?)
 - FRW: $\int K_a ds^a \propto \sqrt{\rho \phi} \times \text{distance}$ see also [Charles, Livine '15]

- $\bar{\mu}$ dynamics from coarse graining? [Gielen, Oriti, Sindoni '13; Alesci, Cianfrani '14]
Outline

1. Strategy
2. Example of the formalism
3. $\bar{\mu}$ scheme in the full theory
4. Spherical symmetry and SU(2)
5. Conclusion
Spherical symmetry: classical preparations

1. Radial gauge $q_{ra} = \delta_{ra}$

 [Duch, Kamiński, Lewandowski, Świeżewski '14]

 [NB, Lewandowski, Świeżewski '14, '15]

2. **SU(2) connection variables** A^i_A, E^B_j

3. $C_a = 0 \quad \Rightarrow \quad P^{ra}(A^i_A, E^B_j)$

Reduction constraints

$P^{rA} = 0 \iff \text{spatial diffeomorphisms preserving } S^2_r$
Quantum kinematics & reduction [NB, Lewandowski, Świeżewski '14]

Standard LQG quantisation

1. Kinematics \Rightarrow spin networks $\subset S_{r_1}^2 \cup \ldots \cup S_{r_n}^2$

2. Reduction \Rightarrow diff invariance on S_r^2

Symmetric operators

1. Areas of the S_r^2 \rightarrow $R(r)^2 := \frac{1}{4\pi} \int_{S_r^2} d^2\theta \sqrt{\det q_{AB}}$

2. Averaged trace of momenta \rightarrow $P_R(r) := \frac{2}{R(r)} \int_{S_r^2} d^2\theta P^{AB} q_{AB}$
Regularising $[\hat{R}, \hat{P}_r]$

[Thiemann: QSD1, QSD4]

<table>
<thead>
<tr>
<th>Poisson bracket tricks</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R(r)^2 \propto \int_{S^2_r} \sqrt{V^k V_k}$</td>
</tr>
<tr>
<td>$V^k \propto \epsilon^{ijk} E^A_i E^B_j \epsilon_{AB}$</td>
</tr>
<tr>
<td>$n^i = \frac{\epsilon^{ijk} E^A_j E^B_k \epsilon_{AB}}{</td>
</tr>
</tbody>
</table>

Simplest non-trivial spin network:

- Operators non-trivial at kink
- Graph-preserving regularisation
- Graphical calculus [Alesci, Liegener, Zipfel '13]
Results of $[\hat{R}, \hat{P}_r]$

$P_R \approx \frac{e^{i\lambda P_R} - e^{-i\lambda P_R}}{2i\lambda} \iff F_{AB}^i \sim h_{\alpha AB} - h_{\alpha AB}^{-1}$

Classical reduction

$\left\langle \rho \pm \lambda \left| \left[\hat{R}, \hat{P}_R \right] \right| \rho \right\rangle = 0.5 i$

Quantum reduction

$\left\langle j \pm \frac{1}{2} \left| \left[\hat{R}, \hat{P}_R \right] \right| j \right\rangle \approx 0.1 i + \mathcal{O}(j^{-1})$

Several problems

- Strong regularisation dependence
- Kink state degenerate
- Problems absent for trivalent vertex → future work
Outline

1. Strategy
2. Example of the formalism
3. $\tilde{\mu}$ scheme in the full theory
4. Spherical symmetry and SU(2)
5. Conclusion
Conclusion

Strategy

- Gauge fixing
- \(\hat{f}_i |\psi\rangle_{\text{sym}} = 0, \quad [\hat{O}_{\text{sym}}, \hat{f}_i] = 0 \)

→ Loop quantum cosmology

- \(\bar{\mu} \) scheme in full theory
- Single-vertex truncation

→ Spherical symmetry

- Partial results in SU(2) variables

Lessons / open questions

- \(\bar{\mu} \)-scheme for coarse states
- Coarse graining

This work was supported by the Polish National Science Centre grant No. 2012/05/E/ST2/03308.

Thank you for your attention!