
(SOME COMMENTS ON)

CANONICAL GAUGE THEORIES

WITH BOUNDARIES

Alejandro Corichi

Center for Mathematical Sciences, UNAM, Morelia, México
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QUESTIONS

• Why bother about boundaries?

• What about boundary degrees of freedom?

• When do we have a boundary contribution to the Symplectic
Structure?

• Do we have to modify the Dirac-Regge-Teitelboim prescrip-
tion?

• Is there a relation between boundary conditions and constraints?
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CANONICAL HAMILTONIAN FORMALISM.

Let us recall how one constructs the canonical Hamiltonian for-
malism. The starting point is a configurations space C. Funda-
mental object is the momentum function: P : V a ∈ TqC 7→ R. Usu-
ally P [V ] := Pa V

a. One then defines the phase space as Γ := T∗C,
and defines a 1-form θ on Γ such that

θ[Ẋ ] = P [Q̇] (1)

where Ẋ is the velocity on Γ and Q̇ is the velocity on C. The
1-form θ is called the symplectic potential and can be defined as:

θ := Pa dQa (2)

The symplectic two-form on Γ is then defined as Ω := dθ.
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A fundamental equation is given by.

dF = Ω(XF , ·) (3)

where XF is the Hamiltonian vector field associated to the func-
tion F . If we now contract with an arbitrary (Hamiltonian)
vector field Y , we have,

£YF = dF (Y ) = Ω(XF , Y ) . (4)

If Y itself is the Hamiltonian vector field of G, then we can define
the Poisson Bracket between F and G:

{F,G} := Ω(XF , YG) (5)

Hamilton’s equations generated by the Hamiltonian H read,

Ḟ = £XHF = {F,H} := Ω(XF , XH) (6)

with XH = Ẋ the velocity on Γ.
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How about field theories? The geometric ideas are the same,
just that the dimensionality of the phase space is infinite. One
has to be careful but the formalism is the same.
For example for a field theory with phase space Γ = (φ, P ), the
momentum mapping looks like

P [V ] =

∫
Σ

d3xP̃ V (7)

This means that θ is of the form,

θ =

∫
Σ

d3x P̃ ddφ (8)

and the symplectic structure has the form,

Ω = dd θ =

∫
Σ

d3x dd P̃ ∧ ddφ (9)
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BOUNDARIES

Why are boundaries relevant? Because in the standard Dirac
analysis of gauge field theories, one normally disregards bound-
aries, and all the boundary terms that appear as one integrates
by parts are discarded. One can no longer do that.
In the standard Regge-Teitelboim analysis of field theories with
boundaries, the main theme is to make all functio(al)s differen-
tiable. This means that, when one computes the gradient ddF
of the function F , there should be no contributions from the
boundaries. This is equivalent to saying that all boundary terms
that appear when taking the “variation” of the function, should
vanish. Standard lore is that this approach to field theories with
boundaries is sufficient to deal with all cases. Method is generic.
But, Is it?
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Boundary Contributions to the Symplectic Structure?

How could a boundary contribution to the symplectic structure
arise?
Recall the momentum map! Suppose that we have a map that
looks like,

P [V ] =

∫
Σ

d3x P̃ aVa +

∫
∂Σ

d2x P̃ a
∂ va , (10)

namely, it as a contribution from the boundary ∂Σ. This means
that

θ =

∫
Σ

d3x P̃ a ddAa +

∫
∂Σ

d2x P̃ a
∂ ddA∂

a . (11)

From which the symplectic structure,

Ω = dd θ =

∫
Σ

d3x dd P̃ a ∧ ddAa +

∫
∂Σ

d2x dd P̃ a
∂ ∧ ddA∂

a , (12)

acquires a boundary term. (A∂, P∂) are the boundary DOF.
8



What are the practical implications of such a boundary contri-
bution?
Recall the basic Hamiltonian equation,

dF (Y ) = Ω(XF , Y ) . (13)

If there are no boundary terms in the RHS, then there should be
no boundary terms in the LHS, that is, in the gradient. This is
precisely the standard Regge-Teitelboim case, where we require
the boundary terms in the gradient to vanish.
But now if we have boundary terms in the RHS due to the
existence of boundary contributions to Ω, then we must have
boundary terms in the LHS, namely, in the gradient.

Regge-Teitelboim needs to be revisited/extended!

But, how does it work then ?
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Maxwell-Pontryagin vs Maxwell-Chern-Simons

Let us consider these theories that are known to be equivalent.
One on the bulk, M-P and one with a bulk term and a boundary
term, M-CS.
Let us start by considering the bulk theory. It is given by a
covariant action:

SMP [A] = SM [A]+SP [A] = −1

4

∫
M

d4x
√
|g|gacgbdFcdFab−

θ

4

∫
M

d4x ε̃abcdFabFcd ,

(14)
In the Dirac analysis, the momenta is of the form,

Π̃a :=
δLMP

δ(£tAa)
=

√
h

N
hac(£tAc −∇cφ + NdFcd)− θ ε̃abcFbc . (15)

It has no boundary contribution, which means the symplectic
structure, as expected, has only a bulk term.

10



There is a primary constraint

Π̃φ := t̂aΠ̃
a = 0 or Π̃φ[λ] :=

∫
d3xλ(x)naΠ̃

a(x) ≈ 0 , (16)

The canonical Hamiltonian is then given by,

HC(A, Π̃) =

∫
Σ

d3x

[√
h

4
NhachbdFabFcd + (∇aφ−N bFab)Π̃

a (17)

+
N

2
√
h
hab(Π̃

a + θ ε̃acdFcd)(Π̃
b + θ ε̃bknFkn)

]
. (18)

In order to proceed, we need to ensure that both the primary
constraint and the canonical Hamiltonian are differentiable, the
last of which yields some conditions to be satisfied at the bound-
ary.
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The term at the boundary reads:

Vbound =

∫
∂Σ

d2y
[
(
√
hraF

ab + θε̃ba∇aφ)δAb − (raP̃
a − θε̃abFab)δφ

]
, (19)

Boundary Conditions. An important issue when dealing with the-
ories with boundaries are the boundary conditions that we im-
pose. There are basically two viewpoints:

i) Impose physically motivated boundary conditions throughout
the evolution. (i.e. isolated horizons).
ii) Do not impose conditions a priory, but along the way to make
the Hamiltonian formalism well defined.

Here we shall not focus on this issue very much, just to mention
that there are indeed BC that make both terms in (19) vanish.
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Once we have ensured that both primary constraint and Hamil-
tonian are differentiable, we impose the condition that the con-
straint be preserved under evolution:

˙̃Πφ := {Π̃φ, HT} ≈ 0 . (20)

This consistency condition leads to a new constraint

χ := ∇aΠ̃
a ≈ 0 ⇒ χ[w] :=

∫
Σ

d3xw∇aΠ̃
a ≈ 0 . (21)

which is Gauss’ law. This smeared constraint is in turn differen-
tiable and its consistency condition

{χ[w], HT} = −
∫
∂Σ

d2y N
√
h(∇aw)rbF

ba = 0 , (22)

is satisfied under the same conditions needed for the differentia-
bility of χ[w]. So, there are no tertiary constraints, and the form
and the algebra of the constraints are the same as in Maxwell
theory. They are not affected by the Pontryagin term.
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Since HT is differentiable, the corresponding equations of mo-
tion can be calculated through Poisson brackets as:

£tφ = {φ,HT} = u , (23)

£tP̃φ = {P̃φ, HT} = ∇aP̃
a ≈ 0 , (24)

£tAa = {Aa, HT} = ∇aφ−N bFab +
1√
h
NhabP̃

a , (25)

£tP̃
a = {P̃ a, HT} = ∇c(

√
hNF ca − P̃ cNa + P̃ aN c) (26)

These are the same as Maxwell equations. There are no bound-
ary contributions to equations of motion.
The only effect of the Pontryagin term is through boundary con-
ditions needed to make the formalism consistent.
Regge-Teitelboim is well defined!
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Maxwell-Chern-Simons

Now we have the “same” theory but with a bulk term and a
boundary term,

SMCS[A] = SM [A]+SCS[A] = −1

4

∫
M

d4x
√
|g|gacgbdFcdFab−

θ

2

∫
∂M

d3x ε̃abcAaFbc .

(27)
The Chern-Simons term can be rewritten when the boundary is
decomposed,

SCS[A] = θ

∫
I

dt

∫
∂Σ

d2y ε̃abcrc[(£tAa)Ab + Fab φ] . (28)
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Together with the standard Maxwell term in the bulk, we can
now compute the momentum maps:

Pφ[f ] =

∫
Σ

d3x P̃φ f , (29)

P[v] =

∫
Σ

d3x P̃ a Va +

∫
∂Σ

d2x P̃ a
∂ va , (30)

where in the surface integral va is a pullback of the form Va to
∂Σ.
We have acquired a boundary term since the Chern-Simons term
has a time derivative of the connection. We will have a boundary
term in the symplectic potential and the symplectic structure.

We are beyond Regge-Teitelboim!
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The theory has primary constraints

C̃ := P̃φ = 0 , (31)

C̃a
∂ := P̃ a

∂ + θ ε̃abAb = 0 . (32)

The canonical Hamiltonian is given by

H = P[£tA] + Pφ[£tφ]− L = HM + HCS , (33)

where HM and HCS are the canonical Hamiltonians of the Maxwell
theory and the Chern-Simons theory (defined on the boundary
∂Σ), respectively, with

HCS = −θ
∫
∂Σ

d2x ε̃abFab φ . (34)
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In order to proceed with the consistency condition we need to
take into account the boundary contributions to the symplectic
structure, and use the equation,

Ω(XT , Y ) = ddHC(Y ) + ddC(Y ) + ddC∂(Y ) , (35)

where the two last terms correspond to the smeared constraints,
and XT is the Hamiltonian vector field of the total Hamiltonian
HT .
We can now use Eq.(35) to find the Hamiltonian vector field on
the bulk and the boundary. The bulk components give the same
equations of motion as in Maxwell-Pontryagin. We have now
contributions to the boundary,

XAa = µa ,

X∂a
P̃

= rc(
√
hNF ca − P̃ cNa + P̃ aN c) + θε̃ca(−2∇cφ + µc) , (36)

18



and an additional constraint on the boundary

B̃1
∂ := raP̃

a − θε̃abFab = 0 |∂Σ . (37)

The consistency conditions of the primary constraints are

£tC̃ = ιX dd P̃φ = XP̃φ
= ∇aP̃

a = 0 ,

£tC̃
a
∂ = ιX dd C̃a

∂ = X∂a
P̃

+θε̃abXAb = rc(
√
hNF ca−P̃ cNa+P̃ aN c)−2θε̃ca∇cφ = 0 ,

leading to the Gauss constraint

G̃ := ∇aP̃
a = 0 , (38)

and a new constraint on the boundary,

B̃2a
∂ := rc(

√
hNF ca − P̃ cNa + P̃ aN c)− 2θε̃ca∇cφ = 0 |∂Σ . (39)

The Gauss constraint is preserved in time since,

£tG̃ = ιX dd G̃ = ∇aX
a
P̃

= 0 . (40)
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The continuity of XAa implies that on the boundary

µa = ∇aφ−N bFab +
1√
h
NhabP̃

b , (41)

As a result, the boundary primary constraints (32) are second
class.

Due to (39) and (41), the components of the boundary Hamil-
tonian vector field (36) are of the form

XAa = ∇aφ−N bFab +
1√
h
NhabP̃

a ,

X∂a
P̃

= −θε̃ac(∇cφ−N bFcb +
1√
h
NhcbP̃

b) . (42)

Note that
X∂a
P̃

= −θε̃acXAc , (43)

consistent with the primary constraint (32).
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We have a different constraint structure. In the MP system
we only have first class constraints, while in the MCS case we
have additional constraints on the boundary that turn out to be
second class.
We have the choice to treat boundary conditions as that or as
constraints in the traditional Dirac sense, subject to the consis-
tency conditions. In some cases, this leads to a tower of condi-
tions to be satisfied on the boundary.
Within this extended Dirac-Regge-Teitelboim formalism, there
is no need to introduce new degrees of freedom. Depending on
the particular choices of boundary conditions, we might have
remaining degrees of freedom that are not cancelled by gauge at
the boundary, or we might have even reduced degrees of freedom.
As usual, we let the theory guide us and tell us what is gauge
and what is not. We should not impose any preconceived notions
of what gauge should be.
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SUMMARY

• We have a consistent procedure for addressing gauge theories
with boundaries.

• The structure of the theory tells us whether we have a bound-
ary Ωb.

• If there is no boundary Ωb, standard differentiability conditions
yield a consistent theory

• If Ωb 6= 0 then we need to extend the DRT procedure. There
are boundary contributions to the symplectic structure and to
the gradient.

• In Maxwell+Topological term, full control over all the issues.
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• Isolated horizons present another interesting example (another
seminar ...).
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