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the Hubble radius — causal generation mechanism is
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o Problem: If time period of inflation is more than 70H~1,
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the Planck scale).
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Metric including cosmological perturbations ®(x, 7):
ds? = a(r)?[(1 +20)dr? — (1 — 29)dx?]

Canonical variable
%0
v =a(é —o
a(0p + ),
Equation of motion in Fourier space (assuming equation of
state of matter is constant)

&

Vi + (K? - -

Jvk =0,
Conclusion: Same equation as for the canonical
gravitational wave amplitude — initial vacuum spectrum

remains vacuum with a slight blue tilt.
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Some previous results:
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e o At the reheating transition in inflationary cosmology it is
S the variable v which is continuous, and ¢ jumps (by a
e large factor).

Elpyrosis o In models with a smooth bounce mediated by matter
Fredietons which violates the Null Energy Condition the variable v
L. is continuous, and not ®.

o For a space-like matching surface, most choices of the
: location of the surface lead to ¢ being continuous
SeneEeE (Durrer and Vernizzi, Phys. Rev. D 66, 083503 (2002)).
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Scale-invariant spectrum with a slight red tilt.
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:022:::: Idea: make use of the new symmetries and new degrees of
berger freedom which string theory provides to construct a new
theory of the very early universe.
iaton Assumption: Matter is a gas of fundamental strings
Challenges Assumption: Space is compact, e.g. a torus.
Ekpyrosis Key points:

SN o New degrees of freedom: string oscillatory modes

Predictions o Leads to a maximal temperature for a gas of Strings,
String the Hagedorn temperature
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@ New degrees of freedom: string winding modes

o Leads to a new symmetry: physics at large R is
equivalent to physics at small R
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S sheets, their interaction rate vanishes in more than four
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Note: string gases can play a key role in the stabilization of
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— need to go beyond an EFT analysis to describe the
very early universe.

Ekpyrotic bouncing cosmology is a promising
alternative scenario.

S-Brane mediates continuous transition from contration
to expansion.

Resulting fluctuations are in agreement with
observations and predict a scale-invariant spectrum
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Matrix Theory — emergent space, time and early
universe cosmology.
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