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Effective dynamics: some important developments

2006 Ashtekar, Pawlowski and Singh find that LQC quantum dynamics of
semiclassical states can be approximated by effective dynamics of

Heff
LQC := − 3

8πGγ2∆
V sin2(

√
∆b)

2008 Taveras shows that Heff
LQC can be obtained as an expectation value of LQC

quantum Hamiltonian on Gaussian states:

〈Ψ(V ,b)|ĤLQC |Ψ(V ,b)〉 = − 3

8πGγ2∆
V
[

sin2(
√

∆b) +O(ε)
]

where Ψ(V ,b)(v) ∼ e−
ε2

2
(V−v)2−i

√
∆

2
b(V−v).

2013 Alesci and Cianfrani apply Taveras’s idea to QRLG, finding the same result
for certain Livine-Speziale coherent states.

2017 AD and Liegener apply the same idea to LQG (on a fixed cubic graph),
finding for certain complexifier coherent states Ψµ,t

(c,p)

〈Ψµ,t
(c,p)|ĤLQG |Ψµ,t

(c,p)〉 = − 3

8πGγ2µ2

√
p
[

sin2(µc)− (1+γ2) sin4(µc)+O(t)
]
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Brief reminder on complexifier coherent states [Thiemann, Winkler 2000]

Consider a graph Γ with N edges. Given N SL(2,C) elements h := (h1, .., hN ),

Ψh(g1, .., gN ) = ψh1 (g1)..ψhN (gN ), ψhe (ge) =
1

N

∞∑
j=0

(2j + 1)e−j(j+1)t/2χj (geh†e )

Properties:

1. Overlap: 〈Ψh|Ψh′〉 ∼ e−X (h,h′)/t where X (h, h′) = 0 iff h = h′

2. Expectation values: writing he = e−iτI pI
e ue with ue ∈ SU(2), we have

〈Ψh|Ûe |Ψh〉 = ue [1 +O(t)], 〈Ψh|Ê I
e |Ψh〉 =

1

α
pI

e [1 +O(t)]

with α := t/(16π`2
Pγ).

3. Peakedness: ∆U

〈Û〉 ,
∆E

〈Ê〉 ∼ O(t), so t is called “semiclassicality parameter”

4. Matrix elements: 〈Ψh|Â|Ψh′〉 = 〈Ψh|Ψh′〉〈Ψh|Â|Ψh〉[1 +O(t)]
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Ψh is not gauge-invariant. Consider the group-averaging of state Ψh:

ΨG
h (g) :=

∫
dg ′
∏
e∈Γ

D(g ′se
)D(g ′te

)ψhe (g) =

∫
dg ′
∏
e∈Γ

ψhe (g ′†te
gg ′se

)

=

∫
dg ′
∏
e∈Γ

ψ
g′

te
he g

′†
se

(g)

where D(gse ) and D(gte ) are the gauge-transformations at start and target of e.

Now, if Â is gauge-invariant, we have

〈ΨG
h |Â|ΨG

h 〉 =

∫
dgΨG

h (g)
(
ÂΨG

h

)
(g) =

∫
dgdg ′dg ′′

∏
e∈Γ

ψ
g′

te
he g

′†
se

(g)
(
Âψ

g′′
te

he g
′′†
se

)
(g)

=

∫
dgdg ′

∏
e∈Γ

ψ
g′

te
he g

′†
se

(g)
(
Âψ

g′
te

he g
′†
se

)
(g)[1 +O(t)]

=

∫
dgdg ′

∏
e∈Γ

ψhe (g)
(
D(g ′te

)†D(g ′se
)†ÂD(g ′se

)D(g ′te
)ψhe

)
(g)[1 +O(t)]

=

∫
dg
∏
e∈Γ

ψhe (g)
(
Âψhe

)
(g)[1 +O(t)]

= 〈Ψh|Â|Ψh〉[1 +O(t)]
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Complexifier coherent states for cosmology

RW metric: in adapted coordinates, ds2 = −dt2 + p(t)[dx2 + dy 2 + dz2]

Ashtekar-Barbero variables: AI
a = cδI

a and E a
I = pδa

I

fix the graph: cubic lattice embedded in space along the coordinate axes

read off the classical holonomy and flux on each edge:

ue = e−cµτe , pI
e = δI

eαµ
2p

where µ is the coordinate length of each edge

construct the SL(2,C) elements he = e−iτI pI
e ue , and use them as label:

Ψµ,t
(c,p) := Ψh

By construction, Ψµ,t
(c,p) is peaked on classical RW data along the edges of Γ:

〈Ψh|Ûe |Ψh〉 = e−cµτe +O(t), 〈Ψh|Ê I
e |Ψh〉 = δI

eµ
2p +O(t)
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Evaluation of LQG Hamiltonian

Consider non-graph-changing Thiemann Hamiltonian [Giesel, Thiemann 2006], ĤLQG .

As already announced, the expectation value on Ψµ,t
(c,p) is

〈Ψµ,t
(c,p)|ĤLQG |Ψµ,t

(c,p)〉 = − 3

8πGγ2µ2

√
p
[

sin2(µc)− (1 + γ2) sin4(µc) +O(t)
]

= Heff
LQC

[
1− (1 + γ2) sin2(µc)

]
+O(t)

The extra term can be traced to the Lorentzian part of the scalar constraint.
Recall that

C = CE + CL

Two possibilities for CL:

“first reduce, then regularize” (as in LQC): at reduced level, CL ∼ CE , so
CL can be regularized as CE

“first regularize, then reduce” (as in LQG): in full GR CL 6∼ CE , so one
regularizes them differently
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Alternative LQC

Everything boils down to the treatment of extrinsic curvature K I
a in CL:

K I
a =

1

γ
AI

a vs K I
a =

1

8πGγ3
{AI

a, {CE ,V }}

Using Thiemann identity in the reduced case of flat cosmology, leads to a 4th
order difference operator on the Hilbert space of LQC [Assanioussi, AD, Liegener, Pawlowski]:

Θ = −3πG

4
γ2

[
sf8(v)N8− f4(v)N4−2(s−1)f0(v)I − f−4(v)N−4 + sf−8(v)N−8

]
where fa(v) :=

√
|v(v + a)||v + a/2| and s := (1 + γ2)/(4γ2).

Quantum evolution of semiclassical states can be approximated by effective
dynamics of 〈Ψµ,t

(c,p)|ĤLQG |Ψµ,t
(c,p)〉|µ=µ̄. The latter can be analytically solved:

V (φ) =

√
4πG∆p2

φ

3

1 + γ2 cosh2(
√

12πGφ)

sinh(
√

12πGφ)
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Figure: LQC (green), alt LQC (blue), classical FLRW (red), dS with Λeff (black).

Pre-bounce branch: contracting de Sitter with effective cosmological constant

Λeff =
3

∆(1 + γ2)

The physics of this model (with inflaton field) has been studied in the contexts
of effective dynamics [Li, Singh, Wang 2018] and primordial power spectrum [Agullo 2018].

Main message: At least in the symmetry-reduced setting, 〈Ψh|Ĥ|Ψh〉 can be
thought of as an effective Hamiltonian, i.e., its dynamics captures the main
feature of the quantum dynamics of semiclassical states.
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Remark on µ0 vs µ̄

In LQG, µ is a parameter of the complexifier coherent state Ψh, representing
the coordinate length of an edge: µ0-scheme seems therefore the natural choice.

⇒ several problems: in particular, bounce at sub-Planckian energy density

Possible way out: Recover µ̄-scheme via the following procedure [Alesci, Cianfrani 2016].
Consider the mixed state

ρ̂ =

Nmax∑
N=1

cN |ΨN
(c,p)〉〈ΨN

(c,p)|

with ΨN
(c,p) semiclassical state living on a graph with N vertices. Then,

choosing Nmax and cN appropriately, one finds

〈Ĥ〉 := Tr(ρ̂Ĥ) =

Nmax∑
N=1

cN〈ΨN
(c,p)|Ĥ|ΨN

(c,p)〉 =

Nmax∑
N=1

cN Heff
LQC |µ= 1

N
= Heff

LQC |µ=µ̄+O(t)

Problem: Nmax is fixed by p; since effective dynamics generated by 〈Ĥ〉 changes
p in time, then Nmax must change in time. However, quantum Hamiltonian Ĥ
is graph-preserving, so it cannot change the number of vertices!

Conclusion – Effective dynamics generated by 〈Ĥ〉 cannot be a good
approximation of the full quantum dynamics generated by Ĥ.
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Generalized coherent states

Theorem

Let Ψ be a state of the form

Ψ(g) =
1

N
f (g)e−S(g)/t

where t-dependent normalization N and f and S t-independent holo-
morphic functions. If S satisfies

Re(S) has single minimum at go

Hessian of S is non-degenerate at go

then we have (use saddle point method)

〈Ψ|Ûe |Ψ〉 = go,e

[
1 +O(t)

]
, 〈Ψ|Ê I

e |Ψ〉 =
1

t

[
P I

o,e +O(t)
]

where P I
o,e := −32π`2

Pγ
(
R I

e Im(S)
)
(go).

For this reason, we say that

Ψ is a generalized coherent state peaked at (go ,P
I
o)

Example: complexifier coherent states.
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Pseudodifferential operators and principal symbols

Consider a fixed graph with N edges. The phase space associated with it is
T ∗G with G = SU(2)N .

To any smooth function a ∈ T ∗G , we can associate an operator Â on
L2(G , dµ): its kernel is

A(g1, g2) =
1

(2π)dim G

∫
Lie(G)

dξ e iξI XI (g1,g2)a(g1, ξ)

with X ∈ Lie(G) s.t. g†1 g2 = e2X .
Â is called a pseudodifferential operator, pdo. Note: polynomial of pdo’s is pdo.

The principal symbol of Â, denoted P(Â), is the leading order of the power
series of a for large ξ. Some properties:

P(ÂB̂) = P(Â)P(B̂)

P([Â, B̂]) = i~{P(Â),P(B̂)}

Example: Ûe and Ê I
e are pdo’s with principal symbols

P(Ûe)(g , ξ) = ge , P(Ê I
e )(g , ξ) = ξI

e
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Theorem

Let Ψ be a generalized coherent state peaked at (g ,P) and Â a pdo.
Then

〈Ψ|Â|Ψ〉 = P(Â)

(
g ,

P

t

)
[1 +O(t)]

This in particular applies to polynomials f (Û, Ê), for which we thus have

〈Ψ|f (Û, Ê)|Ψ〉 = f
(
g ,P/t

)
[1 +O(t)]

We would like to use this result to compute expectation value of ĤLQG on Ψ.

Problem: ĤLQG involves volume V̂ =
∑

v V̂v , which is not a polynomial:

V̂v =

√√√√ 1

48

∣∣∣∣ ∑
e,e′,e′′ at v

ε(e, e′, e′′)εIJK Ê I
e Ê J

e′ Ê
K
e′′

∣∣∣∣
Solution: microlocal equivalence.
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Microlocal equivalence

Consider (go , ξo) ∈ T ∗G and the class of cunctions c s.t.

c(g , λξ) = c(g , ξ) for all λ > 0

c(g , ξ) = 1 for (g , ξ) in a neighbourhood of (go , ξo)

We denote this class by S(go ,ξo ).

Two (not necessarily pdo’s), Â and B̂, are microlocally equivalent at (go , ξo) iff
there exists c ∈ S(go ,ξo ) such that (Â− B̂)Ĉ has smooth kernel. We write

Â
(go ,ξo )

= B̂

Theorem

Let Ψ be a generalized coherent state peaked at (g ,P). If Â
(g,P)
= B̂,

then
Â|Ψ〉 = B̂|Ψ〉+O(t∞)
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Evaluation of 〈ĤLQG 〉

It is possible to find a pdo Ŵ such that

Ŵ
(g,P)
= V̂

for all (g ,P) with P(Ŵ )(g ,P) 6= 0. Not surprisingly, the principal symbol of
this Ŵ is

P(Ŵ )(g ,P) =

√√√√ 1

48

∣∣∣∣ ∑
e,e′,e′′ at v

ε(e, e′, e′′)εIJK P I
e PJ

e′P
K
e′′

∣∣∣∣
which is the classical volume, Vclass (P).

Putting all together, we get

Theorem

If Ψ is generalized coherent state peaked on (g ,P) with non-zero volume,
then

〈Ψ|ĤLQG |Ψ〉 = 〈Ψ|HLQG (Û, V̂ )|Ψ〉 = 〈Ψ|HLQG (Û, Ŵ )|Ψ〉+O(t∞)

= HLQG

(
g ,Vclass (P/t)

) [
1 +O(t)

]
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Let us go back to quantum mechanics.

Egorov’s Theorem

Let Â be a positive, self-adjoint, elliptic pdo. If B̂ is a pdo, then

B̂s := e isÂ/~B̂e−isÂ/~

is also a pdo.

IF this theorem can be applied to our case (phase space T ∗G), using the result
of previous section it follows

〈Ψ|B̂s |Ψ〉 = P(B̂s )(g ,P/t)
[
1 +O(t)

]
= bs (g ,P/t)

[
1 +O(t)

]
where we denoted by bs the principal symbol of B̂s .

Apply d/ds on both sides: at leading order in t we have

d

ds
bs (g ,P/t) ≈ d

ds
〈Ψ|B̂s |Ψ〉 =

i

~
〈Ψ|[Â, B̂s ]|Ψ〉 ≈ i

~
P([Â, B̂s ])(g ,P/t)

= −{P(Â), bs}



introduction cosmology from full LQG? kinematical results dynamical conjecture potential applications conclusion

Conclusion (assuming that ĤLQG satisfies Egorov’s theorem requirements).

Conjecture

Let Ψ be a generalized coherent state peaked at (g ,P). Then, for any
pdo B̂, the expectation value on the time-evolved state

bs := 〈Ψ|e isĤLQG/~B̂e−isĤLQG/~|Ψ〉

satisfies to leading order in t the effective Hamilton equation

d

ds
bs = {bs ,Heff }, b0 = 〈Ψ|B̂|Ψ〉

where the effective Hamiltonian is

Heff := 〈Ψ|ĤLQG |Ψ〉
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If the conjecture is true, then we have a dynamical confirmation that
(discretized) GR is the classical limit of LQG.

Moreover, we:

confirm that the alternative LQC presented at the beginning is the
cosmological sector of LQG

can apply this method to other symmetry-reduced systems, e.g. BH
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Application: static, spheically symmetric black holes

System extensively studied in the reduced-symmetry context: Ashtekar, Bodendorfer,

Boehmer, Bojowald, Campiglia, Corichi, Gambini, Modesto, Olmedo, Pullin, Saini, Singh, Vandersloot, Alesci, Pranzetti, ...

Summary – Schwartzschild interior can be recasted in Kantowski-Sachs form:

ds2 = −dT 2 + f (T )2dR2 + g(T )2dΩ2

Points of interest:

horizon: f (Th) = 0 and g(Th) = 2M

singularity: g(Ts ) = 0

Ashtekar-Barbero variables:

AR
R = −γa, Aθθ = −γb, Aφφ = −γb sin θ, AR

φ = cos θ

E R
R = pa sin θ, E θθ =

pb

2
sin θ, Eφφ =

pb

2

where {a, pa} = 2G = {b, pb} are related to f , g by pa = g 2 and pb = 2fg .
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Construction of Ψh: recall that, writing he = e−iτI pI
e ue , we have

〈Ψh|Ûe |Ψh〉 = ue [1 +O(t)], 〈Ψh|Ê I
e |Ψh〉 =

pI
e

α
[1 +O(t)]

Hence, for the current system we must choose

uR = exp[γaτ1µ1], uθ = exp[γbτ2µ2], uφ = exp[(γbτ3 sin θ − τ1 cos θ)µ3]

p1
R = αpaµ2µ3 sin θ, p2

θ =
α

2
pbµ3µ1 sin θ, p3

φ =
α

2
pbµ1µ2

Since the state Ψh thus obtained in peaked on (u, p), from the previous results

Heff := 〈Ψh|ĤLQG |Ψh〉 = HLQG (u,Vclass (p/t)) [1 +O(t)]

Computations are long (they involve a non-trivial sum over θ), but mechanical.
The result is too long to fit a slide, and unfortunately does not look like the
effective Hamiltonian found in literature by “polymerization”.

Still, Heff is analytical and Hamilton’s equations can be integrated numerically.
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Dynamics of f and g is particularly imporntant.

g = −dT 2 + f (T )2dR2 + g(T )2dΩ2

Numerical solution for initial conditions at horizon with M = # of vertices:
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-100 0 100 200 300
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200

400
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Figure: Metric components f and g in LQG (blue) and GR (orange).

BH → WH transition very non-symmetric (contrary to results in the literature).
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Mass of the final state:

2000 4000 6000 8000

MBH
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Figure: White Hole mass as a function of Black Hole mass M.

Approximately MWH ∼ M
1
3 . Different from [Ashtekar, Olmedo, Singh 2018], where a linear

relation is found.
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Summary of the results

Proposal for generalized coherent states Ψh representing any discrete
spatial geometry (g ,P). Proof that, to leading order in t,

〈Ψh|ĤLQG |Ψh〉 ≈ HLQG (g ,Vclass (P/t))

Dynamical conjecture: for any pdo B̂, to leading order in t,

bs := 〈Ψ|e isĤLQG/~B̂e−isĤLQG/~|Ψ〉

satisfies
d

ds
bs = {bs ,Heff }, with Heff := 〈Ψ|ĤLQG |Ψ〉

Therefore, LQG dynamically reduces to (discrete) GR in the classical limit!

Applications:

∗ cosmology: alternative LQC (non-symmetric bounce)

∗ spherical BH: singularity replaced by BH → WH transition, MWH ∼ 3
√

M
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Open questions

Proof of the conjecture!

Role of discreteness scale µ: LQG with graph-preserving Hamiltonian
suggests µ0-scheme, but this seems to lead to unphysical predictions

More applications:

∗ general spherical models: stellar collapse and BH formation

∗ cylindrical models: Kerr BH

∗ develop code to perform 〈Ψh|ĤLQG |Ψh〉 for any given discrete geometry
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