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Loop quantum gravity

Canonical loop quantum gravity (LQG) quantizes GR a /a topological quantum
field theory / lattice quantum field theory:

e Starting point: connection-triad field variables [Ashtekar, 1986]

{AL(X), EP(y)} = 6]035(x, ¥),
Gaussian + spatial diffeo. constraints + Hamiltonian constriant .

kinematics dynamics

e The wave-function of LQG state is based on (closed) oriented graph

Yr({Geteer) = ¥r(g91,92,- ),

ge € SU(2) holonomy (exponentiating AL): parallel transport matrix.
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Holonomy-flux algebra and intertwiner

¢ Holonomy-flux algebra: %,
[Ei, 9] = 927ig1
where 7; is su(2) Lie algebra basis,
and g = 0g-°09i. e,\

¢ Fourier decomposition to SU(2)-function (Peter-Weyl)

i i - . N
W(Ge) =D PonDoun(9e),  ge—position, je e 5 —momentum

e Assign intertwiner tensor ¢, to each vertex v, in order to make
wave-function gauge-invariant under g — ht(e)geh;(L)

Ly : ®Vje — ®er/ .
esv e'3v

¢ Intertwiner recouples spins into zero-angular momentum state (singlet),
entangling edge states naturally.
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Spin networks

A spin network basis state consists of triple data (T, {je}, {¢v})-

e The wave-function of spin network basis state is glued by holonomies and
intertwiners,

LA ({Geteer)

—ZH V2e + 1 (jemt|geljems) H< ® Jemg] Iy | ® Jemp)

fS e vV e|v=s(e) el v=t(e)

¢ Diffeomorphism invariance:

&) - )
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Advances and challenges

LQG took a big step forwards:
¢ Non-perturbative approach avoids divergence.
e Background independence: No referring to fixed background space-time.
e Admit quantum superposition and fluctuation of spin network states.

As well as some challenges and prescription:

e The problem of locality: How do we localize subsystems in the sense of
diffeomorphism invarinace? — relational perspective [Rovelli,1996]
(emerging from relation between subsystems.)

e Semi-classical limit: How do we recover classical general relativity from the
quantum theory? — coarse-graining [Dittrich, 2012], [Bodendorfer,2021].

e Dynamics: Hamiltonian is complicated. — holography: the conserved
charges of d-dim region can be defined on the (d-1)-dim boundary
[Freidel, Geiller, Pranzetti, 2020].
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QIT becomes relevant for LQG

Quantum information theory is crucial for loop quantum gravity. Without
background geometry, quantum geometry/gravity should be reconstructed
from quantum information.

¢ Black hole, information paradox [Rovelli, 1996], [Ashtekar, et al, 1998],
[Perez,2017], [Bianchi, Haggard, 2018].

Area law [Freidel, Livine, 2010], volume law [Bianchi et al, 2022].
Decoherence [Feller, Livine, 20171, [Fahn, Giesel, Kobler, 2022].

e Tensor network perspective [Chirco, Oriti, Zhang, 2018], [Colafranceschi,
Chirco, Oriti, 2022].

Typicality and thermal space-time [Anza, Chirco, 2017], [Chirco, Kotecha,
Oriti, 2019].

e Quantum reference frame [Carrozza, Hohn, 20211.

e Quantum simulation of quantum gravity [Cohen et al, 2021].
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Dynamics and holography

Quantum gravity's dynamics is holographic, inspired by, for instance

e Black hole entropy: S = 1A

¢ Quasi-local conserved charges: e.g., Brown-York energy [Brown, York,
1993], [Yang, Ma, 2009], [Odak, Speziale, 2021]

Equasi—local = / (2d extrinsic curvature)dS
ox

Holographic principle:

Gravitational degrees of freedom in d-
dim manifold can be encoded on the
d — 1-dim boundary.

In this talk, we put bulk-boundary rela-
tion into emphasise!

oo NS
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! Rathle
ravity in our
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projecting data
on 2 dimensional
surface
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The goals of this talk

Entanglement: the unfactorizability of quantum states [the correlations that
can't be interpreted classically] — Composite quantum state carries more
information than all its local states.

Dictionary between quantum geometry and correlations (in LQG):
e Distance [Feller, Livine, 2016].
e Metric [Baytas, Bianchi, Yokomizo, 2018].
e Curvature? See later.

| simply outline the goals of this talk:
e To study entanglement in spin network states: multipartite entanglement
measure.
e To reconstruct the gauge curvature from the notion of quantum
entanglement and correlations.
e To see how bulk-boundary relation makes sense in the context of
entanglement.
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Intertwiner entanglement v.s. boundary entanglement

Simplest case: single-link graph [Livine, 2018]

///_I?I // k‘] \\

E(A|B) T > j f P

2 / : \ jP ' \ /

¢ Intertwiner entanglement E(A|B): with respect to Ha ® Hp,

Hp = Inv <®v,~e®vj> , Hg=Inv <®v,~e®v,> :

edA e>B

e Boundary entanglement E(A|B): with respect to #3 © H3,

Ha=QRVi, Hz=Q V.

edA es>B
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Intertwiner entanglement v.s. boundary entanglement

Basic features of intertwiner entanglement:
e Spin network basis state: E(A|B) = 0.

e Entanglement emanates from spin-superpositions and
intertwiner-correlations.

Basic features of boundary entanglement:
e Spin network basis state: E(A|B) = In(2j + 1).

e The entanglement doesn’t depend on the holonomy inserted. This can be
confirmed by gauge transformation.
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Entanglement excitation

We focus on intertwiner entanglement, which is defined by the
unfactorizability between
%r C ®HV .

vel

Consider a spin network basis state (with fixed spins) as initial state, which
does not carry any intertwiner entanglement. After implementing a loop
holonomy operator, intertwiner entanglement is created since the operator
introduces spin-superposition. For instance, on candy graph:

2 K,

J A':/_\\,‘B Jo Z J1 . o
~--7 Ki,Ko

ko Ko
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Entanglement excitation

| focus on trivalent spin network with one topological loop 'in the sense of
L= E°—V+1where E° and V are numbers of bulk edges and vertices,
respectively. The curvature gets reflected in loop holonomy operator.

2 Ji

Ji J2

'We will explain this when comes to gauge-fixing. In fact, we can compute the entanglement
from boundary, by using the method in the next part.
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Loop holonomy operator

The loop holonomy acts on spin network state in the following way:
e Loop holonomy operator y, associated to loop W is defined by

Xe(@w) =Y Diyi 1y (91) Dy (92) -+ Dy, (9n)

m;

where ¢ is the spin of SU(2) representation, and x,(g) = Tr[D*(g)].
® The operator g, acts on spin network r by multiplication

Xe(gw) > 19r(9)) = xe(gw)[¥r(9)) -
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The representation of loop holonomy operator

e Each D’ introduces a spin-superposition along piecewise edge:
k+t
D' D" = (X) DX
|k—]

Then loop holonomy operator is represented by a product of series of
6j-symbols.

~ Tr
Xe> > >

Figure: The graphical representations for loop holonomy operator .
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Representation of holonomy operator

Figure: Each corner brings a 6j-symbol to the representation of holonomy operator.

Finally,

[z = / [T dge Wik ({96 eer) xe(Gw) Vi3 ({Ge}eer)

ecl

n .
:(—1)2:’7:1(ji+ki+Ki+‘€) H {Ié kK1 K"H} H\/ 2K+ 1)(2ki +1).
it

=1 ki
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Representation of holonomy operator: large spins limit

a(a+1)+b(b+1)—c(c+1)
2+/a(a+1)b(b+1)

Via asymptotic 6j-symbol when ¢ « ¢, a, b and cos 6 =

4
d62€1 (0) :

C a b (_ 1 )a+b+c+£+z-:2
{z b+ep a+e1}”\/(2a+1)(2b+1)

The asymptotic Z is expressed in terms of angles 6;, and spin-shiftings ¢;,

n
ZIN L~ T (0), with &= Ki— K.

€i€i+1
i=1



Curvature from multipartite entanglement
0000000008000

Multipartite entanglement

Multipartite entanglement has richer structure than bipartite entanglement.

e Schmidt form |¢ag) = (Ua @ Up) Z,L V/Ailia) ® |ig) can not be generalized
in general, i.e., generically,

d
[asc) # (Ua @ Up @ Ug) Y v Ailia) @ |ig) @ i) -

i=1

e Fragile entanglement, e.g., |GHZ) = i2(|000> +[111)).

e Non-fragile entanglement, e.g., |W) = %(\OOU +1010) + |100)).
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Entanglement measure form multipartite entanglement

e There are many inequivalent entanglement measures for multipartite
entanglement.

e We adopt geometric entanglement as entanglement measure: for a pure
state ¢, it is defined by [Wei, Goldbart, 2003]

Solv] = —Inmax| (V1)

where |¢) takes from all product states (unentangled).

* The goal is to study the evolution of geometric entanglement:
Sglto] = 0 — Sq[vi] where [¢) = e~ |yy).
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Entanglement and dispersion

On trivalent one-loop spin network, our results about geometric
entanglement excitation are listed as follows [QC, Livine, 2022]:

e The 1st- and 2nd-order derivatives of geometric entanglement are

dSg[¢1] 1.d%Sg[y]

dt 5 dp lt—o = (vo| H|vb0) — (1ol H|4o)? .

|t:0 = 07

* The general expressions match the computation on truncated state?
S f Topp

[¥1(2)) = Itho) —itH[tho) — 3T H" o) ,

that is, Sy[vrz)] = (ol H2[w0) — (vol Hlvo)2) 2 + O(t4).

’It is normalized up to fourth-order of ¢, i.e. (1) |1by2)) = 1+ O(t*).
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Entanglement and dispersion

e In particular, we can compute linear entropy Sj, = 1 — Tr(p?) by the
dispersion. For instance, the bipartite linear entanglement entropy in
candy graph is given by

Sinlpa(t)] = 2({tbol H?|1h0) — (thol Hlwo)?) 12 + O(t*) .
¢ In large-spin limit, using asymptotic formula for 6j-symbol as ¢ < ¢, a, b,

2¢

Sy ~ Z H Ps(cos b)) — H Py(cos 0)? .

s=0 Vv

Here P, are Legendre polynomials.
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Coarse-graining

Coarse-graining:=
reduction of graphic structure,

e Tracing over bulk holonomies — boundary density matrix [QC, Livine,
2021].

e Gauge-fixing bulk holonomies — loopy spin network.
In this part, we focus on

* The ‘gauge-fixing' coarse-graining approach.

e Evolution of the coarse-graining.

* The entanglement between spin sub-networks:  Hr C ), Hr,
(Generalization of intertwiner entanglement).
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Spin network with boundary

Entanglement between sub-networks involves boundaries.

We consider a spatial region with boundary which is described by an open
spin network. This picture is motivated by the study of black hole entropy.

J1,m1

Jsyms J4 T4

Figure: Spin network for a spatial region with 2d boundary where each 1d edge
punctures the boundary and presents a dual 2d area element [Livine, 2021].
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Boundary Hilbert space and bulk-boundary map

Every open edge carries SU(2) representation. The boundary Hilbert space is

defined as
Hor = CED He .
ecor
® A spin network wave-function defines a bulk-boundary map in terms of

functional [QC, Livine, 20211:
Yr : {Gecro} — Hor , {Gecro} = [Yar({Geere})) -
e Under gauge transformation ge — ht(e)geh;(;):

|¢8F({ht(e)geh;(19)}eero)> = (® hf/g(e)> [Yor({9e}ecro)) »

ecor

¢ Bulk-boundary maps make up a dual Hilbert space (Hy)*, with the same
scalar product as spin networks: for any |oar), [Yar) € (Ha)*,

(¢or|ar) ;:/ 1 dge (¢or({Geere})|tor({Gecro})) -

eclo
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Tensor product decomposition

[ar ({Gecro})) is @ boundary state associated with the bulk-boundary map «r.
* Any [¢ar({gecro})) admits a decomposition ®,V;, = P, Vs @ Ny:

Wor ({Geero})) € Hor = D X Clie. me) = PP P ClU. M) & LoDy

{Je} ecor {e} ;M (. Ue})

e Total spin J € N due to the gauge invariance of spin network state.
e Intertwiner .(/-Ue}) encodes the recoupling {jo} — J.

F evy
. i )
—_— ®clieme) ~ > >, %— M) ® | [eD)
L e Inv (VJ ? R V/-E) =N
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Coarse-graining via gauge-fixing

The 'gauge-fixing' coarse-graining procedure — I — T [Freidel, Livine, 2003]:
® Choose a ‘root vertex' (in red) and a ‘maximal tree’ in bulk (in red): connect
all vertices by a path that doesn’t form a loop.

 Implement gauge transformation ge — h:gehs ' along the maximal tree to
set these holonomies ge +— 1.

e Contract along the maximal tree. Edges out of the maximal tree become
self-loops (in blue). Thus we obtain a loopy spin network.
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Coarse-graining via gauge-fixing

Gauging-fixing from |ygr) to [var),

[or ({9e}ecro)) = <® hf/%e)) [vor({Getecro)) »

ecor

Gauge-fixing preserves the scalar product, from the viewpoint of
bulk-boundary map [QC, 2022],

(bar|war) = (dar|var) -

¢ Alocal unitary transformation w.r.t. the sub-network

[var) = Uplvor), U e U[(Ha)", (Ha)].
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Entanglement coarse-graining

e Spin network entanglement is preserved under the coarse-graining.

1~ !

,,,,,,,,,,,,,,,,,,,,,,

E(Ty:To:T3)=E(T1:T2:7T3).
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Loop holonomy operator and its coarse-graining

This local unitary transformation also leads to

holonomy operator transformation : fined graph <« coarse-grained graph

ka+2

Figure: On fined graph, the data for the representation of loop holonomy operator
are ¢, k., Ko+1, kat2 and recoupled spins. Gauge-fix the holonomy for spin k¢ into T
in the left side, then contract it.
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An example: square graph to candy graph

h ki h kR o kP2
4 J23

ke ko —> Z,-14,,-23>—<>—< — >AQB<

i ke Ja ks 3 o ks

The transformation rule is in the form of Zy, = UAUBZLUI‘UL

(—1)Shilith+Ki+0) Ji ki Kk [ ke ki [js ks ko) [ja ka ks
{ Ky Ky { Ky Ko Ko KS £K3 Ky

_ 1a-tjoa+ki+ Ky g+ Ka+20-+ 2k + 2Ky —2Ko—2Ky (o7 , o Ja s
_ZZ(_-])JM Jo3tK1+R1+K3+H3 2 4 2 4(2114+1)(2123+1){K3 K1 K4}

14 Je3

o o J3 Jes| [ja ki ks [joz ki Ks\ [j1 Ja s\ [l 3z o3
K Ki Kol 10 Ks Ki[1 0 Ks Ki[\ks ki kal \ks ki kol
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Entanglement coarse-graining: evolution of spin network

The spin network entanglement is still preserved under coarse-graining.

,,,,,,,,,,,,,,,,,,,,,,

Figure: The red path is the loop on which holonomy operator acts. The evolution of
spin network entanglement still gets reflected in the evolution of intertwiner
entanglement between loopy vertices.
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Entanglement excitation and closure defects

A direct corollary is about entanglement excitation considered in Part 2.

Jo h _

-

I3 I
auge-fixin :
gauge-fixing Z _.
—_— ik

Figure: Gauge-fixing for trivalent one-loop spin network. We call W the loop on
left-hand side, and L the loop on right-hand side

Then we can compute the entanglement by

(WolRe(gw)lvo) = (ol Xe(gr) o), (WolRe(gw)?lwo) = (PolXe(gL)?|Wo) -
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Entanglement excitation and total spin

The computation of entanglement excitation is relevant to total spin-J and
corresponding probability p(ky),

e Firstly, gauge-fixing tells us the boundary state written as

(@) = T VB S VTR D) (s ) um

a,b=—k
e So the dispersion is given by the expectation from |¢o(G))s :

2¢

1d°S, Jrstek [J K K
a2 32 o (L e

2
<Zpk J+£+2k{‘é Z Z}(2k+1)) .
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Example: candy graph

The entanglement excitation can be computed from boundary state:

ki - -
b\ gauge-fixing h J
A B ZJ: j2>—@ G

(a)

' b gauge-fixing i J
—a_ B 2 > <) e
J2

ko

(b)

Figure: The gauge-fixings on candy graph. The labels the maximal tree.
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Example: candy graph

e Two paths of gauge-fixing lead to two probability distributions:

2
J kK k
P = @k + D@+ {7 ML

J ke k)®
Pl = @k + 2s+ 1) {,) e e

* But the entanglement excitations are same. For instance, for py, (J),

2¢

J kKi k
-1 J+5+2kq 1 1 ok 1
dt2 ‘t 0 Zpk‘ 320(31) ) s ki ki (2 +1)

2
J ki Kk
(Zp’ﬁ 1)J+e+2k {g k k1}(2k1 +1)> :
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Example: path-dependency — spin-dependency

(a) Holonomy operator acts along (b) The coarse-grained graphs for
path j; — ka — > or path j; — k, — jo. path choices.
The path dependency is reflected on the spin of self-loop.

712 2612
Sin(paa) = 5 +O0(t%),  Sin(ppa) = o7 +O(%).
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Summary

Along the study of bulk-boundary map, we present the spin network
entanglement:
e Geometric entanglement as multipartite entanglement measure for loop
guantum gravity.
e 2-order entanglement excitation equals the dispersion of loop holonomy
operator.
e The spin network entanglement get reflects in loopy intertwiners.
* The spin network entanglement is preserved under coarse-graining, as
well as its evolution provided that the evolution is generated by holonomy
operator (curvature reconstruction).

e The coarse-graining implies that the d.o.fs relevant to entanglement are
encoded in boundary information and bulk topology.



Thanks for your attention!
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