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Without time-translation symmetry? Which boundary conditions?

Guess: the boundary conditions relevant to computing some gravitational quantity are given by whatever path integral
would compute the analogue quantity in a non-gravitational theory 

easier!
which boundary conditions 
for a gravitational system?

Replica trick:

closed manifold

= BCs for the gravitational path integral

GRAVITY

Motivations



Lewkowycz, Maldacena (2013)

semiclassical 
approx.

R

Ryu-Takayanagi formula

(first derived in AdS/CFT)

➢ Holography does not enter the derivation, but

➢ It is required for the interpretation as standard entropy, i.e.
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Implication for the case of Hawking radiation from AdS to a bath:

In appropriate semiclassical limits, the von Neumann entropy of the bath is given by the island formula, a special case 
of the quantum-corrected RT formula, and follows the Page curve.

[Penington 2019; Almheiri, Engelhardt, Marolf, Maxfield 2019; Penington, Shenker, Stanford, Yang 2019; Almheiri, Hartman, 
Maldacena, Shaghoulian, Tajdini 2019] 

✓ Possible solution to the bulk interpretation problem: the gravitational replica trick computes the entropy of the 
emitted Hawking radiation in a superselection sector. [Marolf, Maxfield, 2020]

Although inspired from AdS/CFT, the argument relies only on properties of the gravitational path integral! 

Can this story be generalized?

Motivations

[Almheiri, Hartman, Maldacena, Shaghoulian, Tajdini 2019]



➢ Goal: construct, from purely-bulk arguments, a Hilbert space        associated with        such that the associated 
Ryu-Takayanagi entropy can be understood in terms of a standard trace on       :

➢ Consider a gravitational system with closed asymptotic boundaries        and   

➢ The Hilbert space           for this two-boundary gravitational system a priori does not factorize

➢ If the gravitational system has a holographic dual, and we can then associate a 
“state-counting” entropy to 𝐵𝐿 and 𝐵𝑅. But we are not going to assume holography. 

Motivations



➢ Recent works [Chandrasekaran, Longo, Penington, Witten, Jensen, Sorce, Speranza, Kudler-Flam ,Leutheusser, 
Satishchandran, …] have shown that, in various contexts, the Ryu-Takayanagi entropy can be derived (up to an 
infinite constant) as the entropy of a type II von Neumann algebra. This provides a “statistical interpretation” for the 
RT entropy (thanks to the type II trace).

➢ For a standard quantum mechanical system, we have an entropy in terms of a Hilbert space trace, 
which provides a “state-counting interpretation”. A Hilbert space trace corresponds to a type I trace.

⇒ Can we understand the Ryu-Takayanagi entropy in terms of a Hilbert space trace, i.e. as a state-counting entropy? 

Motivations

In a UV-complete, asymptotically locally AdS theory of quantum gravity in which the Euclidean path integral satisfies a 
simple set of axioms, it is possible to associate a von Neumann entropy to       which, in the semiclassical limit, is given 
by the Ryu-Takayanagi formula. No need to invoke holography!

THIS TALK:



1. Axioms for the Euclidean Path Integral

2. Hilbert Space from the Path Integral

3. Operator Algebras from the Path Integral

4. Type I von Neumann Factors

5. Hilbert Space Interpretation of the Ryu-Takayanagi Entropy

Outline
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Axioms

1. Finiteness:  The path integral gives a well-defined map 𝜁 from boundary conditions defined by smooth manifolds 
to the complex numbers ℂ

2. Reality: 𝜁 is a real function of (possibly complex) boundary conditions, i.e. 

3. Reflection Positivity: 𝜁 is reflection-positive

4. Continuity: if the boundary manifold contains a cylinder of size 𝜀, 𝜁 is continuous under changes of 𝜀

5. Factorization: For closed boundary manifolds we have

Note: if the path integral is equivalent to a collection of “baby universe superselection sectors” [Coleman, Giddings, 
Strominger, Marolf, Maxfield, …] the factorization property holds sector-by-sector, and our analysis applies in that 
sense.



2. Hilbert Space from the Path Integral



Hilbert Space from the Path Integral
When we “cut open a quantum gravity path integral”, we cut the closed boundary into two pieces 𝑁1, 𝑁2 with 𝜕𝑁1 = 𝜕𝑁2, 
then associate states with these two pieces such that
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Hilbert Space from the Path Integral
When we “cut open a quantum gravity path integral”, we cut the closed boundary into two pieces 𝑁1, 𝑁2 with 𝜕𝑁1 = 𝜕𝑁2, 
then associate states with these two pieces such that

The gluing of surfaces should

➢ be uniquely determined ⇒ points on 𝜕𝑁 labelled

➢ produce smooth manifolds ⇒ 𝜕𝑁 comes with a rim:

𝜕𝑁 𝜕𝑁
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3. Operator Algebras from the Path Integral



Consider

Surface Algebra



Surface Algebra

➢ On the set we define a left product and a right product:

left product:

right product:

𝐿

𝐿

𝑅

𝑅

𝐿

𝐿

𝑅

𝑅



Surface Algebra

➢ On the set we define a left product and a right product:

➢ The set equipped with the left/right product defines a left/right surface algebra

left product:

right product:

𝐿

𝐿

𝑅

𝑅

𝐿

𝐿

𝑅

𝑅



Surface Algebra
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Surface Algebra

Left surface algebra Right surface algebra



Surface Algebra
trace and trace inequality

The path integral defines a trace operation on the surface algebras: 

sew = 𝑎 = 𝑀(𝑎)



Surface Algebra
trace and trace inequality

The path integral defines a trace operation on the surface algebras: 

From the dictionary between rimmed surfaces and states:

Axiom 3
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We can use           to define elements of 



Surface Algebra
trace and trace inequality

From the Cauchy-Schwarz inequality (consequence of positivity of the inner product on ):
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Representation on the Hilbert Space

We define a representation of the left surface algebra on the Hilbert space: given there is an associated 
operator such that

These operators are bounded:

trace inequality

We can similarly define a representation of the right surface algebra:



Diagonal Sectors

We can define a trace operation on via the path integral trace on the surface algebra thanks to the continuity axiom: 

𝐵 𝐵
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The von Neumann algebras

➢ We define the von Neumann algebra         to be the closure of within in the weak operator topology

➢ We show that the trace defined on extends to (all positive elements of) the von Neumann algebra

• Faithful

• Normal

• Semifinite

➢ The trace is

➢ The trace inequality holds on the von Neumann algebra! (an extension of the 4-boundaries argument applies)



Type I factors

➢ Trace inequality for
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Some known results on von Neumann algebras:

▪ every von Neumann algebra is a direct sum of factors (algebras with trivial center) which can be type I, II or III

▪ there is no faithful, normal and semifinite trace on type III ⇒ we cannot have type III

▪ on type II, for any faithful, normal and semifinite trace there are non trivial projections with arbitrarily small trace 
⇒ we cannot have type II

➢ Trace inequality for

⇒ we have only type I factors!
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Some known results on von Neumann algebras:

▪ every von Neumann algebra is a direct sum of factors (algebras with trivial center) which can be type I, II or III

▪ there is no faithful, normal and semifinite trace on type III ⇒ we cannot have type III

▪ on type II, for any faithful, normal and semifinite trace there are non trivial projections with arbitrarily small trace 
⇒ we cannot have type II

➢ Trace inequality for

➢ The commutation theorem for semifinite traces then tells us that are commutants on 

⇒ we have only type I factors!



Type I factors

➢ The central operators of have purely discrete spectrum.

➢ Simultaneously diagonalise all central operators of yields eigenspaces such that

➢ As a result, the von Neumann algebras decomposes as

➢ The algebra is a type I factor with commutant on , therefore

type I factor



5. Hilbert Space Interpretation of the Ryu-Takayanagi Entropy



➢ Faithful, normal, semifinite traces on type I algebras are unique up to an overall normalization constant, thus

➢ For one-dimensional projection onto a state in we have 

Trace Normalization



Trace Normalization

➢ Faithful, normal, semifinite traces on type I algebras are unique up to an overall normalization constant, thus

➢ For one-dimensional projection onto a state in we have 

trace inequality

positivity of the inner product on

positivity of the inner product on

⇒ is a positive integer!
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Hidden Sectors

➢ For any non-zero finite-dimensional projection the trace             is a positive integer.

➢ We define the extended Hilbert space factors:

➢ Then

“hidden sector”

⇒ The hidden sectors allow to interpret the path integral trace as a Hilbert space trace
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State-counting Entropy

➢ the trace      can be used to define a notion of left entropy on pure states 

➢ Thanks to the relation between      and       this entropy has a Hilbert space interpretation:

➢ We can compute this entropy via the replica trick:

➢ If the theory admits a semiclassical limit described by Einstein-Hilbert or JT gravity, then we can argue (by following 
Lewkowycz-Maldacena) that in such a limit the entropy is given by the Ryu-Takayanagi entropy  



Conclusions

➢ Any gravitational path integral satisfying the axioms defines von Neumann algebras of observables associated 
with codimension-2 boundaries: 

➢ These algebras contain only type I factors.

➢ The Hilbert space on which the algebras act decomposes as

➢ The path integral trace is equivalent to a standard trace on an extended Hilbert space, such that

➢ This provides a Hilbert space interpretation of the entropy, even when the gravitational theory is not known to 
have a holographic dual:

➢ In the semiclassical limit, the entropy is given by the Ryu-Takayanagi formula. 



Thanks for the attention!
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