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Introduction and motivations

TGFTs are an approach to quantum gravity, which can be justified by two
complementary logical paths:

@ The Tensor track [Rivasseau '12]: matrix models, tensor models [Sasakura ‘91, Ambjorn et
al. '91, Gross '92], 1/N expansion [Gurau, Rivasseau '10 '11], universality [Gurau '12],
renormalization of tensor field theories... [Ben Geloun, Rivasseau '11 '12]

@ The Group Field Theory approach to Spin Foams [Rovelli, Reisenberger '00, ...]

o Quantization of simplicial geometry.

o No triangulation independence = lattice gauge theory limit [Dittrich et al.] or sum over
foams.

o GFT provides a prescription for performing the sum: simplicial gravity path integral =
Feynman amplitude of a QFT.

o Amplitudes are generically divergent = renormalization?

o Need for a continuum limit = many degrees of freedom = renormalization (phase
transition along the renormalization group flow?)

Big question

Can we find a renormalizable TGFT exhibiting a phase transition from discrete
geometries to the continuum, and recover GR in the classical limit?
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Purpose of this talk

@ State of the art: several renormalizable TGFTs with nice topological content:
o U(1) model in 4d: just renormalizable up to (® interactions, asymptotically free [Ben
Geloun, Rivasseau '11, Ben Geloun '12]
o U(1) model in 3d: just renormalizable up to (* interactions, asymptotically free [Ben
Geloun, Samary '12]
e even more renormalizable models [Ben Geloun, Livine '12]

@ Question: what happens if we start adding geometrical data (discrete connection)?

Main message of this talk

Introducing holonomy degrees of freedom is possible, and generically improves
renormalizability. It implies a generalization of key QFT notions, including:
connectedness, locality and contraction of (high) subgraphs.

Example I: U(1) super-renormalizable models in 4d, for any order of interaction.

Example II: a just-renormalizable Boulatov-type model for SU(2) in d = 3!
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Outline

e A class of dynamical models with gauge symmetry

© Multi-scale analysis

© U(1) 4d models

@ Just-renormalizable models
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A class of dynamical models with gauge symmetry

e A class of dynamical models with gauge symmetry
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Structure of a TGFT

@ Dynamical variable: rank-d complex field

Lp:(gl,...,gd) > Gd>—>(c7
with G a (compact) Lie group.

@ Partition function:
z= /duc(w@) e S,

o S(p,P) is the interaction part of the action, and should be a sum of local terms.

o Dynamics 4+ geometrical constraints contained in the Gaussian measure duc with
covariance C (i.e. 2nd moment):

/duc(so@) w(ge)e(gy) = Clae: &)
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Locality I: simplicial interactions

o Natural assumption in d dimensional Spin Foams: elementary building block of
space-time = (d + 1)-simplex.
In GFT, translates into a %! interaction, e.g. in 3d:

S(p, @) /[dg]%(gl,gz,gs)tp(gmgs,g4)<p(gs,gzge)w(gmge,gl)+ c.c.

Problems:

o Full topology of the simplicial complex not encoded in the
2-complex [Bonzom,Girelli, Oriti '; Bonzom, Smerlak '12];

o (Very) degenerate topologies.

=1

o A way out: add colors [Gurau '09]

S(e, ) x /[dg]%l(ghgz7ga)soz(gmg57g4)<p3(g5,gz7ge)¢4(g4,gs,g1)+ c.c.

... then uncolor [Gurau '11; Bonzom, Gurau, Rivasseau '12] i.e. d auxiliary fields and 1 true
dynamical field = infinite set of tensor invariant effective interactions.
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Locality Il: tensor invariance

o Instead, start from tensor invariant interactions. They provide:

e a good combinatorial control over topologies: full homology, pseudo-manifolds only
etc.
o analytical tools: 1/N expansion, universality theorems etc.

@ S is a (finite) sum of connected tensor invariants, indexed by d-colored graphs
(d-bubbles):
S(,?) =Y tsl(0,7).

beB

o d-colored graphs are regular (valency d), bipartite,
edge-colored graphs.

@ Correspondence with tensor invariants:

o white (resp. black) dot < field (resp. complex conjugate
field);
o edge of color ¢ <+ convolution of ¢-th indices of ¢ and .

/[dgi]usO(gl,gz,gz,g4)¢(g1,gz,g3,g5)<p(gs,g7,ge,ga)

?(gs, 89, 810, 211)p(8&12, £9, 810, 211)P(812, &7 865 £4)
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Gaussian measure |: constraints

@ In general, the Gaussian measure has to implement the geometrical constraints:
@ gauge symmetry
Vhe G, o(hg,... . hgd) = v(&1,-- 8d); (1)
e simplicity constraints.

= C expected to be a projector, for instance

3

Cler, &, 85 8,8,8)= /dh]_[é(gehgé’l) (2
=1

in 3d gravity (Ponzano-Regge amplitudes).

@ But: not always possible in practice...
o In 4d, with Barbero-Immirzi parameter: simplicity and gauge constraints don't
commute — C not necessarily a projector.
o Even when C is a projector, its cut-off version is not = differential operators in
radiative corrections e.g. Laplacian in the Boulatov-Ooguri model [Ben Geloun, Bonzom
"11].

o Advantage: built-in notion of scale from C with non-trivial spectrum.
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Gaussian measure |l: non-trivial propagators

We would like to have a TGFT with:
@ a built-in notion of scale i.e. a non-trivial propagator spectrum;
@ a notion of discrete connection at the level of the amplitudes.
Particular realization that we consider:

o Gauge constraint:

Vhe G, ¢(hg,... hgs) = ¢(&,.. 8&4), ®3)

@ supplemented by the non-trivial kernel (conservative choice, also justified by [Ben
Geloun, Bonzom '11])

d -1
<m2 -2 Ae) : (4)
=1
This defines the measure dpc:

[ auee. ) eleeleh = Clarigh) = /Omdae*""* [anTTkatangi ™. 9)

where K, is the heat kernel on G at time a.
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Feynman graphs

@ The amplitudes are indexed by (d + 1)-colored graphs, obtained by connecting
d-bubble vertices through propagators (dotted, color-0 lines).

Example: 4-point graph with 3 vertices and 6 (internal) lines.

o Nomenclature:
o L(G) = set of (dotted) lines of a graph G.
o Face of color { = connected set of (alternating) color-0 and color-£ lines.
o F(G) (resp. Fext(G)) = set of internal (resp. external) i.e. closed (resp. open) faces of
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Amplitudes and gauge symmetry

@ The amplitude of G depends on oriented products of group elements along its faces:

Ag = 11 /dae -m “e/dhe H Kas) (thef)
ecl(G) fEF(G ecof
H Ka(f <gs (f) |:H he :| 8 f)> s
fEFext(9) e€of

H dae e e { Regularized Boulatov-like amplitudes }
eclL(G)

where a(f) = Y 5¢ e, &5(r) and gy are boundary variables, and c.r = +1 when
e € Of is the incidence matrix between oriented lines and faces.

o A gauge symmetry associated to vertices (he — gt(e)hegszel)) allows to impose
he = 1 along a maximal tree of (dotted) lines.
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New notion of connectedness

Spin Foam wisdom: lines — faces; faces — bubbles.

Amplitudes depend on holonomies along faces, built from group elements associated to
lines = new notion of connectedness: incidence relations between lines and faces instead
of incidence relations between vertices and lines.

Definition

@ A subgraph H C G is a subset of (dotted) lines of G.

o Connected components of H are the subsets of lines of the maximal factorized
rectangular blocks of its e.r incidence matrix.

Equivalently, two lines of H are elementarily connected if they have a common internal
face in H, and we require transitivity.

I @ Hyi ={h}, Hi» = {h, h} are connected;

@ Hiz = {h, k} has two connected components (despite the fact
____1, that there is a single vertex!).
<
N Z
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Contraction of a subgraph

@ The contraction of a line is implemented by so-called dipole moves, which in d = 4
are:

9——(@ %ré = <=
— ' !

Definition: k-dipole = line appearing in exactly k closed faces of length 1.

@ The contraction of a subgraph H C G is obtained by successive contractions of its
lines.

The contraction of a subgraph H € G amounts to delete all the internal faces of # and
reconnect its external legs according to the pattern of its external faces.

= well-suited for coarse-graining / renormalization steps!

Remark Would be interesting to analyse these moves in a coarse-graining context
[Dittrich et al.].
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Multi-scale analysis

© Multi-scale analysis
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1) Decompose amplitudes according to slices of "momenta” (Schwinger parameter);
2) Replace high divergent subgraphs by effective local vertices;
3) lterate.

= Effective multi-series (1 effective coupling per interaction at each scale).
Can be reshuffled into a renormalized series (1 renormalized coupling per interaction).

Advantages of the effective series:

@ Physically transparent, in particular for overlapping divergencies;
@ No "renormalons”: |Ag| < K".
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Decomposition of propagators

@ The Schwinger parameter o determines a momentum scale, which can be sliced in a
geometric way. One fixes M > 1 and decomposes the propagators as

¢ - Yo (6)
Glgig) — /lmdae“*"’z / ] olerhst ™) @)

M—2(i—1)
Cigrigr) = /2_ e " /thK (gehg, ™). (8)
M—2i

o A natural regularization is provided by a cut-off on i: i < p. To be removed by
renormalization.

@ The amplitude of a connected graph G is decomposed over scale attributions
u = {ic} where /. runs over all integers (smaller than p) for every line e:

Ag = ZAQ,#.
I
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High subgraphs

Strategy

Find optimal bounds on each Ag ,, in terms of the scales p.

High subgraphs

To a couple (G, 1) is associated a set of high subgraphs gfk): for each i, one defines G;
as the subgraph made of all lines with scale higher or equal to /i, and {ka)} its connected
components.

Necessary condition: divergent high subgraphs must be quasi-local, i.e. look like
(connected) tensor invariants.

Example: i <j
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Contractiblity and traciality

2 sources of loss of locality:
o When i — 400, He({he}) — 1in gfk), but not necessarily he — 1

o Combinatorial loss of connectedness when contracting a g}k).

We therefore define

@ A connected subgraph H C G is called contractible if there exists a maximal tree of
lines 7 C L(#) such that

—)
(W € Fe(H), J] he = 1) = (Ve € L(H), he = 1)

ecof

for any assignment of group elements (he)eci () that verifies he = 1 for any e € 7.
(approximate invariance)

@ A connected subgraph H C G is called tracial if it is contractible and its contraction
in G conserves its connectedness. (approximate connected invariance)
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Abelian power-counting

(i) If G has dimension D, there exists a constant K such that the following bound
holds:

()
gl < KHO T M9, ©)
(ik)
where the degree of divergence w is given by
w(H) = =2L(H) + D(Fine(H) — r(#H)) (10)

and r(#) is the rank of the eer incidence matrix of H.
(if) These bounds are optimal when G is Abelian, or when # is contractible.

@ Subgraphs with w < 0 are convergent i.e. have finite contributions when p — co.

@ Subgraphs with w > 0 are divergent and need to be renormalized. Traciality (or at
the very least contractiblity) of divergent subgraphs is therefore needed for
renormalizability to hold.
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U(1) 4d models

© U(1) 4d models
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Divergent graphs

The renormalization of such models is triggered by so-called melopoles. They are the
tadpole connected subgraphs that can be reduced to a single line by successive 4-dipole
contractions.

Example:
o H={h}, H={h,hb}or
H = {h, b, s} are melopoles;
o H ={h} and H = {h, k} are not
(the last one because it is not
connected).
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Classification of subgraphs

o If w(H) =1, then H is a vacuum melopole.

o If w(H) =0, then H is either a non-vacuum melopole, or a submelonic vacuum
graph.

o Otherwise, w(H) < —1 and w(H) < —%, N(H) being the number of external
legs of H.

Submelonic vacuum graph: grey blobs
represent melopole insertions.

For a given finite set of non-zero couplings, the theory has a finite set of divergent
subgraphs.
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Melordering

Melopoles are tracial.

Renormalization is therefore possible in the realm of connected tensor invariants.

@ One can use a Wick ordering procedure to remove divergencies. It is given by a
linear map:
Q, : {invariants} — {invariants}
depending on the cut-off p.

@ Precise expression of Q,(l,) given as a sum over all possible contractions of
melopoles in b.
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Finiteness

One defines the renormalized theory through melordering:

Zq, = /ducp(%@ e %% (#%)
So,(0.®) = > tEQ(b)(¢, ).
beB

For any finite set of non-zero renormalized couplings {tf}, the amplitudes are convergent
when p — +o0.

Conclusion: U(1) 4d models with gauge symmetry are super-renormalizable at any
order of perturbation theory.
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Just-renormalizable models

@ Just-renormalizable models
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Hypotheses:
@ rank-d tensors;
@ G of dimension D;

@ Vmax = maximal order of interactions.

Question: necessary conditions on d, D and vpmax in order to construct
just-renormalizable models (i.e. with infinite sets of divergent graphs) ?

Notations:
o n(H) = number of vertices with valency 2k in H;
o N(H) = number of external legs attached to vertices of H,;

@ H/T = contraction of H along a tree of lines (gauge-fixing).
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Necessary conditions

Let H be a non-vacuum subgraph. Then:
wM) = D(d-2)- %N (11)
Vmax /2—1
- Y [D(d—2)—(D(d —2) - 2) k]« (12)
k=1
+ Dp(H/T), (13)
with
p(G) <0 and p(G) = 0 & G is a melopole. (14)
[ Type [ d [ D ] vinax | w |
A 313 6 3—N/2—=2m —m+3p
B 31 4 4 4—N—-2nm+4p
C a2 a 4—N-—2m+2p
D 511 6 3—N/2—-2m —ny+p
E [[6|1] 4 4—N—-2m+p

Table: Classification of potentially just-renormalizable models.
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©® model on SU(2), in d =3

w(?—l)=3—g—2n2—n4+3p(7{/7) (15)
(NIm[n]|p[w]
6 0 0|0 0
4 0 0|0 1
4 0 1 0 0
2 0 010 2
2 0 1 0 1
2 0 2 0 0
2 1 0|0 0

Table: Classification of non-vacuum divergent graphs for d = D = 3. All of them are melonic.

The ° SU(2) model in 3d is renormalizable. Divergencies generate coupling constants,
mass and wave-function counter-terms.
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Conclusions and outlook

Summary:

o Introducing connection degrees of freedom is possible in renormalizable TGFTs.
@ Generically improves renormalizability.
@ U(1) 4d models with any finite number of interactions are super-renormalizable.

@ 5 types of just-renormalizable models, including a SU(2) model in d = 3.

What's next?

o Flow of the SU(2) model in 3d [wip]: asymptotic freedom? relation to
Ponzano-Regge?

@ Constructibility (of U(1) models first) [Gurau wip].

@ Generalization to 4d gravity models [wip]: EPRL, FK, BO, etc.

o geometry: interplay between simplicity constraints and tensor invariance?
o with or without Laplacian (or other differential operator)?
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Thank you for your attention
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