

Renormalization of Tensorial Group Field Theories

Sylvain Carrozza

AEI & LPT Orsay

30/10/2012

International Loop Quantum Gravity Seminar

Joint work with Daniele Oriti and Vincent Rivasseau: arXiv:1207.6734 [hep-th] and more.

Introduction and motivations

TGFTs are an approach to quantum gravity, which can be justified by two complementary logical paths:

- The Tensor track [Rivasseau '12]: matrix models, tensor models [Sasakura '91, Ambjorn et al. '91, Gross '92], 1/N expansion [Gurau, Rivasseau '10 '11], universality [Gurau '12], renormalization of tensor *field* theories... [Ben Geloun, Rivasseau '11 '12]
- The Group Field Theory approach to Spin Foams [Rovelli, Reisenberger '00, ...]
 - · Quantization of simplicial geometry.
 - No triangulation independence ⇒ lattice gauge theory limit [Dittrich et al.] or sum over foams.
 - GFT provides a prescription for performing the sum: simplicial gravity path integral = Feynman amplitude of a QFT.
 - Amplitudes are generically divergent ⇒ renormalization?
 - Need for a continuum limit ⇒ many degrees of freedom ⇒ renormalization (phase transition along the renormalization group flow?)

Big question

Can we find a renormalizable TGFT exhibiting a phase transition from discrete geometries to the continuum, and recover GR in the classical limit?

Purpose of this talk

- State of the art: several renormalizable TGFTs with nice topological content:
 - U(1) model in 4d: just renormalizable up to φ^6 interactions, asymptotically free [Ben Geloun, Rivasseau '11, Ben Geloun '12]
 - U(1) model in 3d: just renormalizable up to φ^4 interactions, asymptotically free [Ben Geloun, Samary '12]
 - even more renormalizable models [Ben Geloun, Livine '12]
- Question: what happens if we start adding geometrical data (discrete connection)?

Main message of this talk

Introducing holonomy degrees of freedom is possible, and generically improves renormalizability. It implies a generalization of key QFT notions, including: connectedness, locality and contraction of (high) subgraphs.

Example I: U(1) super-renormalizable models in 4d, for any order of interaction.

Example II: a just-renormalizable Boulatov-type model for SU(2) in d=3!

Outline

- 1 A class of dynamical models with gauge symmetry
- Multi-scale analysis
- \bigcirc U(1) 4d models
- 4 Just-renormalizable models

A class of dynamical models with gauge symmetry

- A class of dynamical models with gauge symmetry
- Multi-scale analysis
- \bigcirc U(1) 4d models
- 4 Just-renormalizable models

Structure of a TGFT

Dynamical variable: rank-d complex field

$$\varphi: (g_1, \ldots, g_d) \ni G^d \mapsto \mathbb{C},$$

with G a (compact) Lie group.

Partition function:

$$\mathcal{Z} = \int \mathrm{d}\mu_{\mathcal{C}}(\varphi, \overline{\varphi}) \, \mathrm{e}^{-S(\varphi, \overline{\varphi})} \,.$$

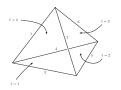
- $S(\varphi, \overline{\varphi})$ is the interaction part of the action, and should be a sum of local terms.
- Dynamics + geometrical constraints contained in the Gaussian measure $d\mu_C$ with covariance C (i.e. 2nd moment):

$$\int \mathrm{d}\mu_{\mathcal{C}}(\varphi,\overline{\varphi})\,\varphi(\mathsf{g}_{\ell})\overline{\varphi}(\mathsf{g}_{\ell}') = \mathcal{C}(\mathsf{g}_{\ell};\mathsf{g}_{\ell}')$$

Locality I: simplicial interactions

Natural assumption in d dimensional Spin Foams: elementary building block of space-time = (d + 1)-simplex.
 In GFT, translates into a φ^{d+1} interaction, e.g. in 3d:

$$\mathcal{S}(\varphi,\overline{\varphi}) \propto \int [\mathrm{d}g]^6 \varphi(g_1,g_2,g_3) \varphi(g_3,g_5,g_4) \varphi(g_5,g_2,g_6) \varphi(g_4,g_6,g_1) + \mathrm{c.c.}$$



Problems:

- Full topology of the simplicial complex not encoded in the 2-complex [Bonzom, Girelli, Oriti'; Bonzom, Smerlak '12];
- (Very) degenerate topologies.
- A way out: add colors [Gurau '09]

$$S(arphi,\overline{arphi}) \propto \int [\mathrm{d} g]^6 arphi_1(g_1,g_2,g_3) arphi_2(g_3,g_5,g_4) arphi_3(g_5,g_2,g_6) arphi_4(g_4,g_6,g_1) + \mathrm{c.c.}$$

... then uncolor [Gurau '11; Bonzom, Gurau, Rivasseau '12] i.e. d auxiliary fields and 1 true dynamical field \Rightarrow infinite set of tensor invariant effective interactions.

Locality II: tensor invariance

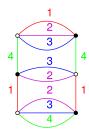
- Instead, start from tensor invariant interactions. They provide:
 - a good combinatorial control over topologies: full homology, pseudo-manifolds only etc.
 - ullet analytical tools: 1/N expansion, universality theorems etc.
- S is a (finite) sum of connected tensor invariants, indexed by d-colored graphs (d-bubbles):

$$S(\varphi,\overline{\varphi}) = \sum_{b\in\mathcal{B}} t_b I_b(\varphi,\overline{\varphi}).$$

- d-colored graphs are regular (valency d), bipartite, edge-colored graphs.
- Correspondence with tensor invariants:
 - white (resp. black) dot ↔ field (resp. complex conjugate field);
 - edge of color $\ell \leftrightarrow$ convolution of ℓ -th indices of φ and $\overline{\varphi}$.

$$\int [\mathrm{d}g_i]^{12} \varphi(\mathbf{g}_1, \mathbf{g}_2, \mathbf{g}_3, \mathbf{g}_4) \overline{\varphi}(\mathbf{g}_1, \mathbf{g}_2, \mathbf{g}_3, \mathbf{g}_5) \varphi(\mathbf{g}_8, \mathbf{g}_7, \mathbf{g}_6, \mathbf{g}_5)$$

$$\overline{\varphi}(\mathbf{g}_8, \mathbf{g}_9, \mathbf{g}_{10}, \mathbf{g}_{11}) \varphi(\mathbf{g}_{12}, \mathbf{g}_9, \mathbf{g}_{10}, \mathbf{g}_{11}) \overline{\varphi}(\mathbf{g}_{12}, \mathbf{g}_7, \mathbf{g}_6, \mathbf{g}_4)$$



Gaussian measure I: constraints

- In general, the Gaussian measure has to implement the geometrical constraints:
 - gauge symmetry

$$\forall h \in G, \quad \varphi(hg_1, \ldots, hg_d) = \varphi(g_1, \ldots, g_d);$$
 (1)

- simplicity constraints.
- \Rightarrow C expected to be a projector, for instance

$$C(g_1, g_2, g_3; g_1', g_2', g_3') = \int dh \prod_{\ell=1}^3 \delta(g_\ell h g_\ell'^{-1})$$
 (2)

in 3d gravity (Ponzano-Regge amplitudes).

- But: not always possible in practice...
 - In 4d, with Barbero-Immirzi parameter: simplicity and gauge constraints don't commute $\to C$ not necessarily a projector.
 - Even when *C* is a projector, its cut-off version is not ⇒ differential operators in radiative corrections e.g. Laplacian in the Boulatov-Ooguri model [Ben Geloun, Bonzom '11].
- Advantage: built-in notion of scale from C with non-trivial spectrum.

Gaussian measure II: non-trivial propagators

We would like to have a TGFT with:

- a built-in notion of scale i.e. a non-trivial propagator spectrum;
- a notion of discrete connection at the level of the amplitudes.

Particular realization that we consider:

• Gauge constraint:

$$\forall h \in G, \quad \varphi(hg_1, \dots, hg_d) = \varphi(g_1, \dots g_d), \qquad (3)$$

• supplemented by the non-trivial kernel (conservative choice, also justified by [Ben Geloun, Bonzom '11])

$$\left(m^2 - \sum_{\ell=1}^d \Delta_\ell\right)^{-1} \,. \tag{4}$$

This defines the measure $d\mu_C$:

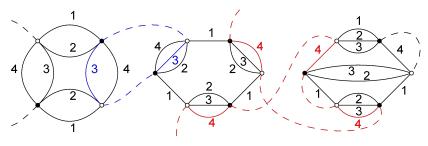
$$\int \mathrm{d}\mu_{\mathcal{C}}(\varphi,\overline{\varphi})\,\varphi(g_{\ell})\overline{\varphi}(g_{\ell}') = C(g_{\ell};g_{\ell}') = \int_{0}^{+\infty} \mathrm{d}\alpha\,\mathrm{e}^{-\alpha m^{2}}\int \mathrm{d}h \prod_{\ell=1}^{d} K_{\alpha}(g_{\ell}hg_{\ell}'^{-1})\,, \quad (5)$$

where K_{α} is the heat kernel on G at time α .

Feynman graphs

ullet The amplitudes are indexed by (d+1)-colored graphs, obtained by connecting d-bubble vertices through propagators (dotted, color-0 lines).

Example: 4-point graph with 3 vertices and 6 (internal) lines.



- Nomenclature:
 - L(G) = set of (dotted) lines of a graph G.
 - Face of color $\ell=$ connected set of (alternating) color-0 and color- ℓ lines.
 - $F(\mathcal{G})$ (resp. $F_{\text{ext}}(\mathcal{G})$) = set of internal (resp. external) i.e. closed (resp. open) faces of \mathcal{G} .

Amplitudes and gauge symmetry

ullet The amplitude of ${\cal G}$ depends on oriented products of group elements along its faces:

$$\begin{split} \mathcal{A}_{\mathcal{G}} &= \left[\prod_{e \in L(\mathcal{G})} \int \mathrm{d}\alpha_e \, e^{-m^2 \alpha_e} \int \mathrm{d}h_e \right] \left(\prod_{f \in F(\mathcal{G})} K_{\alpha(f)} \left(\overrightarrow{\prod_{e \in \partial f}} h_e{}^{\epsilon_{ef}} \right) \right) \\ & \left(\prod_{f \in F_{ext}(\mathcal{G})} K_{\alpha(f)} \left(g_{s(f)} \left[\overrightarrow{\prod_{e \in \partial f}} h_e{}^{\epsilon_{ef}} \right] g_{t(f)}^{-1} \right) \right) \,, \\ &= \left[\prod_{e \in L(\mathcal{G})} \int \mathrm{d}\alpha_e \, e^{-m^2 \alpha_e} \right] \left\{ \, \textit{Regularized Boulatov-like amplitudes} \, \right\} \end{aligned}$$

where $\alpha(f) = \sum_{e \in \partial f} \alpha_e$, $g_{s(f)}$ and $g_{t(f)}$ are boundary variables, and $\epsilon_{ef} = \pm 1$ when $e \in \partial f$ is the incidence matrix between oriented lines and faces.

• A gauge symmetry associated to vertices $(h_e \mapsto g_{t(e)} h_e g_{s(e)}^{-1})$ allows to impose $h_e = \mathbf{1}$ along a maximal tree of (dotted) lines.

New notion of connectedness

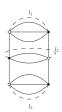
Spin Foam wisdom: lines \rightarrow faces; faces \rightarrow bubbles.

Amplitudes depend on holonomies along faces, built from group elements associated to lines \Rightarrow new notion of connectedness: incidence relations between lines and faces instead of incidence relations between vertices and lines.

Definition

- A subgraph $\mathcal{H} \subset \mathcal{G}$ is a subset of (dotted) lines of \mathcal{G} .
- Connected components of \mathcal{H} are the subsets of lines of the maximal factorized rectangular blocks of its ϵ_{ef} incidence matrix.

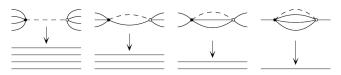
Equivalently, two lines of ${\cal H}$ are elementarily connected if they have a common internal face in ${\cal H}$, and we require transitivity.



- $\mathcal{H}_1 = \{l_1\}, \ \mathcal{H}_{12} = \{l_1, l_2\}$ are connected;
- $\mathcal{H}_{13} = \{ l_1, l_3 \}$ has two connected components (despite the fact that there is a single vertex!).

Contraction of a subgraph

• The contraction of a line is implemented by so-called dipole moves, which in d=4 are:



Definition: k-dipole = line appearing in exactly k closed faces of length 1.

 \bullet The contraction of a subgraph $\mathcal{H}\subset\mathcal{G}$ is obtained by successive contractions of its lines.

Net result

The contraction of a subgraph $\mathcal{H} \in \mathcal{G}$ amounts to delete all the internal faces of \mathcal{H} and reconnect its external legs according to the pattern of its external faces.

⇒ well-suited for coarse-graining / renormalization steps!

Remark Would be interesting to analyse these moves in a coarse-graining context [Dittrich et al.].

Multi-scale analysis

- A class of dynamical models with gauge symmetry
- Multi-scale analysis
- U(1) 4d models
- 4 Just-renormalizable models

Strategy

- Decompose amplitudes according to slices of "momenta" (Schwinger parameter);
- 2) Replace high divergent subgraphs by effective local vertices;
- Iterate.
- \Rightarrow Effective multi-series (1 effective coupling per interaction at each scale).
- Can be reshuffled into a renormalized series (1 renormalized coupling per interaction).

Advantages of the effective series:

- Physically transparent, in particular for overlapping divergencies;
- No "renormalons": $|A_{\mathcal{G}}| \leq K^n$.

Decomposition of propagators

ullet The Schwinger parameter lpha determines a momentum scale, which can be sliced in a geometric way. One fixes M>1 and decomposes the propagators as

$$C = \sum_{i} C_{i}, \qquad (6)$$

$$C_0(g_\ell; g_\ell') = \int_1^{+\infty} \mathrm{d}\alpha \, \mathrm{e}^{-\alpha m^2} \int \mathrm{d}h \prod_{\ell=1}^d K_\alpha(g_\ell h g_\ell'^{-1})$$
 (7)

$$C_i(g_{\ell}; g'_{\ell}) = \int_{M^{-2i}}^{M^{-2(i-1)}} d\alpha e^{-\alpha m^2} \int dh \prod_{\ell=1}^d K_{\alpha}(g_{\ell}hg'^{-1}_{\ell}).$$
 (8)

- A natural regularization is provided by a cut-off on i: $i \le \rho$. To be removed by renormalization.
- The amplitude of a connected graph $\mathcal G$ is decomposed over scale attributions $\mu=\{i_e\}$ where i_e runs over all integers (smaller than ρ) for every line e:

$$\mathcal{A}_{\mathcal{G}} = \sum_{\mu} \mathcal{A}_{\mathcal{G},\mu} \,.$$

High subgraphs

Strategy

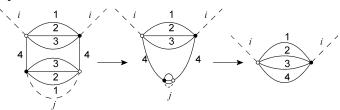
Find optimal bounds on each $A_{\mathcal{G},\mu}$, in terms of the scales μ .

High subgraphs

To a couple (\mathcal{G}, μ) is associated a set of **high subgraphs** $\mathcal{G}_i^{(k)}$: for each i, one defines \mathcal{G}_i as the subgraph made of all lines with scale higher or equal to i, and $\{\mathcal{G}_i^{(k)}\}$ its connected components.

Necessary condition: divergent high subgraphs must be quasi-local, i.e. look like (connected) tensor invariants.

Example: i < j



Contractiblity and traciality

2 sources of loss of locality:

- When $i \to +\infty$, $H_f(\{h_e\}) \to \mathbf{1}$ in $\mathcal{G}_i^{(k)}$, but not necessarily $h_e \to \mathbf{1}$;
- Combinatorial loss of connectedness when contracting a $\mathcal{G}_{i}^{(k)}$.

We therefore define

Definition

• A connected subgraph $\mathcal{H} \subset \mathcal{G}$ is called **contractible** if there exists a maximal tree of lines $\mathcal{T} \subset L(\mathcal{H})$ such that

$$\left(\forall f \in F_{int}(\mathcal{H})\,,\; \overrightarrow{\prod_{e \in \partial f}} h_e^{\;\epsilon_{ef}} = \mathbf{1}\right) \Rightarrow (\forall e \in L(\mathcal{H})\,,\; h_e = \mathbf{1})$$

for any assignment of group elements $(h_e)_{e \in L(\mathcal{H})}$ that verifies $h_e = \mathbf{1}$ for any $e \in \mathcal{T}$. (approximate invariance)

• A connected subgraph $\mathcal{H} \subset \mathcal{G}$ is called tracial if it is contractible and its contraction in \mathcal{G} conserves its connectedness. (approximate connected invariance)

Abelian power-counting

Theorem

(i) If G has dimension D, there exists a constant K such that the following bound holds:

$$|\mathcal{A}_{\mathcal{G},\mu}| \le K^{L(\mathcal{G})} \prod_{(i,k)} M^{\omega[\mathcal{G}_i^{(k)}]}, \tag{9}$$

where the degree of divergence ω is given by

$$\omega(\mathcal{H}) = -2L(\mathcal{H}) + D(F_{int}(\mathcal{H}) - r(\mathcal{H}))$$
(10)

and $r(\mathcal{H})$ is the rank of the ϵ_{ef} incidence matrix of \mathcal{H} .

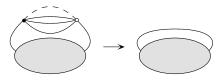
- (ii) These bounds are optimal when G is Abelian, or when \mathcal{H} is contractible.
 - Subgraphs with $\omega <$ 0 are convergent i.e. have finite contributions when $\rho \to \infty$.
 - Subgraphs with $\omega \geq 0$ are divergent and need to be renormalized. Traciality (or at the very least contractiblity) of divergent subgraphs is therefore needed for renormalizability to hold.

U(1) 4d models

- 1 A class of dynamical models with gauge symmetry
- Multi-scale analysis
- \bigcirc U(1) 4d models
- 4 Just-renormalizable models

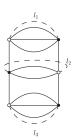
Divergent graphs

The renormalization of such models is triggered by so-called melopoles. They are the tadpole connected subgraphs that can be reduced to a single line by successive 4-dipole contractions.



Example:

- $\mathcal{H}=\{\mathit{l}_1\},\,\mathcal{H}=\{\mathit{l}_1,\mathit{l}_2\}$ or $\mathcal{H}=\{\mathit{l}_1,\mathit{l}_2,\mathit{l}_3\}$ are melopoles;
- \$\mathcal{H} = \{l_1, l_3\}\$ are not (the last one because it is not connected).



Classification of subgraphs

Theorem

- If $\omega(\mathcal{H}) = 1$, then \mathcal{H} is a vacuum melopole.
- If $\omega(\mathcal{H})=0$, then \mathcal{H} is either a non-vacuum melopole, or a submelonic vacuum graph.
- Otherwise, $\omega(\mathcal{H}) \leq -1$ and $\omega(\mathcal{H}) \leq -\frac{N(\mathcal{H})}{4}$, $N(\mathcal{H})$ being the number of external legs of \mathcal{H} .

Submelonic vacuum graph: grey blobs represent melopole insertions.

Corollary

For a given finite set of non-zero couplings, the theory has a finite set of divergent subgraphs.

Melordering

Lemma

Melopoles are tracial.

Renormalization is therefore possible in the realm of connected tensor invariants.

 One can use a Wick ordering procedure to remove divergencies. It is given by a linear map:

$$\Omega_{\rho}: \{invariants\} \rightarrow \{invariants\}$$

depending on the cut-off ρ .

• Precise expression of $\Omega_{\rho}(I_b)$ given as a sum over all possible contractions of melopoles in b.

Finiteness

One defines the renormalized theory through melordering:

$$\begin{split} \mathcal{Z}_{\Omega_{\rho}} &= \int \mathrm{d}\mu_{\mathcal{C}_{\rho}}(\varphi,\overline{\varphi}) \, \mathrm{e}^{-\mathcal{S}_{\Omega_{\rho}}(\varphi,\overline{\varphi})} \,, \\ \mathcal{S}_{\Omega_{\rho}}(\varphi,\overline{\varphi}) &= \sum_{b \in \mathcal{B}} t_b^R \, \Omega_{\rho}(I_b)(\varphi,\overline{\varphi}). \end{split}$$

Theorem

For any finite set of non-zero renormalized couplings $\{t_b^R\}$, the amplitudes are convergent when $\rho \to +\infty$.

 $\begin{tabular}{ll} \textbf{Conclusion}: $U(1)$ 4d models with gauge symmetry are super-renormalizable at any order of perturbation theory. \\ \end{tabular}$

Just-renormalizable models

- A class of dynamical models with gauge symmetry
- Multi-scale analysis
- \bigcirc U(1) 4d models
- 4 Just-renormalizable models

Setting [SC, Oriti, Rivasseau to appear]

Hypotheses:

- rank-d tensors;
- *G* of dimension *D*;
- $v_{max} = maximal$ order of interactions.

Question: necessary conditions on d, D and v_{max} in order to construct just-renormalizable models (i.e. with infinite sets of divergent graphs) ?

Notations:

- $n_{2k}(\mathcal{H})$ = number of vertices with valency 2k in \mathcal{H} ;
- $N(\mathcal{H}) =$ number of external legs attached to vertices of \mathcal{H} ;
- $\mathcal{H}/\mathcal{T}=$ contraction of \mathcal{H} along a tree of lines (gauge-fixing).

Necessary conditions

Proposition

Let ${\mathcal H}$ be a non-vacuum subgraph. Then:

$$\omega(\mathcal{H}) = D(d-2) - \frac{D(d-2)-2}{2}N$$
 (11)

$$-\sum_{k=1}^{v_{max}/2-1} [D(d-2) - (D(d-2)-2)k] n_{2k}$$
 (12)

$$+ D\rho(\mathcal{H}/\mathcal{T}), \tag{13}$$

with

$$\rho(\mathcal{G}) \leq 0 \quad \text{and} \quad \rho(\mathcal{G}) = 0 \Leftrightarrow \mathcal{G} \text{ is a melopole}.$$
(14)

Туре	d	D	V _{max}	ω	
Α	3	3	6	$3 - N/2 - 2n_2 - n_4 + 3\rho$	
В	3	4	4	$4-N-2n_2+4\rho$	
С	4	2	4	$4 - N - 2n_2 + 2\rho$	
D	5	1	6	$3 - N/2 - 2n_2 - n_4 + \rho$	
Е	6	1	4	$4 - N - 2n_2 + \rho$	

Table: Classification of potentially just-renormalizable models.

 φ^6 model on SU(2), in d=3

$$\omega(\mathcal{H}) = 3 - \frac{N}{2} - 2n_2 - n_4 + 3\rho(\mathcal{H}/\mathcal{T})$$
 (15)

Ν	n ₂	<i>n</i> ₄	ρ	ω
6	0	0	0	0
4	0	0	0	1
4	0	1	0	0
2	0	0	0	2
2	0	1	0	1
2 2 2 2	0	2	0	0
2	1	0	0	0

Table: Classification of non-vacuum divergent graphs for d = D = 3. All of them are melonic.

Theorem

The φ^6 SU(2) model in 3d is renormalizable. Divergencies generate coupling constants, mass and wave-function counter-terms.

Conclusions and outlook

Summary:

- Introducing connection degrees of freedom is possible in renormalizable TGFTs.
- Generically improves renormalizability.
- ullet U(1) 4d models with any finite number of interactions are super-renormalizable.
- 5 types of just-renormalizable models, including a SU(2) model in d=3.

What's next?

- Flow of the SU(2) model in 3d [wip]: asymptotic freedom? relation to Ponzano-Regge?
- Constructibility (of U(1) models first) [Gurau wip].
- Generalization to 4d gravity models [wip]: EPRL, FK, BO, etc.
 - geometry: interplay between simplicity constraints and tensor invariance?
 - with or without Laplacian (or other differential operator)?

Thank you for your attention