Toward LQG effective dynamics

Andrea Dapor

Louisiana State University

ILQGS, Earth, 19 February 2019

outline

- 2 cosmology from full LQG?
- generalized coherent states: kinematical results
- generalized coherent states: dynamical conjecture
- potential applications

outline

introduction

- 2 cosmology from full LQG?
- generalized coherent states: kinematical results
- generalized coherent states: dynamical conjecture
- potential applications

Effective dynamics: some important developments

2006 Ashtekar, Pawlowski and Singh find that LQC quantum dynamics of semiclassical states can be approximated by effective dynamics of

$$H_{LQC}^{eff} := -rac{3}{8\pi G \gamma^2 \Delta} V \sin^2(\sqrt{\Delta}b)$$

2008 Taveras shows that H_{LQC}^{eff} can be obtained as an expectation value of LQC quantum Hamiltonian on Gaussian states:

$$\langle \Psi_{(V,b)} | \hat{H}_{LQC} | \Psi_{(V,b)}
angle = -rac{3}{8\pi G \gamma^2 \Delta} V igg[\sin^2 (\sqrt{\Delta} b) + \mathcal{O}(\epsilon) igg]$$

where $\Psi_{(V,b)}(v) \sim e^{-\frac{\epsilon^2}{2}(V-v)^2 - i\frac{\sqrt{\Delta}}{2}b(V-v)}$.

- 2013 Alesci and Cianfrani apply Taveras's idea to QRLG, finding the same result for certain Livine-Speziale coherent states.
- 2017 AD and Liegener apply the same idea to LQG (on a fixed cubic graph), finding for certain complexifier coherent states $\Psi^{\mu,t}_{(c,p)}$

$$\langle \Psi^{\mu,t}_{(c,p)} | \hat{H}_{LQG} | \Psi^{\mu,t}_{(c,p)} \rangle = -\frac{3}{8\pi G \gamma^2 \mu^2} \sqrt{p} \big[\sin^2(\mu c) - (1+\gamma^2) \sin^4(\mu c) + \mathcal{O}(t) \big]$$

conclusion

outline

introduction

- 2 cosmology from full LQG?
- 3 generalized coherent states: kinematical results
- generalized coherent states: dynamical conjecture
- potential applications

Brief reminder on complexifier coherent states [Thiemann, Winkler 2000]

Consider a graph Γ with N edges. Given N $SL(2,\mathbb{C})$ elements $h := (h_1, .., h_N)$,

$$\Psi_h(g_1,..,g_N) = \psi_{h_1}(g_1)..\psi_{h_N}(g_N), \quad \psi_{h_e}(g_e) = \frac{1}{N}\sum_{j=0}^{\infty} (2j+1)e^{-j(j+1)t/2}\chi^j(g_eh_e^{\dagger})$$

Properties:

- 1. Overlap: $\langle \Psi_h | \Psi_{h'} \rangle \sim e^{-X(h,h')/t}$ where X(h,h') = 0 iff h = h'
- 2. Expectation values: writing $h_e = e^{-i\tau_I p_e^I} u_e$ with $u_e \in SU(2)$, we have

$$\langle \Psi_h | \hat{U}_e | \Psi_h
angle = u_e [1 + \mathcal{O}(t)], \qquad \langle \Psi_h | \hat{\mathcal{E}}_e^{\prime} | \Psi_h
angle = rac{1}{lpha} p_e^{\prime} [1 + \mathcal{O}(t)]$$

with $\alpha := t/(16\pi \ell_P^2 \gamma)$.

- 3. Peakedness: $\frac{\Delta U}{\langle \hat{U} \rangle}, \frac{\Delta E}{\langle \hat{E} \rangle} \sim \mathcal{O}(t)$, so t is called "semiclassicality parameter"
- 4. Matrix elements: $\langle \Psi_h | \hat{A} | \Psi_{h'} \rangle = \langle \Psi_h | \Psi_{h'} \rangle \langle \Psi_h | \hat{A} | \Psi_h \rangle [1 + \mathcal{O}(t)]$

 Ψ_h is not gauge-invariant. Consider the group-averaging of state Ψ_h :

$$\begin{split} \Psi_h^G(g) &:= \int dg' \prod_{e \in \Gamma} D(g'_{s_e}) D(g'_{t_e}) \psi_{h_e}(g) = \int dg' \prod_{e \in \Gamma} \psi_{h_e}(g'_{t_e}^{\dagger} gg'_{s_e}) \\ &= \int dg' \prod_{e \in \Gamma} \psi_{g'_{t_e} h_e g'_{s_e}^{\dagger}}(g) \end{split}$$

where $D(g_{s_e})$ and $D(g_{t_e})$ are the gauge-transformations at start and target of e. Now, if \hat{A} is gauge-invariant, we have

$$\begin{split} \langle \Psi_{h}^{G} | \hat{A} | \Psi_{h}^{G} \rangle &= \int dg \overline{\Psi_{h}^{G}(g)} (\hat{A} \Psi_{h}^{G})(g) = \int dg dg' dg'' \prod_{e \in \Gamma} \overline{\psi_{g_{t_{e}}'heg_{s_{e}}'\uparrow}(g)} (\hat{A} \psi_{g_{t_{e}}'heg_{s_{e}}'\uparrow})(g) \\ &= \int dg dg' \prod_{e \in \Gamma} \overline{\psi_{g_{t_{e}}'heg_{s_{e}}'\uparrow}(g)} (\hat{A} \psi_{g_{t_{e}}'heg_{s_{e}}\uparrow})(g) [1 + \mathcal{O}(t)] \\ &= \int dg dg' \prod_{e \in \Gamma} \overline{\psi_{h_{e}}(g)} (D(g_{t_{e}}')^{\dagger} D(g_{s_{e}}')^{\dagger} \hat{A} D(g_{s_{e}}') \psi_{h_{e}})(g) [1 + \mathcal{O}(t)] \\ &= \int dg \prod_{e \in \Gamma} \overline{\psi_{h_{e}}(g)} (\hat{A} \psi_{h_{e}})(g) [1 + \mathcal{O}(t)] \\ &= \langle \Psi_{h} | \hat{A} | \Psi_{h} \rangle [1 + \mathcal{O}(t)] \end{split}$$

Complexifier coherent states for cosmology

- RW metric: in adapted coordinates, $ds^2 = -dt^2 + p(t)[dx^2 + dy^2 + dz^2]$
- Ashtekar-Barbero variables: $A_a^l = c \delta_a^l$ and $E_l^a = p \delta_l^a$
- fix the graph: cubic lattice embedded in space along the coordinate axes
- read off the classical holonomy and flux on each edge:

$$u_e = e^{-c\mu\tau_e}, \qquad p'_e = \delta'_e \alpha \mu^2 p$$

where μ is the $\mathit{coordinate}$ length of each edge

• construct the $SL(2,\mathbb{C})$ elements $h_e = e^{-i\tau_l p_e^l} u_e$, and use them as label:

$$\Psi_{(c,p)}^{\mu,t} := \Psi_h$$

By construction, $\Psi_{(c,p)}^{\mu,t}$ is peaked on classical RW data along the edges of Γ :

$$\langle \Psi_h | \hat{U}_e | \Psi_h
angle = e^{-c\mu\tau_e} + \mathcal{O}(t), \qquad \langle \Psi_h | \hat{E}'_e | \Psi_h
angle = \delta'_e \mu^2 p + \mathcal{O}(t)$$

Evaluation of LQG Hamiltonian

Consider non-graph-changing Thiemann Hamiltonian [Giesel, Thiemann 2006], \hat{H}_{LQG} .

As already announced, the expectation value on $\Psi_{(c,p)}^{\mu,t}$ is

$$egin{aligned} \langle \Psi^{\mu,t}_{(c,p)} | \hat{H}_{LQG} | \Psi^{\mu,t}_{(c,p)}
angle &= -rac{3}{8\pi G \gamma^2 \mu^2} \sqrt{p} igg[\sin^2(\mu c) - (1+\gamma^2) \sin^4(\mu c) + \mathcal{O}(t) igg] \ &= H^{eff}_{LQC} igg[1 - (1+\gamma^2) \sin^2(\mu c) igg] + \mathcal{O}(t) \end{aligned}$$

The extra term can be traced to the Lorentzian part of the scalar constraint. Recall that

$$C = C_E + C_L$$

Two possibilities for C_L :

- "first reduce, then regularize" (as in LQC): at reduced level, $C_L \sim C_E$, so C_L can be regularized as C_E
- "first regularize, then reduce" (as in LQG): in full GR $C_L \not\sim C_E$, so one regularizes them differently

Alternative LQC

Everything boils down to the treatment of extrinsic curvature K_a^{\prime} in C_L :

$$\mathcal{K}_a^{\prime}=rac{1}{\gamma}\mathcal{A}_a^{\prime}$$
 vs $\mathcal{K}_a^{\prime}=rac{1}{8\pi G\gamma^3}\{\mathcal{A}_a^{\prime},\{\mathcal{C}_E,V\}\}$

Using Thiemann identity in the reduced case of flat cosmology, leads to a 4th order difference operator on the Hilbert space of LQC [Assanioussi, AD, Liegener, Pawlowski]:

$$\Theta = -\frac{3\pi G}{4}\gamma^2 \left[sf_8(v)N^8 - f_4(v)N^4 - 2(s-1)f_0(v)I - f_{-4}(v)N^{-4} + sf_{-8}(v)N^{-8} \right]$$

where $f_a(v) := \sqrt{|v(v+a)|}|v+a/2|$ and $s := (1+\gamma^2)/(4\gamma^2)$.

Quantum evolution of semiclassical states can be approximated by effective dynamics of $\langle \Psi^{\mu,t}_{(c,p)} | \hat{H}_{LQG} | \Psi^{\mu,t}_{(c,p)} \rangle |_{\mu=\tilde{\mu}}$. The latter can be analytically solved:

$$V(\phi) = \sqrt{rac{4\pi G \Delta p_{\phi}^2}{3}} \; rac{1+\gamma^2 \cosh^2(\sqrt{12\pi G}\phi)}{\sinh(\sqrt{12\pi G}\phi)}$$

Figure: LQC (green), alt LQC (blue), classical FLRW (red), dS with Λ_{eff} (black).

Pre-bounce branch: contracting de Sitter with effective cosmological constant

$$\Lambda_{eff} = rac{3}{\Delta(1+\gamma^2)}$$

The physics of this model (with inflaton field) has been studied in the contexts of effective dynamics [Li, singh, Wang 2018] and primordial power spectrum [Aguillo 2018].

Main message: At least in the symmetry-reduced setting, $\langle \Psi_h | \hat{H} | \Psi_h \rangle$ can be thought of as an **effective Hamiltonian**, i.e., its dynamics captures the main feature of the quantum dynamics of semiclassical states.

Remark on μ_0 vs $\bar{\mu}$

In LQG, μ is a parameter of the complexifier coherent state Ψ_h , representing the *coordinate length* of an edge: μ_0 -scheme seems therefore the natural choice.

 \Rightarrow several problems: in particular, bounce at sub-Planckian energy density

Possible way out: Recover $\bar{\mu}$ -scheme via the following procedure [Alesci, Cianfrani 2016]. Consider the mixed state

$$\hat{
ho} = \sum_{N=1}^{N_{max}} c_N |\Psi_{(c,
ho)}^N
angle \langle \Psi_{(c,
ho)}^N|$$

with $\Psi_{(c,p)}^N$ semiclassical state living on a graph with N vertices. Then, choosing N_{max} and c_N appropriately, one finds

$$\langle \hat{H} \rangle := \operatorname{Tr}(\hat{\rho}\hat{H}) = \sum_{N=1}^{N_{max}} c_N \langle \Psi_{(c,\rho)}^N | \hat{H} | \Psi_{(c,\rho)}^N \rangle = \sum_{N=1}^{N_{max}} c_N H_{LQC}^{eff}|_{\mu=\frac{1}{N}} = H_{LQC}^{eff}|_{\mu=\bar{\mu}} + O(t)$$

Problem: N_{max} is fixed by p; since effective dynamics generated by $\langle \hat{H} \rangle$ changes p in time, then N_{max} must change in time. However, quantum Hamiltonian \hat{H} is graph-preserving, so it cannot change the number of vertices!

Conclusion – Effective dynamics generated by $\langle \hat{H} \rangle$ cannot be a good approximation of the full quantum dynamics generated by \hat{H} .

outline

introduction

2 cosmology from full LQG?

generalized coherent states: kinematical results

generalized coherent states: dynamical conjecture

5 potential applications

Generalized coherent states

Theorem

Let Ψ be a state of the form

$$\Psi(g) = rac{1}{N} f(g) e^{-S(g)/t}$$

where t-dependent normalization N and f and S t-independent holomorphic functions. If S satisfies

- Re(S) has single minimum at g_o
- Hessian of S is non-degenerate at g_o

then we have (use saddle point method)

$$\langle \Psi | \hat{U}_e | \Psi \rangle = g_{o,e} [1 + \mathcal{O}(t)], \quad \langle \Psi | \hat{E}'_e | \Psi \rangle = \frac{1}{t} [P'_{o,e} + \mathcal{O}(t)]$$

where $P_{o,e}^{\prime} := -32\pi \ell_P^2 \gamma \big(R_e^{\prime} \mathrm{Im}(S) \big) (g_o).$

For this reason, we say that

 Ψ is a generalized coherent state peaked at (g_o, P'_o)

Example: complexifier coherent states.

Pseudodifferential operators and principal symbols

Consider a fixed graph with N edges. The phase space associated with it is T^*G with $G = SU(2)^N$.

To any smooth function $a \in T^*G$, we can associate an operator \hat{A} on $L_2(G, d\mu)$: its kernel is

$$A(g_1,g_2) = rac{1}{(2\pi)^{\dim G}} \int_{\mathrm{Lie}(G)} d\xi \ e^{i\xi^I X_I(g_1,g_2)} a(g_1,\xi)$$

with $X \in \text{Lie}(G)$ s.t. $g_1^{\dagger}g_2 = e^{2X}$. \hat{A} is called a *pseudodifferential operator*, pdo. Note: polynomial of pdo's is pdo.

The *principal symbol* of \hat{A} , denoted $\mathcal{P}(\hat{A})$, is the leading order of the power series of *a* for large ξ . Some properties:

- $\mathcal{P}(\hat{A}\hat{B}) = \mathcal{P}(\hat{A})\mathcal{P}(\hat{B})$
- $\mathcal{P}([\hat{A}, \hat{B}]) = i\hbar\{\mathcal{P}(\hat{A}), \mathcal{P}(\hat{B})\}$

Example: \hat{U}_e and \hat{E}'_e are pdo's with principal symbols

$$\mathcal{P}(\hat{U}_e)(g,\xi)=g_e, \quad \mathcal{P}(\hat{E}'_e)(g,\xi)=\xi'_e$$

Theore<u>m</u>

Let Ψ be a generalized coherent state peaked at (g,P) and \hat{A} a pdo. Then

$$\langle \Psi | \hat{A} | \Psi
angle = \mathcal{P}(\hat{A}) \left(g, rac{P}{t}
ight) [1 + \mathcal{O}(t)]$$

This in particular applies to polynomials $f(\hat{U}, \hat{E})$, for which we thus have

$$\langle \Psi | f(\hat{U}, \hat{E}) | \Psi \rangle = f(g, P/t) [1 + O(t)]$$

We would like to use this result to compute expectation value of \hat{H}_{LQG} on Ψ . Problem: \hat{H}_{LQG} involves volume $\hat{V} = \sum_{v} \hat{V}_{v}$, which is not a polynomial:

$$\hat{V}_{v} = \sqrt{\left. rac{1}{48}
ight| \sum_{e,e',e'' ext{ at } v} \epsilon(e,e',e'') \epsilon_{IJK} \hat{E}_{e}^{I} \hat{E}_{e'}^{J} \hat{E}_{e''}^{K}}$$

Solution: microlocal equivalence.

Microlocal equivalence

Consider $(g_o, \xi_o) \in T^*G$ and the class of cunctions c s.t.

- $c(g, \lambda \xi) = c(g, \xi)$ for all $\lambda > 0$
- $c(g,\xi) = 1$ for (g,ξ) in a neighbourhood of (g_o,ξ_o)

We denote this class by $S_{(g_o,\xi_o)}$.

Two (not necessarily pdo's), \hat{A} and \hat{B} , are *microlocally equivalent* at (g_o, ξ_o) iff there exists $c \in S_{(g_o, \xi_o)}$ such that $(\hat{A} - \hat{B})\hat{C}$ has smooth kernel. We write

 $\hat{A} \stackrel{(g_o,\xi_o)}{=} \hat{B}$

Theorem

Let Ψ be a generalized coherent state peaked at (g, P). If $\hat{A} \stackrel{(g, P)}{=} \hat{B}$, then

$$\hat{A}|\Psi
angle=\hat{B}|\Psi
angle+\mathcal{O}(t^{\infty})$$

Evaluation of $\langle \hat{H}_{LQG} \rangle$

It is possible to find a pdo \hat{W} such that

 $\hat{W} \stackrel{(g,P)}{=} \hat{V}$

for all (g, P) with $\mathcal{P}(\hat{W})(g, P) \neq 0$. Not surprisingly, the principal symbol of this \hat{W} is

$$\mathcal{P}(\hat{W})(g,P) = \sqrt{\left.\frac{1}{48}\right|\sum_{e,e',e'' \text{ at } v} \epsilon(e,e',e'')\epsilon_{IJK}P_e^I P_{e'}^J P_{e''}^K}$$

which is the classical volume, $V_{class}(P)$.

Putting all together, we get

Theorem

If Ψ is generalized coherent state peaked on (g,P) with non-zero volume, then

$$egin{aligned} &\langle \Psi | \hat{H}_{LQG} | \Psi
angle &= \langle \Psi | H_{LQG} (\hat{U}, \hat{V}) | \Psi
angle &= \langle \Psi | H_{LQG} (\hat{U}, \hat{W}) | \Psi
angle + \mathcal{O}(t^{\infty}) \ &= H_{LQG} (g, V_{class}(P/t)) \ ig[1 + \mathcal{O}(t) ig] \end{aligned}$$

outline

- 2 cosmology from full LQG?
- 3 generalized coherent states: kinematical results
- generalized coherent states: dynamical conjecture
- 5 potential applications

Let us go back to quantum mechanics.

Egorov's Theorem

Let \hat{A} be a positive, self-adjoint, elliptic pdo. If \hat{B} is a pdo, then

$$\hat{B}_s := e^{is\hat{A}/\hbar}\hat{B}e^{-is\hat{A}/\hbar}$$

is also a pdo.

6

IF this theorem can be applied to our case (phase space T^*G), using the result of previous section it follows

$$\langle \Psi | \hat{B}_s | \Psi
angle = \mathcal{P}(\hat{B}_s)(g, P/t) \left[1 + \mathcal{O}(t) \right] = b_s(g, P/t) \left[1 + \mathcal{O}(t) \right]$$

where we denoted by b_s the principal symbol of \hat{B}_s .

Apply d/ds on both sides: at leading order in t we have

$$egin{aligned} &rac{d}{ds}b_s(g,P/t)pproxrac{d}{ds}\langle\Psi|\hat{B}_s|\Psi
angle&=rac{i}{\hbar}\langle\Psi|[\hat{A},\hat{B}_s]|\Psi
angle&pproxrac{i}{\hbar}\mathcal{P}([\hat{A},\hat{B}_s])(g,P/t)\ &=-\{\mathcal{P}(\hat{A}),b_s\} \end{aligned}$$

Conclusion (assuming that \hat{H}_{LQG} satisfies Egorov's theorem requirements).

Conjecture

Let Ψ be a generalized coherent state peaked at (g, P). Then, for any pdo \hat{B} , the expectation value on the time-evolved state

$$b_s := \langle \Psi | e^{is\hat{H}_{LQG}/\hbar} \hat{B} e^{-is\hat{H}_{LQG}/\hbar} | \Psi
angle$$

satisfies to leading order in t the effective Hamilton equation

$$rac{d}{ds}b_{s}=\{b_{s},H_{eff}\}, \qquad b_{0}=\langle\Psi|\hat{B}|\Psi
angle$$

where the effective Hamiltonian is

 $H_{eff} := \langle \Psi | \hat{H}_{LQG} | \Psi
angle$

outline

introduction

- 2 cosmology from full LQG?
- generalized coherent states: kinematical results
- generalized coherent states: dynamical conjecture
- 5 potential applications

If the conjecture is true, then we have a *dynamical* confirmation that (discretized) GR is the classical limit of LQG.

Moreover, we:

- confirm that the alternative LQC presented at the beginning *is* the cosmological sector of LQG
- $\bullet\,$ can apply this method to other symmetry-reduced systems, e.g. BH

Application: static, spheically symmetric black holes

System extensively studied in the reduced-symmetry context: Ashtekar, Bodendorfer, Boehmer, Bojowald, Campiglia, Corichi, Gambini, Modesto, Olmedo, Pullin, Saini, Singh, Vandersloot, Alesci, Pranzetti, ...

Summary - Schwartzschild interior can be recasted in Kantowski-Sachs form:

$$ds^{2} = -dT^{2} + f(T)^{2}dR^{2} + g(T)^{2}d\Omega^{2}$$

Points of interest:

- horizon: $f(T_h) = 0$ and $g(T_h) = 2M$
- singularity: $g(T_s) = 0$

Ashtekar-Barbero variables:

$$A_{R}^{R} = -\gamma a, \quad A_{\theta}^{\theta} = -\gamma b, \quad A_{\phi}^{\phi} = -\gamma b \sin \theta, \quad A_{\phi}^{R} = \cos \theta$$
$$E_{R}^{R} = p_{a} \sin \theta, \quad E_{\theta}^{\theta} = \frac{p_{b}}{2} \sin \theta, \quad E_{\phi}^{\phi} = \frac{p_{b}}{2}$$

where $\{a, p_a\} = 2G = \{b, p_b\}$ are related to f, g by $p_a = g^2$ and $p_b = 2fg$.

Construction of Ψ_h : recall that, writing $h_e = e^{-i\tau_l p_e^l} u_e$, we have

$$\langle \Psi_h | \hat{U}_e | \Psi_h
angle = u_e [1 + \mathcal{O}(t)], \qquad \langle \Psi_h | \hat{\mathcal{E}}'_e | \Psi_h
angle = rac{p'_e}{lpha} [1 + \mathcal{O}(t)]$$

Hence, for the current system we must choose

$$u_{R} = \exp[\gamma a \tau_{1} \mu_{1}], \quad u_{\theta} = \exp[\gamma b \tau_{2} \mu_{2}], \quad u_{\phi} = \exp[(\gamma b \tau_{3} \sin \theta - \tau_{1} \cos \theta) \mu_{3}]$$
$$p_{R}^{1} = \alpha p_{a} \mu_{2} \mu_{3} \sin \theta, \quad p_{\theta}^{2} = \frac{\alpha}{2} p_{b} \mu_{3} \mu_{1} \sin \theta, \quad p_{\phi}^{3} = \frac{\alpha}{2} p_{b} \mu_{1} \mu_{2}$$

Since the state Ψ_h thus obtained in peaked on (u, p), from the previous results

$$H_{eff} := \langle \Psi_h | \hat{H}_{LQG} | \Psi_h
angle = H_{LQG}(u, V_{class}(p/t)) \; [1 + \mathcal{O}(t)]$$

Computations are long (they involve a non-trivial sum over θ), but mechanical. The result is too long to fit a slide, and unfortunately *does not* look like the effective Hamiltonian found in literature by "polymerization".

Still, H_{eff} is analytical and Hamilton's equations can be integrated numerically.

Dynamics of f and g is particularly imporntant.

$$g = -dT^2 + f(T)^2 dR^2 + g(T)^2 d\Omega^2$$

Numerical solution for initial conditions at horizon with M = # of vertices:

Figure: Metric components f and g in LQG (blue) and GR (orange).

 $\mathsf{BH}\to\mathsf{WH}$ transition very non-symmetric (contrary to results in the literature).

		potential applications	

Mass of the final state:

Figure: White Hole mass as a function of Black Hole mass M.

Approximately $M_{WH} \sim M^{1\over3}$. Different from [Ashtekar, Olmedo, Singh 2018], where a linear relation is found.

conclusion

outline

introduction

- 2 cosmology from full LQG?
- generalized coherent states: kinematical results
- generalized coherent states: dynamical conjecture
- 5 potential applications

Summary of the results

• Proposal for generalized coherent states Ψ_h representing any discrete spatial geometry (g, P). Proof that, to leading order in t,

$$\langle \Psi_h | \hat{H}_{LQG} | \Psi_h
angle pprox {\cal H}_{LQG}(g, V_{class}(P/t))$$

• Dynamical conjecture: for any pdo \hat{B} , to leading order in t,

$$b_{s}:=\langle\Psi|e^{is\hat{H}_{LQG}/\hbar}\hat{B}e^{-is\hat{H}_{LQG}/\hbar}|\Psi
angle$$

satisfies

$$rac{d}{ds}b_s = \{b_s, H_{eff}\}, \quad ext{ with } \quad H_{eff} := \langle \Psi | \hat{H}_{LQG} | \Psi
angle$$

Therefore, LQG dynamically reduces to (discrete) GR in the classical limit!

- Applications:
 - * cosmology: alternative LQC (non-symmetric bounce)
 - * spherical BH: singularity replaced by BH \rightarrow WH transition, $M_{WH} \sim \sqrt[3]{M}$

Open questions

- Proof of the conjecture!
- Role of discreteness scale μ : LQG with graph-preserving Hamiltonian suggests μ_0 -scheme, but this seems to lead to unphysical predictions
- More applications:
 - * general spherical models: stellar collapse and BH formation
 - * cylindrical models: Kerr BH
 - * develop code to perform $\langle \Psi_h | \hat{H}_{LQG} | \Psi_h
 angle$ for any given discrete geometry