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Introduction

Idea:

Construct QFT on quantum spacetime and study how modes of the field probe the QG

What do we expect to find?

classical spacetime ⇒ ”eigenstate of geometry” gclass
µν

⇒ every mode lives on gclass
µν

quantum spacetime ⇒ semiclassical state Ψo , superposition of “metric-eigenvalues”
peaked on gclass

µν

⇒ maybe different modes ~k of the test field live on different components
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Spacetime manifold: M = R× Σ. For simplicity in treating quantum fields, Σ is
topologically a 3-torus.

The theory:

S[g , φ] =

Z
d4x
√
−g
»
1
2κ

R −
1
2
gµν∂µφ∂νφ− V (φ)

–
(1)

Canonical analysis:
• geometry, gµν → (qab(x);πab(x))

• K-G matter field, φ → (φ(x);πφ(x))

⇒ Every point γ in phase space Γ is uniquely defined by coordinates

γ =
“
qab(x), φ(x);πab(x), πφ(x)

”
(2)

Not all of Γ is physical: 4 constraints per each point x ∈ Σ,

C(x), Ca(x)(3)
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Coordinates on Γ can be splitted into homogeneous and inhomogeneous:

qab = q(0)
ab + δqab, φ = φ(0) + δφ

πab = πab
(0)

+ δπab, πφ = π
(0)
φ + δπφ

(4)

where in particular

a2 :=

Z
Σ
d3x δabqab(x) defines q(0)

ab = a2δab(5)

Note that q(0)
ab is of the Robertson-Walker type, but in general does not satisfy 0th

order Einstein equation (i.e., Friedmann equation).
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Physical phase space: solve the constraints C = 0 and Ca = 0. To linear order in the
inhomogeneities, one can show [AD, Lewandowski, Puchta 2013] that the only physical
degrees of freedom are:

• homogeneous geometry → a
• tensor modes of geometry (graviton-to-be) → δq+

~k
, δq×

~k
• scalar modes of matter (scalar field) → δφ~k

where we already performed spatial Fourier transform, and ~k ∈ L = (2πZ)3 − {~0}.

Homogeneous part of Hamiltonian constraint,
R
d3xC(x) = 0, is solved for momentum

π
(0)
φ of φ(0). Hence, φ(0) is physical time, and we obtain a physical Hamiltonian:

d
dφ(0)

F = {F , hphys}(6)

where

hphys = Hhom −
X
~k

H−1
hom
2

h
δπ2
~k

+
`
a4k2 + a6m2´ δφ2

~k

i
+ Hamiltonian for δqi

~k
(7)

and Hhom =
p
κ/6 aπa.
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Focus on the scalar part:

H = Hhom ⊗Hφ(8)

and quantum dynamics driven by Hamiltonian

Ĥ = Ĥhom ⊗ Î −
1
2

X
k

“
Ĥ−1

hom ⊗ δπ̂
2
k + Ω̂(k,m)⊗ δφ̂2

k

”
(9)

where

Ω̂(k,m) := k2 Ĥ
−1
homâ4 + â4Ĥ−1

hom
2

+ m2 Ĥ
−1
homâ6 + â6Ĥ−1

hom
2

(10)

Ĥ acts on a state |Ψ(t, a, φ)〉 ∈ H via Schroedinger equation:

−i
d
dt
|Ψ〉 = Ĥ|Ψ〉(11)
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Test field approximation (0th order Born-Oppenheimer) ⇒ Geometry and matter are
disentangled:

|Ψ(t, a, φ)〉 = |Ψo(t, a)〉 ⊗ |ϕ(t, φ)〉(12)

where

−i
d
dt
|Ψo〉 = Ĥhom|Ψo〉(13)

Plugging this in the Schroedinger equation, and projecting on 〈Ψo |, gives

i
d
dt
|ϕ〉 =

1
2

X
k

h
〈Ψo |Ĥ−1

hom|Ψo〉δπ̂2
k + 〈Ψo |Ω̂(k,m)|Ψo〉δφ̂2

k

i
|ϕ〉(14)

Not surprising: a collection of harmonic oscillators. But the parameters of this h.o.
are given in terms of expectation values of geometric operators on quantum state of
geometry, Ψo .
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QFT on quantum spacetime sandwitched on |Ψo〉 ∈ Hhom:

i
d
dt
|ϕ〉 =

1
2

X
k

h
〈Ψo |Ĥ−1

hom|Ψo〉δπ̂2
k + 〈Ψo |Ω̂(k,m)|Ψo〉δφ̂2

k

i
|ϕ〉(15)

QFT on classical Robertson-Walker spacetime

ḡµνdxµdxν = −N̄2dt2 + ā2 `dx2 + dy2 + dz2´(16)

⇒

i
d
dt
|ϕ〉 =

1
2

X
k

»
N̄
ā3 δπ̂

2
k +

N̄
ā3

`
ā4k2 + ā6m2´δφ̂2

k

–
|ϕ〉(17)

The comparison gives 8<: N̄/ā3 = 〈Ĥ−1
hom〉

N̄
`
ā4k2 + ā6m2´ /ā3 = 〈Ω̂(k,m)〉

⇒ Only one real and positive solution:

N̄ = 〈Ĥ−1
hom〉ā

3, ā = ā(k/m)(18)
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Striking conclusion:

fundam. quantum gravity+matter ⇐⇒ QFT on effective, k-dependent spacetime

The effective scale factor:

ā(k/m)2 =

8>>><>>>:
u+ + u− −

k2

3m2 if k < ko

2k2

3m2 cos
»
1
3
arccos

„
−1 +

27m6

2k6 δ

«–
−

k2

3m2 if k ≥ ko

(19)

where

u± :=
3

vuut δ

2
−

k6

27m6 ±

s
δ2

4
−

k6

27m6 δ, δ =
〈Ω̂(k,m)〉
m2〈Ĥ−1

hom〉
(20)

remark: if we started with massless field, m = 0, the solution turns out to be
k-independent and given by [Ashtekar, Kaminski, Lewandowski 2009]

ā2
m=0 =

vuut 〈Ĥ−1
homâ4 + â4Ĥ−1

hom〉
2〈Ĥ−1

hom〉
(21)

This is consistent with the “high energy” limit k � m of the massive solution (19).
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In the “low energy” limit k � m, we have

ā (k/m)2 ≈ ā2
o

"
1 +

β

3

„
k/āo

m

«2
#

(22)

where

ā2
o =

1
3
q

2〈Ĥ−1
hom〉

〈Ĥ−1
homâ6 + â6Ĥ−1

hom〉
1
3 , β :=

1
3
q

2〈Ĥ−1
hom〉

〈Ĥ−1
homâ4 + â4Ĥ−1

hom〉

〈Ĥ−1
homâ6 + â6Ĥ−1

hom〉
2
3
−1

Interpretation

• Scale factor āo defines the low-energy, k-independent metric

ḡo
µνdx

µdxν = −N̄2
odt

2 + ā2
o(dx2 + dy2 + dz2)(23)

We can think of it as the semiclassical metric seen by an observer performing
macroscopic measurements.

• Parameter β encodes the quantum nature of spacetime: if product of expectation
values = expectation value of products, then β = 0.
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A cosmological observer (4-velocity uµ, metric ḡo
µν) measures a particle of

wave-vector kµ passing through the lab:
• Energy: E := uµkµ = k0/N̄o

• Momentum: p2 := (ḡµνo + uµuν)kµkν = k2/ā2
o

But the particle satisfies the mass-shell relation wrt metric ḡµν(k/m):

−m2 = ḡµνkµkν = −
k2
0

N̄2
+

k2

ā2 = −f 2E2 + g2p2(24)

where

f :=
N̄o

N̄
, g :=

āo

ā
(25)

are the so-called rainbow functions [Magueijo, Smolin 2004].

⇒ Modified dispersion relation:

E2 =
1
f 2

`
g2p2 + m2´ = m2 + (1 + β)p2 + O(p4)(26)
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E ≈
q

m2 + (1 + β)p2(27)

The standard dispersion relation is recovered two independent limits:
• semiclassical matter (i.e., modes with p � m): in this case E ≈ m (the most
famous formula of physics!)

• semiclassical gravity (i.e., |Ψo〉 such that β � 1): in this case, E ≈
p

m2 + p2

0.0 0.5 1.0 1.5 2.0
p�m0.0

0.5

1.0

1.5

2.0
E�m

Green = semiclassical spacetime (β ≈ 0), Blue = quantum spacetime (β ≈ 0.2)

remark: No particular role is played by EPlanck ≈ 1019GeV . Indeed, if β ≈ 1 (i.e., |Ψo〉
is a very non-classical state), then modifications are present for p ≈ m, which for a
proton would be around 1 GeV . We do not see Lorentz-violations in accelerators
because |Ψo〉 is extremely classical today!
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v =
dE
dp

=
1 + βp

m2 + (1 + β)p2
p(28)

remark: For massless particles, m� p, we do not get 1 but rather
√
1 + β. Hence, we

have a modified velocity of light. Just a shift by β! Where is the big deal? Well...
1) β is a function of expectation values of geometric operators on |Ψo〉, and as such

it depends on time.
2) This simple form for vm=0 is due to the approximation we considered. For the

exact ā2 of equation (19) above, numerics give

0 2 4 6 8 10
p�m0.0

0.2

0.4

0.6

0.8

1.0

v

Green = semiclassical spacetime (β ≈ 0); Blue = quantum spacetime (β ≈ 0.2); Dashed = light
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Main result

quantum gravity+matter ⇐⇒ QFT on effective, k-dependent spacetime ḡµν

This is true in any theory of quantum gravity based on a Hamiltonian formulation, if
the following approximations hold:

• linearized inhomogeneities around homogeneous isotropic background (e.g., LQC)
• test-field approximation: |Ψ(t, a, φ)〉 = |Ψo(t, a)〉 ⊗ |ϕ(t, φ)〉

What is the effect of this result?
k-dependence of ḡµν implies a modified dispersion relation controlled by the scale

β =
1

3
q

2〈Ĥ−1
hom〉

〈Ĥ−1
homâ4 + â4Ĥ−1

hom〉

〈Ĥ−1
homâ6 + â6Ĥ−1

hom〉
2
3
− 1(29)

Only one parameter, in spite of the microscopic structure of quantum spacetime |Ψo〉!
⇒ compare with crystals’ refractive properties: described uniquely by refractive index n

Can we test this result?
Today the geometry is classical, so β � 1: no Lorentz-violation today :(

⇒ However, in the primordial Universe the geometry is expected to be “very quantum”,
in which case β ≈ 1, and hence the Lorentz-violation is present even for p ≈ m :o
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thank you
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