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Multiverse?

−→ Inhomogeneity builds up in collapsing universe.

−→ If space viewed as patchwork of homogeneous pieces,
it must be refined in time to maintain good approximation.

−→ Assume that homogeneous models are good for patch
evolution and bounce.
Patches that reach Planckian density earlier bounce sooner.

−→ Expanding regions embedded within still contracting
space-time. Causally separated?

(Picture similar to bubble nucleation in inflation.)

−→ Black holes may form and grow.
If singularity resolved, where does it lead to?
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Black-hole singularities
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Inhomogeneity

Singularity resolution in inhomogeneous situations may lead to
multiverse picture.

−→ Loss of predictivity.

−→ Inflation may not get started if inhomogeneity too large.

Loop quantum cosmology: Bounce models.

−→ But Planckian regime almost entirely unclear.

−→ Quantum corrections tricky in inhomogeneous context:
strong consistency conditions from covariance.
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Little bounce, big questions

Bounces in isotropic models simple consequence of modified
Friedmann equation

sin(ℓH)2

ℓ2
=

8πG

3
ρ

and analogous versions in homogeneous models.
(Some length parameter ℓ, perhaps Planck length.)

→ How do quantum corrections (higher curvature) interfere
with modification motivated by quantum geometry?

→ How can modified homogeneous models be embedded
within a consistent inhomogeneous space-time structure?

At the heart of quantum gravity:
low-curvature limit and anomaly problem.
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Quantum corrections

Holonomies corrections: higher powers of (ℓH)2, ℓ usually
assumed to be close to ℓP.

−→ Evolution of quantum state: Higher-curvature corrections
must be added to modified Friedmann equation.
Expected to be of the same order: ℓ2

P
R ∼ ℓ2

P
H2 in isotropic

models.

−→ Bounces confirmed only for kinetic domination in nearly
isotropic models: No curvature corrections for free, massless
scalar in flat isotropic model (deparameterized).

−→ Numerical tests include all corrections in a single evolution.
But select specific wave function, usually near-Gaussian.
Amounts to assuming absence of curvature corrections at high
density.
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Consistent inhomogeneity

Inclusion of inhomogeneity highly non-trivial:

−→ Constraints can no longer be modified at will for algebra to
remain first class.

−→ Not clear if modified Friedmann equation can be part of
consistent extension to inhomogeneity
(without using gauge fixing or deparameterization).

Several (incomplete) consistent versions known:
spherical symmetry and perturbative cosmology.

Imply signature change near Planckian density.

No evolution through bounce.
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General relativity

Non-linear coordinate changes — non-linear deformations of
space.

N1

w

N2

N2

N1

Hypersurface-deformation algebra: (S(~w(x)), T (N(x))) with

[S(~w1), S(~w2)] = S(L~w2
~w1)

[T (N), S(~w)] = T (~w · ~∇N)

[T (N1), T (N2)] = S(N1
~∇N2 −N2

~∇N1)

Implies Poincaré algebra for linear N and ~w in local coordinates.
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Symmetry and dynamics

→ Hojman, Kuchar̂, Teitelboim 1974–76:
Second-order field equations for metric invariant under
hypersurface-deformation algebra must equal Einstein’s.

→ Dirac 1958:
Invariance under hypersurface-deformation algebra implies
general covariance.

How does quantum physics affect hypersurface deformations?
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Quantum corrections

Loop quantum gravity:

−→ Inverse-triad corrections from quantizing

{

Ai
a,

∫

√

|detE|d3x

}

= 2πGǫijkǫabc
Eb

jE
c
k

√

|detE|

−→ Higher-order corrections: holonomies for curvature.

−→ Quantum back-reaction
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Modified space-time

−→ Inverse-triad corrections in Hamiltonian

1

16πG

∫

d3xNα
ǫi
jkF i

abE
a
jE

b
k

√

|detE|
+ · · ·

−→ Algebra modified. Deform but do not violate covariance.
[with G Hossain, M Kagan, S Shankaranarayanan 2009]

{S(~w1), S(~w2)} = S(L~w2
~w1)

{T (N), S(~w)} = T (~w · ~∇N)

{T (N1), T (N2)} = S(α2(N1
~∇N2 −N2

~∇N1))

−→ Operators in Abelian 2 + 1.
[A Henderson, A Laddha, C Tomlin, M Varadarajan 2012]
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Cosmological perturbation equations

[with G Calcagni 2010]

Dynamics of density perturbations u, gravitational waves w:

−u′′ + s(α)2∆u+ (z̃′′/z̃)u = 0

−w′′ + α2∆w + (ã′′/ã)w = 0

Different speeds α and s(α) for different modes:
characteristic corrections to tensor-to-scalar ratio.

Consistent but non-classical space-time structure:
no invariant line element ds2 = gabdx

adxb.
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Holonomy corrections

Pointwise holonomy corrections:

{S(~w1), S(~w2)} = S(L~w2
~w1)

{T (N), S(~w)} = T (~w · ~∇N)

{T (N1), T (N2)} = S(β(N1
~∇N2 −N2

~∇N1))

with β < 0 at high density (“bounce”), β = −1 at max. density.

(β = cos(2ℓc), or second derivative of holonomy modification
function in spherical symmetry)

[J Reyes 2009; A Barrau, T Cailleteau, J Grain, J Mielczarek 2011]

Mode equation elliptic when β < 0.

−w′′ + β∆w + (ã′′/ã)w = 0

Operators in 2 + 1. [A Perez, D Pranzetti 2010]
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Signature change

Space-time signature Euclidean. [with G Paily 2011]

t∆c

v/c

Minkowski geometry Euclidean geometry

Reminiscent of Hartle–Hawking wave function.
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Status

Main incompleteness:

−→ higher spatial derivatives (integrated holonomies)

−→ higher time derivatives (quantum back-reaction).

At high curvature, ∂c as significant as c2. (R ∼ ∂Γ + Γ2)

But:
−→ Higher time derivatives would affect background evolution
as well.

−→ Higher derivatives cannot cancel algebra deformation:
order of derivatives preserved by integrations by parts, and
Poisson bracket of moments produces other moments.

−→ Random cancellation might be possible with strong
fine-tuning of numerical values (moments of state).
But no deformation at all for higher-curvature corrections.
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Abhayisms I

−→ The Wheeler–DeWitt equation can be hyperbolic or elliptic,
and it says nothing about the signature of space-time.

Well, . . .

−→ How can small perturbative inhomogeneity possibly have
such a drastic effect as signature change?

Signature change is not a consequence of inhomogeneity;
inhomogeneity is just used as a test field.
The equation −w′′ + β∆w + (ã′′/ã)w = 0 is elliptic for β < 0 no
matter how small w is. Spherically symmetric models.

−→ The Hojman–Kuchar–Teitelboim analysis, in the deformed
case, does not give a consistent [Riemannian] space-time
interpretation.

Sure. We are talking about effective quantum space-time.
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Abhayisms II

−→ The phase space in the presence of quantum corrections is
assumed to be the same as classically.

No. The phase space changes when moment variables are
included. Semiclassical expansion possible.
Even when they are not included as a first approximation, loop
quantum gravity implies modifications for expectation values.

−→ Sometimes, effective equations are re-quantized even
though they are supposed to describe a quantum theory.

Quantum states in effective equations are sometimes used as a
shortcut to apply established methods to fix initial conditions for
an inflaton. They can be formulated at the effective level.
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Abhayisms III

−→ There are consistent versions of inhomogeneity around
bounce models that do not give rise to signature change.

In such versions, one uses gauge-fixing, deparameterization, or
solves some first-class constraints before quantization. One
therefore assumes some classical space-time properties without
being able to test whether they give the correct quantum
space-time structure. All known loop models that do not assume
anything about space-time lead to signature change.

−→ We always solve classical constraints before quantization
when we discuss mini or midi-superspace models.
Why is this suddenly an issue?

For mini or midi-superspace models, we solve classical
second-class constraints to remove some degrees of freedom.
We do not solve or fix first-class constraints that encode
space-time structure.
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Multiverse?

→ Inhomogeneous collapse combined with transition to
expansion (“bounce”) may lead to causally disconnected
regions.

→ Hard to control with non-perturbative quantum gravity,
but effective methods help to understand space-time
structure.

→ Big bounce blunder: Modifications that limit the density have
radical implications at Planckian densities.
4-dimensional Euclidean space instead of space-time.

No propagation of structure through high density.
Everything is causally disconnected. Ultimate multiverse.

→ Instead, non-singular beginning of Lorentzian phase.
Natural place to pose initial conditions for inflaton state.
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