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Inhomogeneous extension Bianchi |
model



Proposal I

Motivation: can we preserve “more” of the full Loop Quantum
Gravity structure in Quantum Cosmology??

We want to define a weaker reduction of gravity phase space which
captures the relevant cosmological degrees of freedom such that

_aresidual diffeomorphisms invariance is retained and the scalar
constraint can be regularized.

Inhomogeneous extension Bianchi | model



Diagonal Bianchi line element I

Only part which
depends on x

ds? = N2(t)dt2—e20((e200) - i

Universe volume diagonal and with Fiducial 1-forms
vanishing trace
Two independent dwt — C ;z}kwj A wh
components: /

Anisotropies @

One considrs oy ype A =1 __, Sorsartdopendng

model
Most relevant cases: |,Il, IX...



Reduced phase-space I

Momenta: E;&! — pf(t)ww? pe" — €2a€_3”
Not summed
Connections: A’ = ¢;(t)w!.. Ci = (%(a + Bii) + O«-é) e el
It depends on the kind of
Poisson brackets: Bianchi model adopted
7 St
{p3< ) >}PP_ L,T ﬁé‘f
Fiducial volume (it can
be avoided by rescaling
_ variables)
Holonomies: edge length
ol
h’E’i — £ /—‘E. 171

edge along w.



Bianchi | I

The simplest case is Bianchi | model

C} . =0 Wt = 53@:@

ds* = N2 (t)dt*—a?(t)(dz" > —a3(t)(dz?) > —a3(t)(dz?)?

Three scale factors along Cartesian coordinates S 53‘1:1:‘1
Let us consider the integral curve I'. of the dual vector
field w=0"0_ L ( )
r —
1) = const.
Phase-space variables rorore

E¢ = p/(1)8 Al = ci(t)0 7



If we retain a dependence on spatial coordinates in the reduced
variables of a Bianchi | model....

B = p' (. x)0; Al = ¢;(t, x)0

1) Re-parametrized Bianchi | model:

ds®* = N*(t, z)dt*—ai(t,z")(dx')* —a3(t, 2*)(d2?)*—a3(t, 2°) (dz?)?

the three scale factors are functions of
the associated Cartesian coordinate

2)Kasner epoch: it describes the behavior of the generic cosmological

solution du'ring each Kasner epoch.
N2(t, z)dt*—ai(t, z)(dz' ) —ai(t, x)(dz?)*—a3(t, z)(dz?)

ds’® —

Spatial gradients negligible with
respect to time derivatives.



Reduced phase-space I

Momenta: | Connections:
Ef = p'(t.2)5 A = et )0

( 2 XD TN
Poisson brackets: {P'(t.z), ci(t,y)} = MG’}"’O;‘O (z—y)

Given a metric tensor, all triads related A unique choice implies a gauge-
by a rotation are equally admissible. fixing of the rotation group

a _ pk a ko _ sk
El'= R".E} R = o,

Gauge fixing condition: ~ \; = > ;. E_ﬁkEE@é = (

Restriction of admissible diffeomorphisms Reduced
to preserve the expression of connections:> diffeomorphisms ¢

and momenta.




Kinematical constraints I

U(1). Gauss constraints: (5, = 0;p" = ( notsummed

Along each I'

a1 - s
G; = 0;p' = ( spatialindex

generates U(1) gauge transformations.

u1), U@) uUQ),

. U(1), r
C and p' are the connection )
and the momentum of a U(1) g P
gauge theory on each I . u(1), e
r r' r"

1 1 1

By varying i one gets three independent U(1) gauge groups.

10



Reduced diffeomorphims: D; = Z[]g)-j dicj — 0 (}g)--'j Cj )]
on each I’ /

| 4 i Infinitesimal i cilod
T =TI TG parameter ' =¢'(a")

Given an edge e, along w =0 °d_a reduced diffeomorphisms acts as

A generic
x"'=x"+¢'(x") , diffeomorphisms in the
> 1 1-dimensional space
| . generated by w

XER ), A rigid translation
e e" € along the directions
| generated by w  for j#

A reduced diffeo maps an edge e into another
edge e’ which is still parallel to the vector field w t




Reduced Quantization



Reduced quantization I

Let us quantize the algebra of holonomies along reduced graphs and

fluxes along dual surfaces: edges e

U(1). holonomies along e Fluxes across dual surfaces S'

1, e’ le
he =P (63 fe-zf Cg‘dﬂ) p fgg P’ “]’1 dudv | I

/ ')'i Si

U(1). group element

Kinematical Hilbert space: U(1), Haar measure

H = @F@ Hr = ®; Dfe;,cT) LQ(U(I)-& dﬂ-i)

13



A generic functional over a graph is given by

functions of U(1),
group element

Basis: U(1) networks

Momenta act as invariant vector fields of the U(1) groups

p'(S*)be; = 8myl% Zn.?; n;eti0 o)

U(1) Irreps

14



Kinematical constraints:

1) Relic Gauss constraint (3 = O;p' =(  theygenerate U(1)
| | gauge transformations.
e'i
e —1/. -1
he, — Ai(xo)he A (1) o e ¢
1 1
TZ
. . . . . e
Projection on the U(1) gauge-invariant Hilbert space: 2
: f dA\idNs. ..
e'2 n2
U(1). quantum numbers o
conserved along w - ~
1 1
e2 Ir']2
qQ, _
i Lattice structure
2
S2

Not allowed!

15



2) Reduced diffeomorphisms:

Action of reduced diffeomorphisms:

Invariant states via a sum over reduced s-Knots.

f‘f ( - ) — ZFE S “F ( ' )

S: equivalence class of graphs
under reduced diffeomorphisms

16



Can we implement the dynamics (Thiemann prescription) ?7?? NO

We cannot attach the

holonomies needed
to regularize the <:h

The attachment of a
U(1) group element
spoils U(1) gauge

superHamiltonian invariance
m2 A mz A
n n (n+1), n
> —> —>
e—
1 U(1) quantum
1, 7 (m+1), 4 numbers not
1, 2 conserved
m2 1 m 1

The drawback is the absence of a real 3-dimensional

vertex structure.

We need a nontrivial interplay
between U(1). quantum numbers

Truncation of the
full theory 17



Introduction to Quantum-reduced
Loop Gravity



Proposal |

reduction

{AL(t,2), El(t.y)} = $7G05050° (x—y) > ((t.2),cift. )} = S7Gd85 =)

reduced
phase-space

quantization quantization
Hr = ®4ecryLASU (). dy Hr = i ©e,cry LU Wi dp')

277

Can we infer the KINEMATICS of the reduced model from the full theory??

19



generic graphs, SU(2)
group elements, invariant
intertwiners, background
independence..

Metodology: Truncation of LQG Hilbert space in order to get

1) the same lattice Projection to graphs Reduced
structure as in with edges e diffeomorphisms
reduced quantization

Non trivial

Projection from SU(2) vertex structure
2) U(1) group elements group to U(1) subgroups from SU(2)-

invariant Hilbert
space!

Emanuele’'s talk.......

20



1 Projection to reduced ML 7
) graphs (with edges e) @

Ph, = { he e = ¢,

0 otherwise

projector ' f
Action of U,he = h (e)

diffeomorphisms

.;‘f_ﬁffLr; __ P[T&T P

Diffeo in reduced space

4], h,, = PU,Ph,, = PUjh,, = Phy., = Ui he, “Up= = Uped,

restricts the class of admissible quantization by summing over

The truncation of admissible edges Invariant states as in reduced
diffeomorphisms to reduced ones. :> reduced s-knots.

21



(Partial) Conclusions:

reduced quantization inhomogeneous Bianchi | model:

_ Hilbert space: square integrable functions of U(1) group elements

attached to edges e..
n, n, m m, p.
q1 q2 r-1 r2 S1
__kinematics: OK! U(1). gauge invariance via invariant intertwiners

reduced diffeo-invariance via reduced s-knots
__dynamics (Thiemann-like prescription): NO!!
Quantum reduced Loop Gravity:

_truncation to reduced graphs: only reduced diffeomorphisms are
iImplemented.

_ what has to be done? Reduction from SU(2) to U(1) elements. ™
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Reduced Kinematical Hilbert Space: Cosmological LQG
Constraints
Hamiltonian

News



‘Cosmological LQG

GOAL:

Implement on the SU(2) Kinematical Hilbert space of LQG the classical reduction:

Ai

a

= ci(t, z)w, Ei = p'(t, r)ww]

{p'(z,t),c;(y,t)} = 87GY3;6° (z — y)

First truncation: we restrict the holonomies to curves along
edges €i parallel to fiducial w;' vectors

The SU(2) classical holonomies associated to the reduced variables are

PN —

Rpi = exp (m"n)

Holonomy belong to




Consider fluxes across surfaces x%(u,v) with normal vectors
parallel to the fiducial ones

¥

The classical reduction implies

1 1
Ez(Sk) = /E?—wgdudv /p,;—dudv
w ()

For consistency only the diagonal part of the matrix E,-(Sj) is non vanishing

N

i Second class with the | Xi = Z €1 "Er(SY) =0
Lk




How to implement the reduction on the holonomies and consistently impose .=0 ?

Strategy: Mimic the spinfoam procedure

Impose the second class constraint weakly to find a “Physical Hilbert space”

Engle, Pereira, Rovelli,Livine ‘07- ‘08

Imposing a Master constraint strongly on the SU(2) holonomies:

X = Z XiXi = Z 0" 61 Ei(S*)Em(S') — Ei(S*)Ex(S")]

i,m,k,l

X*hl, = (8mylp)*(r* — mims) ]| =

| Different i for each

To solve it is convenient to introduce SU(2) coherent states




SU(2) coherent states

jym > D7 (@)m;

5,@ >= DY (@)|j,j >=)
m

The Master constraint condition acting at the endpoint
(the conjugate condition at the starting point):

X>D?(g)lj, @ >= D(g)(r* — (& - 7)*)|s,@ >= D (9)(j(j + 1) — (& - 7)*)|j, @ >

Using the property ¥ - T|j,7 >= j|j,7 >

If e; = u inthelarge 7 limit up to Lp corrections the basis element will satisfy:

x*D?(g)|j, @ >=0

Reduced basis Elements

(j, €D (9)|4, €)




There is a natural way of embedding U(1) cylindrical functions in SU(2) ones:

Projected spinnetworks (Alexandrov, Livine '02)
with the Dupuis-Livine map (bupuis Livine '10)

f:U(Q1) = SU(2)
- (2)
¢@=demmwmjifg///uﬁi

R@M=ZLmM%WMWM%///Um

These SU(2) functions have the remarkable property that they are completely determined
by their restriction to their U(1) subgroup

(9)|luay =¥



If we consider projected functions defined over the edge €; choosing the subgroup
U(1), as the one generated by T;

iwiD%g& r=mn; (g) g;;i\
i Ui] i iuantum

L <i.é|D(g)j.6 >

The Master constraint equation selects the degree of the map:

ni| = j(n)

The strong quadratic condition implies the linear one weakly
(restriction to symmetric matrix) !

¥

< J)“Ek(sl)ld;z >= 8’”'7[%3 ng: /dgiD;::j'(g)Tking (9) 'Z,— =0, k #1

2,7’




The quantum states associated with an edge e, are entirely determined by their
projection into the subspace with maximum magnetic numbers along the

internal direction I

vay = 3 €0yl =N "< 4 1Rk 15,5 >
j j

~

'l.i"ei — '1#'-'"(9 )ei

The action of fluxes El(Sk) on the reduced space is nonvanishing only for /[ =k =i

Ei(S )., = 81713 Z]DJ 11“7

This is how we find in the SU(2) quantum theory the classical reduction

Afl e Cz'(t, .’13)0.)}1 E,? = pi(t, :r)wwf {pz(m t)a Cj (ya t)} — SWGA/(s_;dg (iU o y)

9




Analogy with Spinfoam Quantization:

SL(2,C) basis elements SU(2) basis elements
: : k . :
<g|pa k,],m,]',m') =D§m3'm’(g) '—'} (g|],m,7‘) =D£nr(g)

0(g) =Y dj Yjmn DI (g) wemmmmd (g)e, = Y DI . (g)Ul

jmn n;
Linear simplicity constraint

K+~L =0 ' g TRl =0 Vk#i
Quadratic part of the constraint imposed strongly:
(2901 = (2 = D)) =0 ot (r* = riri)hd, = 0
Select j(n)=n
p=nk
o . o Only one condition (SU(2)
Weakly satisfied in the large limit @ has only one parameter label for the irrep.)
<¢|K + 'YLW”) =0 Weakly satisfied in the large limit
- Iy
Select k=3 < Vi|Ex(S*)|Yi > =0
. . inylJl
gl = D00 (9) = / dh K(g,h) D?,,.(h) glx = Dj;(9)
, SU(2) 10



If we define a Projector P, on Physical reduced states:

The projector P, acting on - SU(2) cylindrical functions defined on general Graphs I :

Restrict the Graphs to be part of a cubical lattice

Select the states belonging to the SU(2) subspace where our constraint conditions

hold weakly:

¢(g)€i = Z ID%ZZ, r=n; (9)¢§:

n;

11



What is the fate of the GR constraints ?
Ci(A, E) W) | piGn

The Gauss constraint of the full theory is implemented by group averaging

Pg = / dg Ug(g) Ug(9)Dln(he) = D3, (gs(e) heGe(e))

Spinnetwork states: M

< th, {je}, {mv} >= H H Iy - D?e (he)mn ?

vel ecl' |

///6 S
e .




Implementing | PIiG;P,

The reduced states will be of the form :

< h|raj€:$U>R = H H <ji:x|jiaﬁi -~ iDjei (hei)jiji

vel'eel’

Projection on the intertwiner base of the Livine Speziale Intertwiner: Livine, Speziale ‘07

|ji7ﬁi >= |j1a°" 7jiau—ia"' ’zz‘i >:/ dQHl]hm >
1

SU(2) intertwiner

projected on coherent states:
Reduced intertwiner \

SU(2) holonomy

Projected on coherent states ————
Reduced holonomy

13



A A 7
4 1l I

Hlﬂli
A U
A 1A )
L VWV




E—

Va.(A, E)

Full Theory:

On the reduced space:

s-knot state

ey PV, P,

Ashtekar, Lewandowski,
Marolf, Mourao, Thiemann

Reduced s-knot states

Equivalence class of graphs that preserve the cellular structure:

15




Hamiltonian Constraint
f(A,E) =y | PP, >

The regularized Euclidean constraint in the full theory reads:

T. Thiemann '96-"98

Nn 1 m m m
(2) Jk’]:’rl:h(z)h( ) (R, }]

H@ IN] := NZ

We regularize a la Thiemann, but using only elements of the reduced space:

N(n)
N2

m

Ryirm . ijk R(m)R (m) R (m)—1
H™ [N]:= IE T RRRRG {RRGD =, VY

16



Action of the operator Rovelli, Gaul ‘00

on a tri-valent node: Alesci, Thiemann, Zipfel ‘11
é Ji Computed with recoupling theory
adapted to the reduced case
RHm@ [N] xt" R

j )
%
é §k+m
}**0“7» + Ayl jijam) f }*:‘)

J+m ‘gy' “5' é
y -m

+ Permutations ;

3

AUO i ]]J k,m)



AijUi, jj,jk,m) =

VI L[ sy drm ey (g e ey e g m ey

Remarkably this expression for m=1 and large values simplify to

Diagonal
volume

;>J ‘: 7j +.7k (1 +c]os0]k) 0‘&

J+m

ji + 75 (1+ cosbij) ;'0 w'l' Ji +]k (1-|-cos€k)

Jk Jk ﬂJ,+m ﬂ Ji
L

"y ©
F
<O



Jrm hem : ‘

;‘JMJ itk (1+]i0) 04
g o R 0
J-m ‘

+ 75 (1 + cosbij) Ji +J (1 4 cosbix)
. ]kJJ Jk Jﬂf 0’”-‘- Jj
o

"y ©

C1C2 ci1€C3 Ca2C3
+ +
pP3 P2 P1

=0

19



l ~ News ]

——

\PF,Hz(hl) — /Hdgn HKal(hla gs(1) Hl g&ll))
n [

S
ot e

Hall, Thiemann, Winkler, Sahlmann, Bahr

alEl )
8wGhry

H; = h; exp(i

SL(2,C) element coding classical data

‘I’Hl hl Z "J)Hl ]la Zn) Jisin (hl) intertwiner base

Jlsin

20



Large distance asymptotic behaviour Bianchi Magliaro Perini

B 8mGhy

21



Project in our reduced space the coherent states
Py|Wh,) = V)R

Single cell:

Uy glr = FUy, Ao Uy, 7 bo+ Vo od ¥
If}«vi ip Q:

Expectation value of the -
Hamiltonian on coherent — R pym

amiltonian on cohere R(‘I’H,@|H@|‘I’H@>R —
states for a single cell:

p1p2 p3 p3p1 C!assmgl

3 C1C2 T 7 C2C3 + 5 C3C1 Bianchi |

P P P . :
Hamiltonian

22



Perspectives

This analysis opens the way to

Study the Physical solutions on the Dual Diff invariant Space and
eventually construct a Physical Scalar Product

Add matter as a clock: Big Bounce ? QFT on quantum spacetime ?
Link to LQC ? Ashtekar, Agullo, Barrau, Bojowald, Campiglia, Corichi,
Giesel, Hofmann, Grain, Henderson, Kaminski, Lewandowski, Mena
Marugan, Nelson, Pawlowski, Pullin, Singh, Sloan, Taveras, Thiemann,
Winkler, Wilson-Ewing

Spinfoam Cosmology? Bianchi, Krajewski, Rovelli, Vidotto

Something Different ?

(In the homogeneous anisotropic case the scale factors are not independent)

Arena for the canonical theory:
AQG, Master constraint, deparametrized theories.. Computable! 23




