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Geometry transition

Treat birth of white hole region from a black hole region through quantum

gravitational effects as a geometry transition problem. The mental picture is

that of a lens-shaped region enclosing strong, spatio–temporally localized, QG

effects. The process is described by a spinfoam transition amplitude, which

displays an emergent behaviour as a sum over geometries.

M, g

W ∼
∫
D[g]e

i
h̄SHE [g]

q,K

The phenomenon is not forbidden by any known physical principle. In principle,

quantum theory should describe the relevant physics, even if they turn out not to

be relevant experimentally. In particular, it should be possible to estimate

characteristic timescales with currently available technology.
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Summary

• We have not so far seen indications for lifetime shorter then Hawking
evaporation time. We do not exclude the possibility, have preliminary
indications for a much longer lifetime.

• An explicit simple estimate for transition amplitudes describing what
appears to be gravitational tunneling.

• Better understanding of how the relevant physics are encoded in the
black to white transition amplitude.

• Simpler form of the metric describing the Haggard-Rovelli
(“fireworks”) spacetime and a cleaner construction.

• Results will be reported shortly. Many open questions remain.
Developments and extensions in progress.
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Black holes age: Bouncing black holes?

“Of course, this calculation ignores the back reaction of the
particles on the metric, and quantum fluctuations of the metric.
These might alter the picture.” [Hawking, Black Hole Explosions , 1974]

“Once the density and curvature enter the Planck scale quantum
geometry effects become dominant creating an effective repulsive force
which rises very quickly, overwhelms the classical gravitational
attraction, and causes a bounce thereby resolving the big bang
singularity” [Ashtekar, The Big Bang and the Quantum, 2010]

Hawking evaporation, Page time, Firewall debate.

Dynamical evolution of interior and development of large volumes. [Rovelli, MC, De

Lorenzo, Bengtsson, Jacobsson, Ong . . . . . . ]

VS(v) ≈ Cm2 v +O(m) , v >> m , C ∼ 1

BH singularity resolution in LQG. [Modesto, Ashtekar, Bojowald, Singh, Corichi, Gambini,

Pullin, Olmedo, Saini, Alesci . . . ] , Black to white transition, an idea with history in other

approaches. [Hajicek, Kiefer, Bojowald, Singh, Goshwami, Maarteens, Husain, Winkler,

Barcelo, Carballo, Garay . . . ]
4 / 25



Haggard - Rovelli spacetime: exploding black holes
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• Models transition of trapped region formed
by collapse to anti-trapped region from which
matter is released.

• Spherical Symmetry (Irrotational).

• Matter dynamics and dissipation neglected:
Null shells S±.

• EFE’s exactly solved.

• Inside the shells Minkowski, outside the shells
patches of Kruskal.

• Trapped region in past of anti-trapped region.

• Interior boundary F−
⋃
C−

⋃
F+⋃ C+ sep-

arates part of system treated as classical and
quantum. Spacelike, extends outside trapped
surfacesM± and chosen arbitrarily so long as
trapped and anti-trapped regions present.

[Haggard, Rovelli, De Lorenzo, Perez, Barrau, Bolliet, Vidotto, Bianchi, Smerlak,. . . ]
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Metric à la Vaidya
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ds2 = −
(

1− 2m

r
Θ(u− uS+)

)
du2−

− 2dudr + r2dΩ2

r
T
= r

v − u T= 2r∗(r)

Fiducial surface T separates two Kruskal patches.

ds2 = −
(

1− 2m

r
Θ(v − vS−)

)
dv2+

+ 2dv dr + r2dΩ2
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Length (Mass) scale m and time scale T
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T = uS+ − vS−

u → u− (vS− + uS+)/2

v → v − (vS− + uS+)/2

ds2 = −
(

1− 2m

r
Θ(v + T/2)

)
dv2+

+ 2dv dr + r2dΩ2
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Bounce time parameter T
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A parameter determining a time scale for the
spacetime. It appears naturally in the proper
time invariant integral along the orbits Υ of
the Killing field, corresponding to stationary
observers.

T = uS+ − vS−

τR =
√
f(R)(uS+ − vS− + 2r∗(R))

T =
τΥ√
f(AΥ)

− r∗(AΥ)

8 / 25



Relation to “crossed fingers”
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rδ radius at which null shells cross in “crossed
fingers” mapping (middle left figure above).

rδ = 2m(1 + δ)

δ = W
(
e−

T
4m /e

)
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A minimalistic setup for geometry transition
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M, g

W ∼
∫
D[g]e

i
h̄SHE [g]

q,K

Prototypical setup for studying geometry transition. The
geometry of the spacetime depends on two classical phys-
ical scales, which become encoded in the boundary state
|Ψ〉. In turn, quantum theory correlates the two scales in a
probabilistic manner through a transition amplitude 〈W |Ψ〉.

10 / 25



Covariant LQG in a nutshell: EPRL partition function

General relativity as constrained BF-theory

SBF [B,ω] =

∫
B ∧ ?F (ω)

SH [B, λ, ω] =

∫ (
B +

1

γ
? B

)
∧ ?F+

+λCS [B]

CS [B]µνρσ ≡ εKLABBKLµν ∧BABρσ −

− 1

4!
BαβCDB

γδ
IJεαβγδε

CDIJεµνρσ

B = e ∧ e+
1

γ
? e ∧ e

BF theory topological, can be quantized exactly

for compact gauge groups.

WBF =

∫
D[ω] δ (F [ω])

WC ∼
∫
µ(ge) δ(

∏
e∈f

ge)

Bf ∼
∫
f?
B , ge ∼ Pe

∫
e ω

Imposition of CS [B] at the quantum level: ex-

pand only in “simple” unitary irreps of SL(2,C) .

WC =
∑
jf

µ(jf ) ×

×
∫
SL(2,C)

µ(gve)
∏
f

Af (gve, jf )

︸ ︷︷ ︸
“partial amplitude” ∼ exp i

~S
C?
R

Af (gve, jf ) =

∫
SU(2)

µ(hvf ) δ(hf )×

× Trjf

∏
v∈f

Y †γ ge′vgveYγhvf


[Barret,Crane,Freidel,Krasnov,Speziale, Livine,

Perreira,Engle,Rovelli, Baratin,Oriti,Han,Haggard,Riello. . . ] 11 / 25



Boundary state ΨΓ

Wavepackets of geometry: coherent spin–network states. Peaked on
intrinsic and extrinsic discrete geometry of spacelike tetrahedral
triangulation. Here, gauge variant version. Labelled by (dimensionless)
data: boost angles ζ, areas ω per link and 3D normals ~k per half–link.
Semiclassicality parameter t ∝ ~k , k > 0 (small).

ΨΓ,t`(h`;ω`, ζ`,
~k`n) =

∑

{j`}

∏

`

dj`e
−(j`−ω`)2t+iζ`j`ψΓ(h`, j`; k`n)

Superpositions of intrinsic coherent states

ψΓ(h`, j`;~k`n) =
⊗

`

〈j`~ks(`)|Dj`(h`)|j`~kt(`)〉

Up to normalization, correspond to a large-j limit of Thiemann’s heat kernel
overcomplete basis of coherent states for HΓ = L2[SU(2)L/SU(2)N ],
parametrized in terms of twisted geometry data. The latter label points in phase
space of discrete general relativity corresponding to HΓ and are easily related to
holonomy–flux data.

[Thiemann, Winkler, Livine, Speziale, Freidel, Bianchi, Perini, Magliaro,. . . ] 12 / 25



Discretization - Truncation - Skeletonization

Oriented
boundary
graph Γ

Spinfoam
2-complex C

Spinfoam
skeleton

Dual to two
4-simplices with
one tetrahedron

in common
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A well–defined expression for WC(m,T )

Can perform SL(2,C) integrations explicitly using Cartan decomposition

g = u er
σ3
2 v−1 , dg =

sinh2 r

4π
dr du dv

Explicit, analytic, finite. Numerics and asymptotics under development [Speziale,

Vilensky, D’Ambrosio, Dona, Sarno, Martin–Dussaud, MC . . . ]

WC(m,T ) =
∑
{j`}

w(m,T, j`)
∑

{Jn},{Kn},{l`}

(⊗
n

N
Jn
{jn}

({~nn}, {αn}) fJn,Kn
{jn}{ln}

) (⊗
n

i
Kn,{ln}

)
Γ

w(m,T, j`) = c(m)
∏
`

dj`
e
−t(j`−ω(m,T )`)

2
e
iγ(m,T )ζ`j`

N
Jn
{jn}

=

←−⊗
`∈n

D
j`
m`j`

({~kn}, {αn})

 i
Jn, {jn}
{−→mn}

f
Kn,Jn
{jn}{ln}

≡ dJn i
Jn, {jn}
{−→p n}

∫ drn
sinh2 rn

4π

−→⊗
`∈n

dj`l`p`
(rn)

 i
Kn, {ln}
{←−p n}

dKn

The mass m and bounce time parameter T encoded only in the weights.
Use the semiclassical limit of the EPRL to estimate the partial amplitude.
How to perform the spin sum? 14 / 25



Emergence of WMH sum–over–geometries in covariant
LQG

WC =
∑

{jf}

µ(jf ) I(jf )

WWMH ∼
∫
D[g] e

i
~SHE [g]

WNR
C? ∼

∫
µ(`s) e

i
~S
C?
R [`s]

WEPRL
C ∼

∫
µ(af ) e

i
~S
C?
R [af ]

Subtleties: Multiple semiclassical critical points for given areas (cosine feature).

When considering Regge-like boundary data, critical points reconstruct Lorentzian

4D, Euclidean 4D, and 3D (degenerate) simplicial geometries.
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Performing the spin sum

We restrict to amplitudes defined on fixed 2-complexes C without interior faces,
dual to simplicial topological triangulations. We consider coherent spin–network
boundary states built on the boundary graph Γ = ∂C. Each face f is labelled by
its link `. Work in Han-Krajewski rep., combine with results by Han and Zhang.

WC(ω`, ζ`, k`n, t) =
∑

{j`}∈Ω({j`},t,K)

µ(j)

(∏

`

e−t`(j`−ω`)
2

eij`γζ`

)
×

×
∫

Ω(g,z)

µ(g) µ(z)
∏

`

ej` F`(g,z;k`n)

︸ ︷︷ ︸
“partial amplitude” ∼ exp i

~S
C?
R

Idea of calculation: Assume ω,~k Regge-like. Bring amplitude to form

WC(λ, δ`, ζ`, t`) = f(ω`, ζ`)

∫

Ω(g,z)

µ(g) µ(z) eλΣ(g,z; δ`,~k`n) U(g, z; t, ζ`)

and use fixed–spin asymptotics: ReΣ = δgΣ = δzΣ = 0. Critical point of
partial amplitude determined only by area data and 3D normals,
giving dihedral angles φ(ω,~k) that do not in general agree with
boost data ζ. 16 / 25



Sum over spin fluctuations

Split spins into fluctuations s` and area data ω`. In turn, split ω` into a
large (dimensionless) parameter λ, to be identified to a macroscopic
physical area scale, and the spin data δ`. K ∼ 1 acts as regulator.

j` = ω` + s` = λ δ` + s`

s` ∈ {−
K√
2t
,
K√
2t
}

Subtle to exchange integrations over g and z and summation over s`. The
fluctuations must not be such that the dimension of the SU(2) intertwiner
space vanishes. Sufficient condition, semiclassicality condition ω

√
t� 1,

always satisfied for coherent spin–network states

ΩΓ ≡ {{s`} : ∀e, {max(|λ0(δi − δk) + (si − sk)|),
min(λ0(δi + δk) + (si + sk))} 6= ∅, (i, j) ∈ e}

ω
√
t� 1⇒ Ω({s`}, t,K) ⊂ ΩΓ
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Estimate for decaying amplitude

Then, at a critical point

F`(gc, zc;~k`n)→ −i φ`(sc(v); δ`,~k`n)

U(gc, zc; t, ζ`) =
∑

{s`}∈Ω({s`},t,K)

∏

`

e−s
2
` t`eis`(γζ`−βφ`(sc(v);δ`,~k`n) )

The sum can be done exactly. Morally, we get gaussians in the boost data
and the dihedral angles (periodicity in ζ neglected here):

WC(λ, δ`, ζ`, t) ∼
[∑

s(v)

(λ)Nµ(δ`)×

×
∏

`

exp

(
− 1

4t

(
γζ` − βφ`(s(v); δ`,~k`n) + Π`

)2
+ iλδ`(γζ − βφ(δ`;~k) )

)]

× (1 +O(1/λ))
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Gravitational tunneling

Solving an initial value problem for Einstein’s equations with Cauchy data
the intrinsic and extrinsic geometry of the hypersurface formed by the blue
hypersurfaces and the upper (lower) boundary surface, and evolving
towards the direction in which the foliation time increases (decreases),
gives the upper (lower)–half of the spacetime.

|W (ω, ζ,~k, t)|2 ∼
∏

f

e−(γζ−φ(ω;~k)2/4t , t ∝ ~k , k > 0

|W |2
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Transition amplitude for fixed mass m
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W2 for m = 10, 11,..., 15 and

k = 2, γ = 1. Peak height normalized to unit. ω∆ = 2
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Amplitude is periodic in boost data: W (ζ + 4π
γ ) = W (ζ). In twisted geometry

parametrization, extrinsic curvature encoded through ζ in SU(2) group element,

interpreted as AB-holonomy. Truncation, estimate reliable when ζ < 4π
γ .

Pronounced peak within each period.
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Crossing time

τc =
2πm

γ

τc for t = m
-1
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Plot of τc for γ = 0.1, 0.2,...,1

Interpolation:
2π m

γ

Checks: Boundary area and normals determine degenerate 3D simplicial

geometry. Modified area data to account for arbitrariness in discretization and

allow intrinsic curvature. Thus, critical point of partial amplitude Lorentzian or

Euclidean 4D. Cosine feature. 21 / 25



Crossing time on general grounds

A(m,T ) = m2Ã(x) , ζ(x) , x ≡ T/m

|W (m,T/m, t)|2 ∼ mNµ(T/m)
∏

`

e−(γζ`(T/m)−βφ`(T/m)+Π)2/4t

τc(m) = m

∫
dx xF (x)

∏
` e
−(γζ`(x)−γφ`(x)+Π`)

2/4t

∫
dx F (x)

∏
` e
−(γζ`(x)−γφ`(x)2+Π`)2/4t

τc(m) ≈ m xc(γ) (1 +O(t) ) or τc(m) ≈ m O(e−1/t)

Integration is over one period, monotonicity of boost angles in x exploited. An

example of an estimate from covariant LQG that is not strongly dependent

on a specific choice of hypersurface, discretization and 2-complex. Cosine

feature and different kind of geometrical critical points do not alter conclusion.
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Lifetime

• The linear scaling in the mass for τc appears to be corroborated by two other
groups [Hajicek,Kiefer,Garay,Barcelo,Carballo]. Does not make sense as a lifetime:
absence of ~ and far too short.

• The definition we initially gave for the lifetime corresponds to a different
timescale of the phenomenon: its characteristic duration when it takes
place.

• The lifetime is expected to be roughly the inverse of the probability of the
phenomenon to take place. The former should go to infinity and the latter
to zero as ~→ 0. Transition amplitude has an overall exponential
suppression factor depending on t.

|W |2 ∼ e−1/t , t = ~k/2/mn , 4 > k > 0

p ∼ e−m2/~ , τL ∼ em
2/~ , dP (T )/dT

?
= P (T )/τL

Regarding experimental relevance, τL ∼ em
2/~ would be disappointing.

Perspective: as a matter of principle, does LQG predict that black
end their life by exploding as white holes? 23 / 25



Perspectives and directions

Plenty remain to be done. . .

• Relation to results in canonical framework. [Singh, Corichi, Olmedo, Saini ]

• Code black and white hole phase duration in boundary state and take into
account limitations from WH instabilites. [De Lorenzo, Perez ]

• Include interior faces. Use symmetry reduced spinfoam model? Cuboids?
[Bahr, Steinhouse, Kloser, Rabuffo ]

• Analogy with 1D QM propagator in tunneling phenomena. Complexify
spinfoam variables? [Han, Haggard]

• Concentrate on region close to trapped and
anti-trapped surface, encode their presence
in boundary state. Allow singularity surface
in spacetime?
[Synge, Peeters, Schweigert, van Holten]
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That’s all
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