Quantum Reduced Loop Gravity I

Francesco Cianfrani*, in collaboration with Emanuele Alesci

March 12th 2013.

International Loop Quantum Gravity Seminars.

^{*}Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski.

Plan of the talk

_Inhomogeneous extension Bianchi I model

_Reduced quantization

_Introduction to Quantum-reduced Loop Gravity

Inhomogeneous extension Bianchi I model

Proposal

Motivation: can we preserve "more" of the full Loop Quantum Gravity structure in Quantum Cosmology??

We want to define a weaker reduction of gravity phase space which captures the relevant cosmological degrees of freedom such that

_a residual diffeomorphisms invariance is retained and the scalar constraint can be regularized.

Inhomogeneous extension Bianchi I model

Diagonal Bianchi line element

Only part which depends on x

$$ds^2 = N^2(t)dt^2 - e^{2\alpha(t)}(e^{2\beta(t)})_{ij}\omega^i \otimes \omega^j$$

Universe volume

diagonal and with vanishing trace

Two independent components: **Anisotropies**

Fiducial 1-forms

$$d\omega^i = C^i_{jk}\omega^j \wedge \omega^k.$$

One considers only type A $C_{ij}^i=0$

$$C_{ij}^i = 0$$

Most relevant cases: I,II, IX...

Constant depending on the kind of Bianchi model

Reduced phase-space

Momenta:

$$E_i^a = p^i(t)\omega\omega_i^a,$$

$$p^i = e^{2\alpha} e^{-\beta_{ii}}$$

Not summed

Connections:

$$A_a^i = c_i(t)\omega_a^i,$$

$$c_i = \left(\frac{\gamma}{N}(\dot{\alpha} + \dot{\beta}_{ii}) + \alpha_i\right)e^{\alpha}e^{\beta_{ii}}$$

Poisson brackets:

It depends on the kind of Bianchi model adopted

$$\{p^i(t),c_j(t)\}_{PP} = \frac{8\pi G}{V_0}\gamma\delta^i_j$$

Fiducial volume (it can be avoided by rescaling variables)

Holonomies:

edge length

$$h_{e_i} = e^{i\mu_i c_i \tau_i}$$

Bianchi I

The simplest case is Bianchi I model

$$C^i_{jk} = 0 \qquad \qquad \omega^i = \delta^i_a dx^a$$

$$ds^2 = N^2(t)dt^2 - a_1^2(t)(dx^1)^2 - a_2^2(t)(dx^2)^2 - a_3^2(t)(dx^3)^2$$

Three scale factors along Cartesian coordinates

$$x^i = \delta^i_a x^a$$

Let us consider the integral curve Γ_{i} of the dual vector

field
$$\omega_i = \delta_i^a \partial_a$$

$$\Gamma_i = \begin{cases} x^i = x^i(s) \\ x^j = const. \end{cases}$$

Phase-space variables

$$E_i^a = p^i(t)\delta_i^a$$

$$A_a^i = c_i(t)\delta_a^i$$

If we retain a dependence on spatial coordinates in the reduced variables of a Bianchi I model....

$$E_i^a = p^i(t, x)\delta_i^a \qquad A_a^i = c_i(t, x)\delta_a^i$$

1) Re-parametrized Bianchi I model:

$$ds^2 = N^2(t,x)dt^2 - a_1^2(t,x^1)(dx^1)^2 - a_2^2(t,x^2)(dx^2)^2 - a_3^2(t,x^3)(dx^3)^2 - a_1^2(t,x^3)(dx^3)^2 - a_2^2(t,x^3)(dx^3)^2 - a_2^2(t,x^3)(dx^3)^2$$

the three scale factors are functions of the associated Cartesian coordinate

2)Kasner epoch: it describes the behavior of the generic cosmological solution during each Kasner epoch.

$$ds^2 = N^2(t,x)dt^2 - a_1^2(t,x)(dx^1)^2 - a_2^2(t,x)(dx^2)^2 - a_3^2(t,x)(dx^3)^2 - a_1^2(t,x)(dx^3)^2 - a_2^2(t,x)(dx^3)^2 - a_2^2(t,x)(dx^2)^2 - a_2^2(t,x)(dx^2)^2 - a_2^2($$

Reduced phase-space

Momenta:

Connections:

$$E_i^a = p^i(t, x)\delta_i^a$$

$$A_a^i = c_i(t, x)\delta_a^i$$

Poisson brackets:

$$\{p^i(t,x),c_j(t,y)\} = 8\pi G\gamma \delta^i_j \delta^3(x-y)$$

Given a metric tensor, all triads related by a rotation are equally admissible.

A unique choice implies a gaugefixing of the rotation group

$$\widetilde{E}_i^a = R^k_{\ i} E_k^a$$

$$R^k_{\ i} = \delta^k_i$$

Gauge fixing condition:

$$\chi_i = \sum_{l,k} \epsilon_{il}^{\ k} E_k^a \delta_a^l = 0$$

Restriction of admissible diffeomorphisms to preserve the expression of connections and momenta.

Reduced diffeomorphisms

Kinematical constraints

U(1), Gauss constraints:
$$G_i = \partial_i p^i = 0$$
 not summed

Along each Γ₁

$$G_i = \partial_i p^i = 0$$
 spatial index

generates U(1) gauge transformations.

c, and pi are the connection and the momentum of a U(1) gauge theory on each Γ_{i} .

By varying i one gets three independent U(1) gauge groups.

Reduced diffeomorphims:

$$D_i = \sum_j [p^j \partial_i c_j - \partial_i (p^j c_j)]$$

on each Γ_{k}

$$x'^i = x^i + \xi^i$$
 Infinitesimal parameter

$$\xi^i = \xi^i(x^i)$$

Given an edge e_1 along $\omega_1 = \delta_1^a \partial_a$ a reduced diffeomorphisms acts as

$$\begin{array}{c|c}
 & x'^1 = x^1 + \xi^1(x^1) \\
 & e_1 \\
\end{array}$$

$$\begin{array}{c|c}
 & e'_1 \\
\end{array}$$

A generic diffeomorphisms in the 1-dimensional space generated by ω_i

$$\begin{array}{c|c}
x'^2 = x^2 + \xi^2(x^2) \\
e_1 & e_1
\end{array}$$

A rigid translation along the directions generated by ω_i for j≠i

A reduced diffeo maps an edge e_i into another edge e'_i which is still parallel to the vector field ω_i

Reduced Quantization

Reduced quantization

Let us quantize the algebra of holonomies along reduced graphs and fluxes along dual surfaces:

edges e

U(1), holonomies along e

$$h_{e_i} = P\left(e^{i\int_{e_i} c_i dx^i}\right)$$

Fluxes across dual surfaces Si

$$p^{i}(S^{i}) = \int_{S^{i}} p^{i} n_{i} du dv$$

U(1), group element

Kinematical Hilbert space:

$$H = \bigoplus_{\Gamma} H_{\widehat{\Gamma}}$$

U(1), Haar measure

$$H_{\Gamma} = \bigotimes_{i} \bigotimes_{\{e_i \subset \Gamma\}} L^2(U(1)_i, d\mu^i)$$

graph structure!

A generic functional over a graph is given by

$$\psi_{\Gamma} = \otimes_i \otimes_{\{e_i \subset \Gamma\}} \psi_{e_i}$$
 functions of U(1),

group element

$$\psi_{e_i} = \sum_{n_i} e^{in_i \theta^i} \psi_{e_i}^{n_i}$$

U(1), Irreps

Basis: U(1), networks

n ₁	n ₂	m ₁	m ₂	p ₁	p
q ₁	$q_{_2}$	r ₁	$r_{_2}$	S ₁	S ₂

Momenta act as invariant vector fields of the U(1), groups

$$p^{i}(S^{i})\psi_{e_{i}} = 8\pi\gamma l_{P}^{2} \sum_{n_{i}} n_{i} e^{in_{i}\theta^{i}} \psi_{e_{i}}^{n_{i}}$$

Kinematical constraints:

1) Relic Gauss constraint

$$G_i = \partial_i p^i = 0$$

they generate U(1), gauge transformations.

$$h_{e_i} \to \lambda_i(x_0) h_{e_i} \lambda_i^{-1}(x_1)$$

Projection on the U(1), gauge-invariant Hilbert space:

 $U(1)_{i}$ quantum numbers conserved along ω_{i}

Lattice structure

2) Reduced diffeomorphisms:

Action of reduced diffeomorphisms:

Invariant states via a sum over reduced s-Knots.

$$\psi_s^*(.) = \sum_{\Gamma \in s} \psi_{\Gamma}^*(.)$$

s: equivalence class of graphs under reduced diffeomorphisms

Can we implement the dynamics (Thiemann prescription) ??? NO

The drawback is the absence of a real 3-dimensional vertex structure.

We need a nontrivial interplay between U(1), quantum numbers

Introduction to Quantum-reduced Loop Gravity

Proposal

Can we infer the KINEMATICS of the reduced model from the full theory??

generic graphs, SU(2) group elements, invariant intertwiners, background independence..

Metodology: Truncation of LQG Hilbert space in order to get

1) the same lattice structure as in reduced quantization

Projection to graphs with edges e

Reduced diffeomorphisms

2) U(1) group elements

S

Projection from SU(2) group to U(1) subgroups

Non trivial vertex structure from SU(2)-invariant Hilbert space!

Emanuele's talk......

1) Projection to reduced graphs (with edges e_i)

graphs (with edges
$$e_{_{_{\! i}}}$$
)
 $Ph_e = \left\{ egin{array}{ll} h_e & e = e_i \ 0 & otherwise \end{array}
ight.$

projector

Action of diffeomorphisms $U_{\varphi}h_e=h_{\varphi(e)}$

$$U_{\varphi}h_e = h_{\varphi(e)}$$

$$redU_{\varphi} = PU_{\varphi}P$$

Diffeo in reduced space

$$\mathit{red}U_\varphi h_{e_i} = PU_\varphi P h_{e_i} = PU_\varphi h_{e_i} = P h_{\varphi(e_i)} = U_\mathit{red}_\varphi h_{e_i} \qquad \mathit{red}U_\varphi = U_\mathit{red}_\varphi$$

The truncation of admissible edges restricts the class of admissible diffeomorphisms to reduced ones.

Invariant states as in reduced quantization by summing over reduced s-knots.

(Partial) Conclusions:

reduced quantization inhomogeneous Bianchi I model:

_ Hilbert space: square integrable functions of U(1), group elements

_ kinematics: OK! U(1), gauge invariance via invariant intertwiners

reduced diffeo-invariance via reduced s-knots

dynamics (Thiemann-like prescription): NO!!

Quantum reduced Loop Gravity:

- truncation to reduced graphs: only reduced diffeomorphisms are implemented.
- _ what has to be done? Reduction from SU(2) to U(1), elements.

Quantum Reduced Loop Gravity II

Emanuele Alesci

Instytut Fizyki Teoretycznej Warsaw University, Poland

In collaboration with

F. Cianfrani

ILQGS 12th March 2013

Plan of the Talk

- Reduced Kinematical Hilbert Space: Cosmological LQG
- Constraints
- Hamiltonian

News

Cosmological LQG

GOAL:

Implement on the SU(2) Kinematical Hilbert space of LQG the classical reduction:

$$A_a^i = c_i(t, x)\omega_a^i$$

$$E_i^a = p^i(t, x)\omega_i^a$$

$$\{p^i(x, t), c_j(y, t)\} = 8\pi G\gamma \delta_j^i \delta^3(x - y)$$

First truncation: we restrict the holonomies to curves along edges e_i parallel to fiducial ω_i^a vectors

The SU(2) classical holonomies associated to the reduced variables are

$${}^{R}h_{e_{i}}^{j} = P(e^{i\int_{e_{i}} c^{i}\omega_{a}^{i}dx^{a}(s)\tau_{i}}) -$$

NO sum over i

Holonomy belong to the U(1) subgroup generated by τ_i

$${}^{R}h_{e_{i}}^{j} = \exp\left(i\alpha^{i}\tau_{i}\right)$$

Consider fluxes across surfaces $x^a(u,v)$ with normal vectors parallel to the fiducial ones

The classical reduction implies

$$E_i(S^k) = \int E_i^a \frac{1}{\omega} \omega_a^k du dv = \delta_i^k \int p_i \frac{1}{\omega} du dv$$

For consistency only the diagonal part of the matrix $E_i(S^j)$ is non vanishing

Second class with the Gauss constraint

$$\chi_i = \sum_{l,k} \epsilon_{il} \,^k E_k(S^l) = 0$$

How to implement the reduction on the holonomies and consistently impose $\chi_i=0$?

Strategy: Mimic the spinfoam procedure

Impose the <u>second class constraint weakly</u> to find a "Physical Hilbert space"

Engle, Pereira, Rovelli, Livine '07- '08

Imposing a Master constraint strongly on the SU(2) holonomies:

$$\chi^{2} = \sum_{i} \chi_{i} \chi_{i} = \sum_{i,m,k,l} [\delta^{im} \delta_{kl} E_{i}(S^{k}) E_{m}(S^{l}) - E_{i}(S^{k}) E_{k}(S^{i})]$$

$$\chi^2 h_{e_i}^j = (8\pi\gamma l_P^2)^2 (\tau^2 - \tau_i \tau_i) h_{e_i}^j = 0$$

Different i for each direction

To solve it is convenient to introduce SU(2) coherent states

SU(2) coherent states

$$|j, \vec{u}> = D^{j}(\vec{u})|j, j> = \sum_{m} |j, m> D^{j}(\vec{u})_{mj}$$

The Master constraint condition acting at the endpoint (the conjugate condition at the starting point):

$$\chi^2 D^j(g)|j,\vec{u}> = D^j(g)(\tau^2 - (\vec{e_i} \cdot \vec{\tau})^2)|j,\vec{u}> = D^j(g)(j(j+1) - (\vec{u} \cdot \vec{\tau})^2)|j,\vec{u}> = D^j(g)(j(j+$$

Using the property
$$\vec{v} \cdot \vec{\tau} | j, \vec{v} > = j | j, \vec{v} >$$

If $\vec{e_i} = \vec{u}$ in the large j limit up to L_p corrections the basis element will satisfy:

$$\chi^2 D^j(g)|j,\vec{u}>=0$$

Reduced basis Elements

$$\langle j, \vec{e_i} | D^j(g) | j, \vec{e_i} \rangle$$

There is a natural way of embedding U(1) cylindrical functions in SU(2) ones:

Projected spinnetworks (Alexandrov, Livine '02) with the Dupuis-Livine map (Dupuis Livine '10)

$$f:U(1)\to SU(2)$$

$$\tilde{\psi}(g)=\int_{U(1)}dh\;K(g,h)\psi(h),\qquad g\in SU(2)$$

$$K(g,h)=\sum_n\int_{U(1)}dk\;\chi^{j(n)}(gk)\chi^n(kh)$$

$$U(1)$$
 trace

These SU(2) functions have the remarkable property that <u>they are completely determined</u> by their restriction to their U(1) subgroup

$$\tilde{\psi}(g)|_{U(1)} = \psi$$

If we consider <u>projected functions</u> defined over the edge e_i choosing the subgroup $U(1)_i$ as the one generated by τ_i

$$\tilde{\psi}(g)_{e_i} = \sum_{n_i} {}^i D^{j(n_i)}_{m=n_i} \, {}_{r=n_i}(g) \psi^{n_i}_{e_i}$$

$$U(l) \text{ quantum number}$$

The Master constraint equation selects the degree of the map:

$$|n_i| = j(n)$$

The strong quadratic condition implies the linear one weakly (restriction to symmetric matrix)!

$$<\tilde{\psi}'_{i}|E_{k}(S^{l})|\tilde{\psi}_{i}> = 8\pi\gamma l_{P}^{2}\sum_{j,j'}\psi_{e_{i}}^{j'}\int dg^{i}D_{j'j'}^{j'}(g)\tau_{k}^{i}D_{jj}^{j}(g)\psi_{e_{i}}^{j} = 0, \quad (k \neq i)$$

The quantum states associated with an edge e_i are entirely determined by their projection into the subspace with maximum magnetic numbers along the internal direction l

$$\psi_{e_i} = \tilde{\psi}(g)_{e_i}|_{U(1)_i} = \sum_j e^{i\theta^i j} \psi_{e_i}^j = \sum_j {}_i < j, j|^R h_{e_i}^j |j, j> {}_i \psi_{e_i}^j$$

The action of fluxes $E_l(S^k)$ on the reduced space is nonvanishing only for l=k=i

$$E_i(S^i)\tilde{\psi}_{e_i} = 8\pi\gamma l_P^2 \sum_j j D_{jj}^j \psi_{e_i}^j$$

This is how we find in the SU(2) quantum theory the classical reduction

$$A_a^i = c_i(t, x)\omega_a^i$$

$$A_a^i = c_i(t, x)\omega_a^i$$
 $E_i^a = p^i(t, x)\omega\omega_i^a$

$$\{p^{i}(x,t),c_{j}(y,t)\} = 8\pi G\gamma \delta_{j}^{i}\delta^{3}(x-y)$$

Analogy with Spinfoam Quantization:

SL(2,C) basis elements

$$\langle g|p,k,j,m,j',m'\rangle = D^{p,k}_{jm,j'm'}(g)$$

$$\langle g|p,k,j,m,j',m'\rangle = D_{jm,j'm'}^{P,m}(g)$$

$$\tilde{\psi}(g) = \sum_{jmn} d_j \, \psi_{jmn} \, D_{jm,jn}^{p(j),j}(g) \quad \blacksquare$$

Linear simplicity constraint

$$\vec{K} + \gamma \vec{L} = 0$$

$$(2\gamma C_1 - (\gamma^2 - 1)C_2)|\tilde{\psi}\rangle = 0$$

$$p = \gamma k$$

Weakly satisfied in the large limit

$$\langle \tilde{\psi} | \vec{K} + \gamma \vec{L} | \tilde{\psi}' \rangle = 0$$

Select k=j

$$g|_{\mathcal{K}} = D_{jm,jn}^{\gamma j,j}(g) = \int_{SU(2)} dh \ K(g,h) \ D_{mn}^j(h)$$

SU(2) basis elements

$$\langle g|j,m,r\rangle = D_{mr}^{j}(g)$$

$$\widetilde{\psi}(g)_{e_i} = \sum_{n_i} {}^{i}D_{m=n_i}^{j(n_i)} {}_{r=n_i}(g)\psi_{e_i}^{n_i}$$

$$\tau^k h_{e_i}^j = 0 \quad \forall k \neq i$$

$$(au^2 - au_i au_i) h_{e_i}^j = 0$$

Select j(n)=n

Only one condition (SU(2) has only one parameter label for the irrep.)

Weakly satisfied in the large limit

$$<\tilde{\psi}_i'|E_k(S^l)|\tilde{\psi}_i>=0$$

$$g|_{\mathcal{K}} = {}^{i}D_{jj}^{|j|}(g)$$

If we define a Projector P_{γ} on Physical reduced states:

The projector P $_\chi$ acting on ψ_Γ SU(2) cylindrical functions defined on general Graphs Γ :

Restrict the Graphs to be part of a cubical lattice

 Select the states belonging to the SU(2) subspace where <u>our constraint conditions</u> hold weakly:

$$\tilde{\psi}(g)_{e_i} = \sum_{n_i} {}^{i}D_{m=n_i}^{j(n_i)} {}_{r=n_i}(g)\psi_{e_i}^{n_i}$$

What is the fate of the GR constraints?

Gauss Constraint

$$\hat{G}_i(A, E)$$

$$P_{\chi}^{\dagger} \hat{G}_i P_{\chi}$$

The Gauss constraint of the full theory is implemented by group averaging

$$P_{\mathcal{G}} = \int dg \ U_{\mathcal{G}}(g)$$

$$U_{\mathcal{G}}(g)D_{mn}^{j}(h_{e}) = D_{mn}^{j}(g_{s(e)}h_{e}g_{t(e)})$$

Spinnetwork states:

$$< h|\Gamma, \{j_e\}, \{x_v\} > = \prod_{v \in \Gamma} \prod_{e \in \Gamma} x_v \cdot D^{j_e}(h_e)_{mn}$$

Operator that generates local SU(2) gauge transformations

SU(2) intertwiner

SU(2) holonomy

Implementing

$$P_{\chi}^{\dagger} \hat{G}_i P_{\chi}$$

The reduced states will be of the form:

$$\langle h|\Gamma, j_e, x_v\rangle_R = \prod_{v\in\Gamma} \prod_{e\in\Gamma} \langle \mathbf{j_i}, \mathbf{x}|\mathbf{j_i}, \vec{\mathbf{u}}_i \rangle \cdot {}^i D^{j_{e_i}}(h_{e_i})_{j_i j_i}$$

Projection on the intertwiner base of the Livine Speziale Intertwiner: Livine, Speziale '07

$$|\mathbf{j_i}, \vec{\mathbf{u}}_i\rangle = |j_1, \cdots, j_i, \vec{u_1}, \cdots, \vec{u_i}\rangle = \int dg \prod_i |j_i, \vec{u_i}\rangle$$

SU(2) intertwiner projected on coherent states:

Reduced intertwiner

SU(2) holonomy
Projected on coherent states
Reduced holonomy

The Inhomogenous sector

Different Spin labels: Anisotropies

Homogeneous and anisotropic sector

Homogeneous and Isotropic sector

Diff Constraint

$$P_\chi^\dagger \hat{V_a} P_\chi$$

Full Theory:

s-knot state

Ashtekar, Lewandowski, Marolf, Mourao, Thiemann

On the reduced space:

Reduced s-knot states

Equivalence class of graphs that preserve the cellular structure:

Hamiltonian Constraint

$$\hat{H}(A,E)$$
 $P_{\chi}^{\dagger}\hat{H}P_{\chi}$

The regularized Euclidean constraint in the full theory reads:

T. Thiemann '96-'98

$$H^{m}_{\square} [N] := \frac{N(\mathfrak{n})}{N_{m}^{2}} \epsilon^{ijk} \operatorname{Tr} \Big[h_{\alpha_{ij}}^{(m)} h_{s_{k}}^{(m)} \big\{ h_{s_{k}}^{(m)-1}, V \big\} \Big]$$

We regularize à la Thiemann, but using only elements of the reduced space:

$${}^{R}H^{m}_{\Box}[N] := \frac{N(\mathfrak{n})}{N_{m}^{2}} \; \epsilon^{ijk} \operatorname{Tr} \left[{}^{R}h^{(m)R}_{\alpha_{ij}} h^{(m)}_{s_{k}} \left\{ {}^{R}h^{(m)-1}_{s_{k}}, V \right\} \right]$$

Action of the operator

on a tri-valent node:

Rovelli, Gaul '00 Alesci, Thiemann, Zipfel '11

+ Permutations

$$A_{ij}(j_{i,}j_{j,}j_{k,}m) =$$

$$\sqrt{j_i j_j j_k + 1} \left[\left\{ \begin{smallmatrix} j_i + m & j_j & j_k + m \\ j_k & m & j_i \end{smallmatrix} \right\} \left\{ \begin{smallmatrix} j_i + m & j_j - m & j_k \\ m & j_k + m & j_j \end{smallmatrix} \right\} - \left\{ \begin{smallmatrix} j_j + m & j_i & j_k + m \\ j_k & m & j_j \end{smallmatrix} \right\} \left\{ \begin{smallmatrix} j_i + m & j_i - m & j_k \\ j_k + m & m & j_i \end{smallmatrix} \right\} \right]$$

Remarkably this expression for m=1 and large values simplify to

Diagonal

$$A_{ij}(j_i, j_j, j_k, 1) = \frac{j_i + j_j}{j_k} \frac{(1 + \cos \theta_{ij})}{j_k}$$

Large j limit "seems":

$$\frac{c_1 c_2}{p_3} + \frac{c_1 c_3}{p_2} + \frac{c_2 c_3}{p_1} = 0$$

News

Semiclassical limit

$$\Psi_{\Gamma,H_l}(h_l) = \int \prod_n dg_n \prod_l K_{\alpha_l}(h_l, g_{s(l)} H_l g_{t(l)}^{-1})$$

Heat Kernel coherent states

$$H_l = h_l \exp(i\frac{\alpha_l E_l}{8\pi G\hbar\gamma})$$

SL(2,C) element coding classical data

Hall, Thiemann, Winkler, Sahlmann, Bahr

$$\Psi_{H_l}(h_l) = \sum_{j_l,i_n} \psi_{H_l}(j_l,i_n) \Psi_{j_l,i_n}(h_l)$$
 intertwiner base

Large distance asymptotic behaviour Bianchi Magliaro Perini

$$\Psi_{H_l}(h_l) \simeq \sum_{j_l, i_n} \prod_l e^{-\frac{(j_l - j_l^0)^2}{2\sigma_l^2}} e^{-i\xi_l j_l} (\prod_n \Phi_{i_n}) \Psi_{j_l, i_n}(h_l)$$

Codes the intrinsic geometry

Codes the extrinsic curvature

Livine-Speziale Intertwiners

$$j_0 = \frac{|E|}{8\pi G\hbar\gamma}$$

$$\xi \sim K = c$$

Project in our reduced space the coherent states

$$P_{\chi}|\Psi_{H_l}\rangle = |\Psi_{H_l}\rangle_R$$

Expectation value of the Hamiltonian on coherent states for a single cell:

$$_{R}\langle\Psi_{H,\;\Box}|^{R}\hat{H}_{\;\Box}^{m}|\Psi_{H,\;\Box}\rangle_{R}$$
 =

$$\sqrt{\frac{p^1 p^2}{p^3}} c_1 c_2 + \sqrt{\frac{p^2 p^3}{p^1}} c_2 c_3 + \sqrt{\frac{p^3 p^1}{p^2}} c_3 c_1$$

Classical Bianchi I Hamiltonian

Perspectives

This analysis opens the way to

- Study the Physical solutions on the Dual Diff invariant Space and eventually construct a Physical Scalar Product
- Add matter as a clock: Big Bounce? QFT on quantum spacetime?
- Link to LQC? Ashtekar, Agullo, Barrau, Bojowald, Campiglia, Corichi, Giesel, Hofmann, Grain, Henderson, Kaminski, Lewandowski, Mena Marugan, Nelson, Pawlowski, Pullin, Singh, Sloan, Taveras, Thiemann, Winkler, Wilson-Ewing
- Spinfoam Cosmology? Bianchi, Krajewski, Rovelli, Vidotto
- Something Different ?
 (In the homogeneous anisotropic case the scale factors are not independent)
- Arena for the canonical theory:
 AQG, Master constraint, deparametrized theories.. Computable!