Rainbows from Quantum Gravity

Andrea Dapor

University of Warsaw

27 January 2015

Assanioussi, AD, Lewandowski 2014 [arXiv:1412.6000]



Outline

© Classical Theory
© Quantization

© Effective Metric

Q Lorentz Violation

Q@ Conclusion

1/20



Introduction

Idea:

Construct QFT on quantum spacetime and study how modes of the field probe the QG

What do we expect to find?

classical spacetime = "eigenstate of geometry” gﬁ'ﬁss

= every mode lives on gﬁ'j‘ss

quantum spacetime = semiclassical state W,, superposition of “metric-eigenvalues”

peaked on gﬁ'fj‘ss

=- maybe different modes k of the test field live on different components
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Classical Theory

Spacetime manifold: M = R x ¥. For simplicity in treating quantum fields, ¥ is
topologically a 3-torus.

The theory:

™) Slevdl = [ d*xV=E |5 R~ 58" 0,00.0 - V(9)]

Canonical analysis:

e geometry, gy, — (Clab(X)?Wab(X))
o K-G matter field, ¢ — (¢(x); 7(x))

= Every point v in phase space I is uniquely defined by coordinates

) 7 = (9a6(x), (x); 7 (x), 7o (x) )
Not all of I is physical: 4 constraints per each point x € ¥,

3) C(x),  Glx)

4/20



Classical Theory

Coordinates on I' can be splitted into homogeneous and inhomogeneous:

Gab = 43 +0Ga, & =0 + 8¢

(4)

b = Trfé’) + omb, T = 7r<(;50) + o7y
where in particular
(5) a% = /): d3x 6abqab(x) defines qg%) = a%8,,

Note that qi%) is of the Robertson-Walker type, but in general does not satisfy Oth
order Einstein equation (i.e., Friedmann equation).
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Classical Theory

Physical phase space: solve the constraints C = 0 and C; = 0. To linear order in the
inhomogeneities, one can show [AD, Lewandowski, Puchta 2013] that the only physical
degrees of freedom are:

e homogeneous geometry — a
e tensor modes of geometry (graviton-to-be) — 5q2’, 5q£<
e scalar modes of matter (scalar field) — d¢;

where we already performed spatial Fourier transform, and k € £ = (277Z)3 — {0}.

Homogeneous part of Hamiltonian constraint, f d3xC(x) =0, is solved for momentum

71_5)0) of $(©. Hence, ¢(© is physical time, and we obtain a physical Hamiltonian:

d
(6) WF = {F7 hphys}
where
H-t )
(7) oy = Hhom — > % [6#,% 4 (a4 4 B m?) 5¢§] + Hamiltonian for 6’

k

and Hhom = /Kk/6 ama.
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Quantization
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Focus on the scalar part:

(8) H = Hhpom ® Hg

and quantum dynamics driven by Hamiltonian

A ~ N 1 ~_ R A N
9) A= Fhom® 123" (Hhofn ® 672 + Q(k,m) ® &;si)
k
where
R A1 5% 1L 541 f—1 36 1 5641
(10) Q(k7 m) = k2 hom —;a om 2 Mhom? —;a hom

A acts on a state |W(t, a, $)) € H via Schroedinger equation:

(1) i %) = Fw)
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Test field approximation (Oth order Born-Oppenheimer) = Geometry and matter are
disentangled:

(12) [W(t,a,0)) = [Vo(t,a)) ® |o(t, )
where
(13) _i%|w0> = I:Ihom‘wo>

Plugging this in the Schroedinger equation, and projecting on (W,|, gives

10 il = 2 3 [(WolAh [Vo)s#E + (Walf2(k, mIve)5d7 ] Ie)
k

Not surprising: a collection of harmonic oscillators. But the parameters of this h.o.
are given in terms of expectation values of geometric operators on quantum state of
geometry, V,.
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Effective Metric

QFT on quantum spacetime sandwitched on |V,) € Hpom:

(15) i) = 2 3 [(Wol Ak [Vo)d#E + (Wal(k, V)57 Ig)
k

QFT on classical Robertson-Walker spacetime

(16) Buvdxtdx” = —N?dt* + 3° (dx® + dy? + dz?)
=
.d 1 N N ~ .
(17) il =52 [;f”iJr 5 (@K +3m) 567 | |)
k

The comparison gives

=> Only one real and positive solution:
(18) N = (A3, 3 = 3(k/m)
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Effective Metric

Striking conclusion:

fundam. quantum gravity+matter <= QFT on effective, k-dependent spacetime

The effective scale factor:

k2
qu—i-u_—:s—2 if k < ko
(19) a(k/m)? = "
2K {1 ( 1+27m65>} K2 if k > k
COS | — arccos | — — = I o
3m2 3 2Kk6 3m2 =
where
(20) ui-:’é_ K + ﬁ_ig 5:M
' 2 27m® 4 27Tmb 7 m2(H L)

remark: if we started with massless field, m = 0, the solution turns out to be
k-independent and given by [Ashtekar, Kaminski, Lewandowski 2009]

(Floon

hom?

2(H

34 ~4
+ a%*H,
(21) 32 hom>

hom>
This is consistent with the “high energy” limit k > m of the massive solution (19).
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Effective Metric

In the “low energy” limit k < m, we have

PYERY:

(22) 3(k/m)? ~ 32 {uﬁ( /ao) ]
3 m
where
1 o f g1 1 AL &%+ 2%t
e (), i — i (e T )
2( om> 2( om> <Hho @ +ad hom>3

Interpretation

o Scale factor 3, defines the low-energy, k-independent metric
(23) g2, dxtdx” = —N2dt? + 32(dx? + dy? + dz?)

We can think of it as the semiclassical metric seen by an observer performing
macroscopic measurements.

o Parameter 3 encodes the quantum nature of spacetime: if product of expectation
values = expectation value of products, then 8 = 0.
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Lorentz Violation

A cosmological observer (4-velocity u#, metric g;ju) measures a particle of
wave-vector k;, passing through the lab:

o Energy: E := utk, = ko/No
o Momentum: p? := (85" + utu” )k, k, = k?/32

But the particle satisfies the mass-shell relation wrt metric g, (k/m):

2 2
(24) —m? =gk, k, = _k + K_ _pp + g2p?
Nz T oE2
where
NO _O
25 fi= =2, = 2o
(25) N 8=

are the so-called rainbow functions [Magueijo, Smolin 2004].

= Modified dispersion relation:

(26) E? = % (&°p* + m*) = m* + (1 + B)p* + O(p*)
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Lorentz Violation

(27) En/m? +(1+B)p?

The standard dispersion relation is recovered two independent limits:
e semiclassical matter (i.e., modes with p <« m): in this case E =~ m (the most
famous formula of physics!)

W,) such that 3 < 1): in this case, E &~ \/m? + p?

e semiclassical gravity (i.e.,

E/m
201

10

05f

00 L L L , p/m
0.0 05 10 15 20"

Green = semiclassical spacetime (3 =~ 0), Blue = quantum spacetime (3 = 0.2)

remark: No particular role is played by Epjanck =~ 101°GeV. Indeed, if 8~ 1 (i.e., |Wo)
is a very non-classical state), then modifications are present for p = m, which for a
proton would be around 1 GeV. We do not see Lorentz-violations in accelerators
because |W,) is extremely classical today!
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Lorentz Violation

dE 143
V=—=—Fr—F————-p

dp m? + (1 + B)p?
remark: For massless particles, m < p, we do not get 1 but rather /1 + 3. Hence, we
have a modified velocity of light. Just a shift by 8! Where is the big deal? Well...

1) B is a function of expectation values of geometric operators on |W,), and as such
it depends on time.

(28)

2) This simple form for vm—g is due to the approximation we considered. For the
exact 32 of equation (19) above, numerics give

o8}

06f

o4l

02

00 , . , , , pm

Green = semiclassical spacetime (3 = 0); Blue = quantum spacetime (8 &~ 0.2); Dashed = light
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Main result
quantum gravity+matter <= QFT on effective, k-dependent spacetime g,

This is true in any theory of quantum gravity based on a Hamiltonian formulation, if
the following approximations hold:
e linearized inhomogeneities around homogeneous isotropic background (e.g., LQC)
o test-field approximation: |W(t,a, ¢)) = |Wo(t, a)) ® |p(t, ¢))

What is the effect of this result?
k-dependence of g, implies a modified dispersion relation controlled by the scale

r—1 a4 | aapy—1
(29) p= b Chem® T o)
Y 2< 73%11) <Hhom‘36 + a6Hho >3

Only one parameter, in spite of the microscopic structure of quantum spacetime |W,)!
= compare with crystals’ refractive properties: described uniquely by refractive index n

Can we test this result?
Today the geometry is classical, so 3 < 1: no Lorentz-violation today :(

= However, in the primordial Universe the geometry is expected to be “very quantum”,
in which case 3 &~ 1, and hence the Lorentz-violation is present even for p ~ m o
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th-nk you
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