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• Motivation.

• Imprints	of	area	quantization:	GW	echoes	after	ringdown

• Imprints	of	area	quantization:	absence	of	tidal	heating	during	inspiral

• Expectations	from	Bekenstein	quantization.	Absorption	transitions	and	(no)	overlapping

• Expectations	from	LQG.	Open	problems	and	possible	avenues



Spectroscopy

• Instrumental	in	revealing	the	quantum	structure	of	atoms	and	molecules	in	the	early	XX	century

• Quantization	of	atomic	energy	spectrum	changes	qualitatively	the	way	matter	and	electromagnetic	
radiation	interact,	making	absorption/emission	non-trivial.
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Quantum	BHs	behave	as	atoms	[Bekenstein	1974]	

• Area	and	angular	momentum	constitute	a	complete	set	of	observables	
to	specify	physical	states	of	astrophysical	BHs.	

• Quantum	mechanics	is	expected	to	discretize	these	parameters
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Non-trivial	BH	absorption	spectrum?



Quantum	BHs	behave	as	atoms	[Bekenstein	1974]	

BH	mass	spectrum																			is	not	continuous													could	change	drastically	the	way	BHs	interact	with	
gravitational	radiation	[Foit-Kleban	2016,	Cardoso-Foit-Kleban	2019]

• Area	and	angular	momentum	constitute	a	complete	set	of	observables	
to	specify	physical	states	of	astrophysical	BHs.	

• Quantum	mechanics	is	expected	to	discretize	these	parameters

Could	the	gravitational	radiation	play,	for	the	quantum	aspects	of	BHs,	a	similar	role	as	
electromagnetic	radiation	did	for	atoms	one	century	ago?	
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Non-trivial	BH	absorption	spectrum?



Are	there	chances	to	be	observable?

Why	should	we	expect	that	a	discretization	at	the	Planck	scale	of	an	astrophysical	BH	horizon	can	
affect	significantly	the	GWs	that	we	observe	in	our	detectors?	
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Are	there	chances	to	be	observable?

Why	should	we	expect	that	a	discretization	at	the	Planck	scale	of	an	astrophysical	BH	horizon	can	
affect	significantly	the	GWs	that	we	observe	in	our	detectors?	

Given	any	quantum	theory	of	gravity,	the	transition	between	two	energy	levels	for	macroscopic	BHs	
should	be	governed	by	the	1st	Law	of	BH	mechanics*	(classical	limit):

5

*quasi-local	formulation	developed	by	Ashtekar,	Beetle,	Lewandowski	for	isolated	horizons
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Are	there	chances	to	be	observable?

Why	should	we	expect	that	a	discretization	at	the	Planck	scale	of	an	astrophysical	BH	horizon	can	
affect	significantly	the	GWs	that	we	observe	in	our	detectors?	

Given	any	quantum	theory	of	gravity,	the	transition	between	two	energy	levels	for	macroscopic	BHs	
should	be	governed	by	the	1st	Law	of	BH	mechanics*	(classical	limit):

If	discretization	occurs	at	the	Planck	scale,	for	solar-mass	BHs	the	absorption	frequencies	lie	in	LIGO-
Virgo	frequency	band		—>		can	be	tested	with	GW	observations!
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*quasi-local	formulation	developed	by	Ashtekar,	Beetle,	Lewandowski	for	isolated	horizons
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Bekenstein-Mukhanov	quantization



Bekenstein-Mukhanov	model

• BH	area	behaves	as	an	adiabatic	invariant:	arguments	on	semiclassical	quantization	lead	to	a	discrete	
area	spectrum	[Bekenstein74,	Mukhanov86,	Bekenstein-Mukhanov95]
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�
n 2 N
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Bekenstein-Mukhanov	model

• BH	area	behaves	as	an	adiabatic	invariant:	arguments	on	semiclassical	quantization	lead	to	a	discrete	
area	spectrum	[Bekenstein74,	Mukhanov86,	Bekenstein-Mukhanov95]

• Upon	quantization	of	the	angular	momentum	in	the	standard	way,	
	we	get	a	discrete	energy	spectrum:
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Bekenstein-Mukhanov	model

• BH	area	behaves	as	an	adiabatic	invariant:	arguments	on	semiclassical	quantization	lead	to	a	discrete	
area	spectrum	[Bekenstein74,	Mukhanov86,	Bekenstein-Mukhanov95]

• Upon	quantization	of	the	angular	momentum	in	the	standard	way,	
	we	get	a	discrete	energy	spectrum:

• Heuristic,	but	reasonable:	take	the	model	as	working	hypothesis	and	explore	its	consequences.	
Can	we	constrain	the	value	of	alpha	from	GW	observations?
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The	quantum-mechanical	problem	of	absorption

• Interested	in	radiative	transitions	of	the	BH	that	are	induced	by	the	interaction	with	an	incident	
GW.	Phenomenological	approach:	apply	familiar	results	of	time-dependent	perturbation	theory

(GW	mode)

H(t) = HBH +Hint(t)

HBH |Mn,ji = Mn,j |Mn,ji Hint(t) ⇠ V e
�i!t + V

†
e
i!t
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The	quantum-mechanical	problem	of	absorption

• Interested	in	radiative	transitions	of	the	BH	that	are	induced	by	the	interaction	with	an	incident	
GW.	Phenomenological	approach:	apply	familiar	results	of	time-dependent	perturbation	theory

(GW	mode)

•Due	to	the	interaction,	state	of	quantum	BH	becomes	a	linear	combination	of	stationary	states:			
(linear	regime)

``Probability	of	observing	the	BH	in	state	(n,j)” Microscopic	theory	of	gravity

H(t) = HBH +Hint(t)

HBH |Mn,ji = Mn,j |Mn,ji

|Mi =
X

n,j

�n,j |Mn,ji

Hint(t) ⇠ V e
�i!t + V

†
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• Angular	momentum	conservation	imposes	selection	rules:	

Typical	dominant	GW-mode	in	astrophysics:	

• Fermi	Golden	rule:	absorption	probability	distribution	is	
peaked	around

What	are	the	relevant	BH	absorption	transitions?
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8A. del Rio        Penn State



• The	BH	is	unable	to	absorb	the	incident	dominant	GW	mode	(			,2,2)	unless	

• Angular	momentum	conservation	imposes	selection	rules:	

Typical	dominant	GW-mode	in	astrophysics:	

• Fermi	Golden	rule:	absorption	probability	distribution	is	
peaked	around

What	are	the	relevant	BH	absorption	transitions?

.	

.	

.

.	

.	

.
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• BH	energy	states	must	spontaneously	decay	due	to	Hawking	radiation non-zero	linewidth

Hawking	decay	rate	[Page,	1976]

Linewidth	increases	with	BH	rotation	(due	to	super-radiance).	Energy	levels	may	overlap	and	an	
effective	continuous	spectrum	may	emerge	[Coates,	Volkel,	Kokkotas	2019]

⌧n,j =�n,j =
~

⌧n,j

9
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• Massless	fields	dominate	the	Hawking	emission	(neutrinos,	photons,	gravitons)

Do	consecutive	accessible	levels	overlap?
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There	isn’t	overlapping	if	R(a)<1

�n,j ⇠
1

Mn,j

!�n ⇠ 1

Mn,j

• Astrophysical	BHs	are	described	by	(M,a).	The	question	of	overlapping	is	independent	of	mass:

Do	consecutive	accessible	levels	overlap?

}
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• In	the	B-M	model	there	is	a	1-parameter	quantization	ambiguity.	We	find	overlap	occurs	for

Example (smallest	value	in	literature)

↵ < ↵crit (a)

�n,j ⇠
1

Mn,j

!�n ⇠ 1

Mn,j

• Astrophysical	BHs	are	described	by	(M,a).	The	question	of	overlapping	is	independent	of	mass:

Do	consecutive	accessible	levels	overlap?

}
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Absorption	frequencies	for	different	
values	of	alpha,	including	linewidths
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Do	consecutive	accessible	levels	overlap?
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Conclusion:	for	reasonable	values	of	alpha	and	
BH	spin	there	is	no	overlap	of	spectral	lines
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Absorption	vs	Emission	spectra

• BH	absorption	spectrum	is	discrete	because	of	the	restriction	
Fixed	by	the	incoming	GW	mode.		

�j = ±2

• During	Hawking	evaporation	any	mode	(l,m)	can	be	emitted,	all	
energy	levels	in	the	Bekenstein	spectrum	are	accesible.	

• The	full	spectrum	is	complex	and	highly	irregular.	The	existence	of	many	more	accessible	levels	
together	with	the	linewidth	partially	recovers	the	continuous	Hawking	emission	spectrum.
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Imprints	of	B-M	area	quantization	on	GWs



Imprints	of	BH	area	quantization:	GW	echoes	

• The	ringdown	signal	from	a	binary	BH	merger	is	well	described	by	BH	perturbation	theory

(quasi) normal modes of  vibration 
of  the final Kerr geometry 

13A. del Rio        Penn State

• Numerical	simulations	show	that	the	collision	of	two	BHs	excite	efficently	the	QNMs	of	the	final	BH



Imprints	of	BH	area	quantization:	GW	echoes	

Foit-Kleban	(2016)	proposed	to	think	of	the	ringdown	waves	as	being	affected	by	the	Bekenstein	area	quantization,	so	
that	they	should	oscillate	with	the	same	characteristic	frequencies.

Cardoso-Foit-Kleban	(2019),	instead,	studied	the	scattering	of	Gaussian	packets	by	a	Schw	BH	horizon,	introducing	an	ad	
hoc	gravitational	potential	that	“filters”	some	specific	frequencies	and	disperses	the	rest.
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This	is	not	justified:	ringdown	waves	are	associated	to	the	light-ring	local	geometry,	not	related	to	the	horizon	at	all.	
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FIG. 1. The dimensionless quantity !MG, where ! is the
real part of the l = 2, k = 1 QNM frequency (thick solid
line, using data from [19]), and the fundamental transition
frequency !n=1,m=2 of the Bekenstein-Mukhanov model (4)
for a range of values of ↵ (dashed lines, ↵ from 4 ln 2 to 8⇡
in equal steps), as a function of dimensionless spin parameter
of the hole a ⌘ J/GM2. For reference, the 90% confidence
interval on the measurement of a for final hole in the LIGO
event GW150914 [23] is shown (vertical band). We do not
illustrate the uncertainty in !M , because the ringdown was
not detected in this event.

!M > 0.37 that are incompatible with the GR estimate
for a.

The upcoming LIGO signals will have increased signal
to noise. This should make a detection of the primary
ringdown frequency possible, which as described above
provides a strong test. If at least one harmonic can be
detected the test becomes even stronger. No matter the
value of the parameters ↵ and M and a for the remnant,
the spectrum of QNM frequencies is incompatible with
(4). Measuring the frequency of a higher harmonic is
possible with Advanced LIGO and Virgo at design sen-
sitivity, given a su�ciently large number of observations
[21].

One can infer the so-called “chirp mass” M ⌘

(M1M2)3/5(M1 + M2)�1/5 to high accuracy from the
inspiral phase using only Newtonian dynamics and the
quadrupole formula for gravitational radiation, and the
total mass can be inferred from the last phase of the
inspiral (using GR). Including a third detector (such
as Virgo), the projected accuracies for the mass pa-
rameters are in are 15-20% range, and around 5% for
the spin a [22]. For a merger of two approximately
equal mass holes, the dimensionless spin of the final
hole should be very roughly a ⇠ 0.5. This is because
nearly all the orbital angular momentum of the final
phase of the inspiral ends up as spin. The orbital an-
gular momentum of a test particle of mass M1 at the
innermost stable orbit of a Schwarzschild black hole of
mass M2 is J = 2

p
3GM1M2. Linear extrapolation from

the extreme mass ratio limit gives a crude estimate of
the spin of the final hole after a binary merger of non-

FIG. 2. The value of ↵ for which the fundamental transi-
tion frequency of the Bekenstein-Mukhanov model matches
the real part of the l = 2, k = 1 QNM frequency, as a func-
tion of the black hole’s spin a. For reference, the 90% confi-
dence interval on the measurement of a for final hole in the
LIGO event GW150914 is shown (vertical band) along with
the corresponding uncertainty in ↵ (horizontal band). A sin-
gle observation of a ring down consistent with GR for a hole
with the same (or similar) a as GW150914 would rule out all
the extant proposals for ↵.

spinning holes: a ⌘ J/G(M1 + M2)2 ⇡ 2
p
3⌫, where

⌫ ⌘ M1M2/(M1 + M2)2. This is too large; a fraction
of the angular momentum is radiated by gravitational
waves during the the last phase before the merger [24].
A more accurate approximation (based on a fit to nu-
merical simulations) for a binary merger of non-spinning
holes is a ⇡ 2

p
3⌫ � 3.87⌫2 ⇡ 0.62 when M1 = M2 [25].

Taking into account the varying mass and spin of the ini-
tial holes – which can range from aligned to anti-aligned
with the orbital angular momentum – gives a fairly large
scatter around this value. The point here is that a rea-
sonable guess for the likely range for the spin of the final
hole in an equal mass merger is perhaps 0.4 . a . 0.9.
(see e.g. Figure 8 of [26]).

In Figure 2 we illustrate the uncertainty on the spin
of the final hole in the LIGO event GW150914 [23], and
what would be the corresponding uncertainty in ↵. Be-
cause the signal/noise of this event was not su�cient to
measure the ring down this event cannot actually be used
to constrain ↵. Nevertheless it provides a rough guide in
understanding what the precision of the constraint will
be. The firm expectation of LIGO is that future events
will have higher signal/noise and allow for a measure-
ment of the ring down [21, 27]. Presumably, these future
events will also allow for improved precision on a. In any
case, the 90% confidence interval in a for GW150914 was
already small enough that the corresponding uncertainty
in ↵ is 14 < ↵ < 18. Therefore, an observation of two
holes with significantly di↵erent a would then provide a
strong test of the Bekenstein-Mukhanov proposal.

Detecting	two	ringdowns	of	different	BH	spins	compatible	with	
classical	GR	would	rule	out	the	uniform	area	quantization	proposal.



Gravitational potential barrier 

A	significant	fraction	of	GWs	is	directed	towards	
the	horizon,	and	absorbed	according	to	GR.

Imprints	of	BH	area	quantization:	GW	echoes	

With	area	quantization,	absorption	occurs	
iff	QNM	oscillation	frequency	matches	a	
characteristic	absorption	frequency
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BH	QNM	are	excited	around	the	light-ring



Credit: Cardoso and Pani, Liv. Rev. Rel.

Otherwise,	an	external	observer	should	see	a	GW	signal	followed	by	echoes		[Cardoso,	Franzin,	Pani	2016]

Imprints	of	BH	area	quantization:	GW	echoes	
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• Echoes	are	expected	for	specific	values	of	BH	spin:	offers	a	way	to	measure

Imprints	of	BH	area	quantization:	GW	echoes	

• Bayesian	analysis	on	LIGO/Virgo	data	[Nielsen	et	al	2018]	rule	out	echoes	as	large	as	0.2	the	signal	
peak.	Constraints	will	improve	with	future-generation	detectors.

LQC, Non-Gaussianity and CMB anomalies

Ivan Agullo

Loops 15, Erlangen,  2015

Louisiana State University
Ivan Agullo
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↵ = 4 ln 2

echoes echoes echoes echoes echoes echoes echoes
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Imprints	of	BH	area	quantization:	tidal	heating
• The	inspiral	signal	from	a	binary	BH	merger	is	well	described	by	the	Post-Newtonian	formalism

Point-particle	orbital	motion	in	flat	space	(leading	order	contrib.):

propagation time, the events have a combined signal-to-
noise ratio (SNR) of 24 [45].
Only the LIGO detectors were observing at the time of

GW150914. The Virgo detector was being upgraded,
and GEO 600, though not sufficiently sensitive to detect
this event, was operating but not in observational
mode. With only two detectors the source position is
primarily determined by the relative arrival time and
localized to an area of approximately 600 deg2 (90%
credible region) [39,46].
The basic features of GW150914 point to it being

produced by the coalescence of two black holes—i.e.,
their orbital inspiral and merger, and subsequent final black
hole ringdown. Over 0.2 s, the signal increases in frequency
and amplitude in about 8 cycles from 35 to 150 Hz, where
the amplitude reaches a maximum. The most plausible
explanation for this evolution is the inspiral of two orbiting
masses, m1 and m2, due to gravitational-wave emission. At
the lower frequencies, such evolution is characterized by
the chirp mass [11]

M ¼ ðm1m2Þ3=5

ðm1 þm2Þ1=5
¼ c3

G

!
5

96
π−8=3f−11=3 _f

"
3=5

;

where f and _f are the observed frequency and its time
derivative and G and c are the gravitational constant and
speed of light. Estimating f and _f from the data in Fig. 1,
we obtain a chirp mass of M≃ 30M⊙, implying that the
total mass M ¼ m1 þm2 is ≳70M⊙ in the detector frame.
This bounds the sum of the Schwarzschild radii of the
binary components to 2GM=c2 ≳ 210 km. To reach an
orbital frequency of 75 Hz (half the gravitational-wave
frequency) the objects must have been very close and very
compact; equal Newtonian point masses orbiting at this
frequency would be only ≃350 km apart. A pair of
neutron stars, while compact, would not have the required
mass, while a black hole neutron star binary with the
deduced chirp mass would have a very large total mass,
and would thus merge at much lower frequency. This
leaves black holes as the only known objects compact
enough to reach an orbital frequency of 75 Hz without
contact. Furthermore, the decay of the waveform after it
peaks is consistent with the damped oscillations of a black
hole relaxing to a final stationary Kerr configuration.
Below, we present a general-relativistic analysis of
GW150914; Fig. 2 shows the calculated waveform using
the resulting source parameters.

III. DETECTORS

Gravitational-wave astronomy exploits multiple, widely
separated detectors to distinguish gravitational waves from
local instrumental and environmental noise, to provide
source sky localization, and to measure wave polarizations.
The LIGO sites each operate a single Advanced LIGO

detector [33], a modified Michelson interferometer (see
Fig. 3) that measures gravitational-wave strain as a differ-
ence in length of its orthogonal arms. Each arm is formed
by two mirrors, acting as test masses, separated by
Lx ¼ Ly ¼ L ¼ 4 km. A passing gravitational wave effec-
tively alters the arm lengths such that the measured
difference is ΔLðtÞ ¼ δLx − δLy ¼ hðtÞL, where h is the
gravitational-wave strain amplitude projected onto the
detector. This differential length variation alters the phase
difference between the two light fields returning to the
beam splitter, transmitting an optical signal proportional to
the gravitational-wave strain to the output photodetector.
To achieve sufficient sensitivity to measure gravitational

waves, the detectors include several enhancements to the
basic Michelson interferometer. First, each arm contains a
resonant optical cavity, formed by its two test mass mirrors,
that multiplies the effect of a gravitational wave on the light
phase by a factor of 300 [48]. Second, a partially trans-
missive power-recycling mirror at the input provides addi-
tional resonant buildup of the laser light in the interferometer
as a whole [49,50]: 20Wof laser input is increased to 700W
incident on the beam splitter, which is further increased to
100 kW circulating in each arm cavity. Third, a partially
transmissive signal-recycling mirror at the output optimizes

FIG. 2. Top: Estimated gravitational-wave strain amplitude
from GW150914 projected onto H1. This shows the full
bandwidth of the waveforms, without the filtering used for Fig. 1.
The inset images show numerical relativity models of the black
hole horizons as the black holes coalesce. Bottom: The Keplerian
effective black hole separation in units of Schwarzschild radii
(RS ¼ 2GM=c2) and the effective relative velocity given by the
post-Newtonian parameter v=c ¼ ðGMπf=c3Þ1=3, where f is the
gravitational-wave frequency calculated with numerical relativity
and M is the total mass (value from Table I).
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propagation time, the events have a combined signal-to-
noise ratio (SNR) of 24 [45].
Only the LIGO detectors were observing at the time of

GW150914. The Virgo detector was being upgraded,
and GEO 600, though not sufficiently sensitive to detect
this event, was operating but not in observational
mode. With only two detectors the source position is
primarily determined by the relative arrival time and
localized to an area of approximately 600 deg2 (90%
credible region) [39,46].
The basic features of GW150914 point to it being

produced by the coalescence of two black holes—i.e.,
their orbital inspiral and merger, and subsequent final black
hole ringdown. Over 0.2 s, the signal increases in frequency
and amplitude in about 8 cycles from 35 to 150 Hz, where
the amplitude reaches a maximum. The most plausible
explanation for this evolution is the inspiral of two orbiting
masses, m1 and m2, due to gravitational-wave emission. At
the lower frequencies, such evolution is characterized by
the chirp mass [11]
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where f and _f are the observed frequency and its time
derivative and G and c are the gravitational constant and
speed of light. Estimating f and _f from the data in Fig. 1,
we obtain a chirp mass of M≃ 30M⊙, implying that the
total mass M ¼ m1 þm2 is ≳70M⊙ in the detector frame.
This bounds the sum of the Schwarzschild radii of the
binary components to 2GM=c2 ≳ 210 km. To reach an
orbital frequency of 75 Hz (half the gravitational-wave
frequency) the objects must have been very close and very
compact; equal Newtonian point masses orbiting at this
frequency would be only ≃350 km apart. A pair of
neutron stars, while compact, would not have the required
mass, while a black hole neutron star binary with the
deduced chirp mass would have a very large total mass,
and would thus merge at much lower frequency. This
leaves black holes as the only known objects compact
enough to reach an orbital frequency of 75 Hz without
contact. Furthermore, the decay of the waveform after it
peaks is consistent with the damped oscillations of a black
hole relaxing to a final stationary Kerr configuration.
Below, we present a general-relativistic analysis of
GW150914; Fig. 2 shows the calculated waveform using
the resulting source parameters.

III. DETECTORS

Gravitational-wave astronomy exploits multiple, widely
separated detectors to distinguish gravitational waves from
local instrumental and environmental noise, to provide
source sky localization, and to measure wave polarizations.
The LIGO sites each operate a single Advanced LIGO

detector [33], a modified Michelson interferometer (see
Fig. 3) that measures gravitational-wave strain as a differ-
ence in length of its orthogonal arms. Each arm is formed
by two mirrors, acting as test masses, separated by
Lx ¼ Ly ¼ L ¼ 4 km. A passing gravitational wave effec-
tively alters the arm lengths such that the measured
difference is ΔLðtÞ ¼ δLx − δLy ¼ hðtÞL, where h is the
gravitational-wave strain amplitude projected onto the
detector. This differential length variation alters the phase
difference between the two light fields returning to the
beam splitter, transmitting an optical signal proportional to
the gravitational-wave strain to the output photodetector.
To achieve sufficient sensitivity to measure gravitational

waves, the detectors include several enhancements to the
basic Michelson interferometer. First, each arm contains a
resonant optical cavity, formed by its two test mass mirrors,
that multiplies the effect of a gravitational wave on the light
phase by a factor of 300 [48]. Second, a partially trans-
missive power-recycling mirror at the input provides addi-
tional resonant buildup of the laser light in the interferometer
as a whole [49,50]: 20Wof laser input is increased to 700W
incident on the beam splitter, which is further increased to
100 kW circulating in each arm cavity. Third, a partially
transmissive signal-recycling mirror at the output optimizes

FIG. 2. Top: Estimated gravitational-wave strain amplitude
from GW150914 projected onto H1. This shows the full
bandwidth of the waveforms, without the filtering used for Fig. 1.
The inset images show numerical relativity models of the black
hole horizons as the black holes coalesce. Bottom: The Keplerian
effective black hole separation in units of Schwarzschild radii
(RS ¼ 2GM=c2) and the effective relative velocity given by the
post-Newtonian parameter v=c ¼ ðGMπf=c3Þ1=3, where f is the
gravitational-wave frequency calculated with numerical relativity
and M is the total mass (value from Table I).
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Imprints	of	BH	area	quantization:	tidal	heating
• The	inspiral	signal	from	a	binary	BH	merger	is	well	described	by	the	Post-Newtonian	formalism

Point-particle	orbital	motion	in	flat	space	(leading	order	contrib.):

Finite	size	effects,	spin-orbit	interaction,	etc	introduce	corrections	to	the	GW	phase	waveform,	encoded	
in	higher	PN	orders:

propagation time, the events have a combined signal-to-
noise ratio (SNR) of 24 [45].
Only the LIGO detectors were observing at the time of

GW150914. The Virgo detector was being upgraded,
and GEO 600, though not sufficiently sensitive to detect
this event, was operating but not in observational
mode. With only two detectors the source position is
primarily determined by the relative arrival time and
localized to an area of approximately 600 deg2 (90%
credible region) [39,46].
The basic features of GW150914 point to it being

produced by the coalescence of two black holes—i.e.,
their orbital inspiral and merger, and subsequent final black
hole ringdown. Over 0.2 s, the signal increases in frequency
and amplitude in about 8 cycles from 35 to 150 Hz, where
the amplitude reaches a maximum. The most plausible
explanation for this evolution is the inspiral of two orbiting
masses, m1 and m2, due to gravitational-wave emission. At
the lower frequencies, such evolution is characterized by
the chirp mass [11]
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where f and _f are the observed frequency and its time
derivative and G and c are the gravitational constant and
speed of light. Estimating f and _f from the data in Fig. 1,
we obtain a chirp mass of M≃ 30M⊙, implying that the
total mass M ¼ m1 þm2 is ≳70M⊙ in the detector frame.
This bounds the sum of the Schwarzschild radii of the
binary components to 2GM=c2 ≳ 210 km. To reach an
orbital frequency of 75 Hz (half the gravitational-wave
frequency) the objects must have been very close and very
compact; equal Newtonian point masses orbiting at this
frequency would be only ≃350 km apart. A pair of
neutron stars, while compact, would not have the required
mass, while a black hole neutron star binary with the
deduced chirp mass would have a very large total mass,
and would thus merge at much lower frequency. This
leaves black holes as the only known objects compact
enough to reach an orbital frequency of 75 Hz without
contact. Furthermore, the decay of the waveform after it
peaks is consistent with the damped oscillations of a black
hole relaxing to a final stationary Kerr configuration.
Below, we present a general-relativistic analysis of
GW150914; Fig. 2 shows the calculated waveform using
the resulting source parameters.

III. DETECTORS

Gravitational-wave astronomy exploits multiple, widely
separated detectors to distinguish gravitational waves from
local instrumental and environmental noise, to provide
source sky localization, and to measure wave polarizations.
The LIGO sites each operate a single Advanced LIGO

detector [33], a modified Michelson interferometer (see
Fig. 3) that measures gravitational-wave strain as a differ-
ence in length of its orthogonal arms. Each arm is formed
by two mirrors, acting as test masses, separated by
Lx ¼ Ly ¼ L ¼ 4 km. A passing gravitational wave effec-
tively alters the arm lengths such that the measured
difference is ΔLðtÞ ¼ δLx − δLy ¼ hðtÞL, where h is the
gravitational-wave strain amplitude projected onto the
detector. This differential length variation alters the phase
difference between the two light fields returning to the
beam splitter, transmitting an optical signal proportional to
the gravitational-wave strain to the output photodetector.
To achieve sufficient sensitivity to measure gravitational

waves, the detectors include several enhancements to the
basic Michelson interferometer. First, each arm contains a
resonant optical cavity, formed by its two test mass mirrors,
that multiplies the effect of a gravitational wave on the light
phase by a factor of 300 [48]. Second, a partially trans-
missive power-recycling mirror at the input provides addi-
tional resonant buildup of the laser light in the interferometer
as a whole [49,50]: 20Wof laser input is increased to 700W
incident on the beam splitter, which is further increased to
100 kW circulating in each arm cavity. Third, a partially
transmissive signal-recycling mirror at the output optimizes

FIG. 2. Top: Estimated gravitational-wave strain amplitude
from GW150914 projected onto H1. This shows the full
bandwidth of the waveforms, without the filtering used for Fig. 1.
The inset images show numerical relativity models of the black
hole horizons as the black holes coalesce. Bottom: The Keplerian
effective black hole separation in units of Schwarzschild radii
(RS ¼ 2GM=c2) and the effective relative velocity given by the
post-Newtonian parameter v=c ¼ ðGMπf=c3Þ1=3, where f is the
gravitational-wave frequency calculated with numerical relativity
and M is the total mass (value from Table I).
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the amplitude reaches a maximum. The most plausible
explanation for this evolution is the inspiral of two orbiting
masses, m1 and m2, due to gravitational-wave emission. At
the lower frequencies, such evolution is characterized by
the chirp mass [11]

M ¼ ðm1m2Þ3=5

ðm1 þm2Þ1=5
¼ c3

G

!
5

96
π−8=3f−11=3 _f

"
3=5

;

where f and _f are the observed frequency and its time
derivative and G and c are the gravitational constant and
speed of light. Estimating f and _f from the data in Fig. 1,
we obtain a chirp mass of M≃ 30M⊙, implying that the
total mass M ¼ m1 þm2 is ≳70M⊙ in the detector frame.
This bounds the sum of the Schwarzschild radii of the
binary components to 2GM=c2 ≳ 210 km. To reach an
orbital frequency of 75 Hz (half the gravitational-wave
frequency) the objects must have been very close and very
compact; equal Newtonian point masses orbiting at this
frequency would be only ≃350 km apart. A pair of
neutron stars, while compact, would not have the required
mass, while a black hole neutron star binary with the
deduced chirp mass would have a very large total mass,
and would thus merge at much lower frequency. This
leaves black holes as the only known objects compact
enough to reach an orbital frequency of 75 Hz without
contact. Furthermore, the decay of the waveform after it
peaks is consistent with the damped oscillations of a black
hole relaxing to a final stationary Kerr configuration.
Below, we present a general-relativistic analysis of
GW150914; Fig. 2 shows the calculated waveform using
the resulting source parameters.

III. DETECTORS

Gravitational-wave astronomy exploits multiple, widely
separated detectors to distinguish gravitational waves from
local instrumental and environmental noise, to provide
source sky localization, and to measure wave polarizations.
The LIGO sites each operate a single Advanced LIGO

detector [33], a modified Michelson interferometer (see
Fig. 3) that measures gravitational-wave strain as a differ-
ence in length of its orthogonal arms. Each arm is formed
by two mirrors, acting as test masses, separated by
Lx ¼ Ly ¼ L ¼ 4 km. A passing gravitational wave effec-
tively alters the arm lengths such that the measured
difference is ΔLðtÞ ¼ δLx − δLy ¼ hðtÞL, where h is the
gravitational-wave strain amplitude projected onto the
detector. This differential length variation alters the phase
difference between the two light fields returning to the
beam splitter, transmitting an optical signal proportional to
the gravitational-wave strain to the output photodetector.
To achieve sufficient sensitivity to measure gravitational

waves, the detectors include several enhancements to the
basic Michelson interferometer. First, each arm contains a
resonant optical cavity, formed by its two test mass mirrors,
that multiplies the effect of a gravitational wave on the light
phase by a factor of 300 [48]. Second, a partially trans-
missive power-recycling mirror at the input provides addi-
tional resonant buildup of the laser light in the interferometer
as a whole [49,50]: 20Wof laser input is increased to 700W
incident on the beam splitter, which is further increased to
100 kW circulating in each arm cavity. Third, a partially
transmissive signal-recycling mirror at the output optimizes

FIG. 2. Top: Estimated gravitational-wave strain amplitude
from GW150914 projected onto H1. This shows the full
bandwidth of the waveforms, without the filtering used for Fig. 1.
The inset images show numerical relativity models of the black
hole horizons as the black holes coalesce. Bottom: The Keplerian
effective black hole separation in units of Schwarzschild radii
(RS ¼ 2GM=c2) and the effective relative velocity given by the
post-Newtonian parameter v=c ¼ ðGMπf=c3Þ1=3, where f is the
gravitational-wave frequency calculated with numerical relativity
and M is the total mass (value from Table I).
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and GEO 600, though not sufficiently sensitive to detect
this event, was operating but not in observational
mode. With only two detectors the source position is
primarily determined by the relative arrival time and
localized to an area of approximately 600 deg2 (90%
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The basic features of GW150914 point to it being
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their orbital inspiral and merger, and subsequent final black
hole ringdown. Over 0.2 s, the signal increases in frequency
and amplitude in about 8 cycles from 35 to 150 Hz, where
the amplitude reaches a maximum. The most plausible
explanation for this evolution is the inspiral of two orbiting
masses, m1 and m2, due to gravitational-wave emission. At
the lower frequencies, such evolution is characterized by
the chirp mass [11]
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where f and _f are the observed frequency and its time
derivative and G and c are the gravitational constant and
speed of light. Estimating f and _f from the data in Fig. 1,
we obtain a chirp mass of M≃ 30M⊙, implying that the
total mass M ¼ m1 þm2 is ≳70M⊙ in the detector frame.
This bounds the sum of the Schwarzschild radii of the
binary components to 2GM=c2 ≳ 210 km. To reach an
orbital frequency of 75 Hz (half the gravitational-wave
frequency) the objects must have been very close and very
compact; equal Newtonian point masses orbiting at this
frequency would be only ≃350 km apart. A pair of
neutron stars, while compact, would not have the required
mass, while a black hole neutron star binary with the
deduced chirp mass would have a very large total mass,
and would thus merge at much lower frequency. This
leaves black holes as the only known objects compact
enough to reach an orbital frequency of 75 Hz without
contact. Furthermore, the decay of the waveform after it
peaks is consistent with the damped oscillations of a black
hole relaxing to a final stationary Kerr configuration.
Below, we present a general-relativistic analysis of
GW150914; Fig. 2 shows the calculated waveform using
the resulting source parameters.

III. DETECTORS

Gravitational-wave astronomy exploits multiple, widely
separated detectors to distinguish gravitational waves from
local instrumental and environmental noise, to provide
source sky localization, and to measure wave polarizations.
The LIGO sites each operate a single Advanced LIGO

detector [33], a modified Michelson interferometer (see
Fig. 3) that measures gravitational-wave strain as a differ-
ence in length of its orthogonal arms. Each arm is formed
by two mirrors, acting as test masses, separated by
Lx ¼ Ly ¼ L ¼ 4 km. A passing gravitational wave effec-
tively alters the arm lengths such that the measured
difference is ΔLðtÞ ¼ δLx − δLy ¼ hðtÞL, where h is the
gravitational-wave strain amplitude projected onto the
detector. This differential length variation alters the phase
difference between the two light fields returning to the
beam splitter, transmitting an optical signal proportional to
the gravitational-wave strain to the output photodetector.
To achieve sufficient sensitivity to measure gravitational

waves, the detectors include several enhancements to the
basic Michelson interferometer. First, each arm contains a
resonant optical cavity, formed by its two test mass mirrors,
that multiplies the effect of a gravitational wave on the light
phase by a factor of 300 [48]. Second, a partially trans-
missive power-recycling mirror at the input provides addi-
tional resonant buildup of the laser light in the interferometer
as a whole [49,50]: 20Wof laser input is increased to 700W
incident on the beam splitter, which is further increased to
100 kW circulating in each arm cavity. Third, a partially
transmissive signal-recycling mirror at the output optimizes

FIG. 2. Top: Estimated gravitational-wave strain amplitude
from GW150914 projected onto H1. This shows the full
bandwidth of the waveforms, without the filtering used for Fig. 1.
The inset images show numerical relativity models of the black
hole horizons as the black holes coalesce. Bottom: The Keplerian
effective black hole separation in units of Schwarzschild radii
(RS ¼ 2GM=c2) and the effective relative velocity given by the
post-Newtonian parameter v=c ¼ ðGMπf=c3Þ1=3, where f is the
gravitational-wave frequency calculated with numerical relativity
and M is the total mass (value from Table I).
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and amplitude in about 8 cycles from 35 to 150 Hz, where
the amplitude reaches a maximum. The most plausible
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the lower frequencies, such evolution is characterized by
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where f and _f are the observed frequency and its time
derivative and G and c are the gravitational constant and
speed of light. Estimating f and _f from the data in Fig. 1,
we obtain a chirp mass of M≃ 30M⊙, implying that the
total mass M ¼ m1 þm2 is ≳70M⊙ in the detector frame.
This bounds the sum of the Schwarzschild radii of the
binary components to 2GM=c2 ≳ 210 km. To reach an
orbital frequency of 75 Hz (half the gravitational-wave
frequency) the objects must have been very close and very
compact; equal Newtonian point masses orbiting at this
frequency would be only ≃350 km apart. A pair of
neutron stars, while compact, would not have the required
mass, while a black hole neutron star binary with the
deduced chirp mass would have a very large total mass,
and would thus merge at much lower frequency. This
leaves black holes as the only known objects compact
enough to reach an orbital frequency of 75 Hz without
contact. Furthermore, the decay of the waveform after it
peaks is consistent with the damped oscillations of a black
hole relaxing to a final stationary Kerr configuration.
Below, we present a general-relativistic analysis of
GW150914; Fig. 2 shows the calculated waveform using
the resulting source parameters.

III. DETECTORS

Gravitational-wave astronomy exploits multiple, widely
separated detectors to distinguish gravitational waves from
local instrumental and environmental noise, to provide
source sky localization, and to measure wave polarizations.
The LIGO sites each operate a single Advanced LIGO

detector [33], a modified Michelson interferometer (see
Fig. 3) that measures gravitational-wave strain as a differ-
ence in length of its orthogonal arms. Each arm is formed
by two mirrors, acting as test masses, separated by
Lx ¼ Ly ¼ L ¼ 4 km. A passing gravitational wave effec-
tively alters the arm lengths such that the measured
difference is ΔLðtÞ ¼ δLx − δLy ¼ hðtÞL, where h is the
gravitational-wave strain amplitude projected onto the
detector. This differential length variation alters the phase
difference between the two light fields returning to the
beam splitter, transmitting an optical signal proportional to
the gravitational-wave strain to the output photodetector.
To achieve sufficient sensitivity to measure gravitational

waves, the detectors include several enhancements to the
basic Michelson interferometer. First, each arm contains a
resonant optical cavity, formed by its two test mass mirrors,
that multiplies the effect of a gravitational wave on the light
phase by a factor of 300 [48]. Second, a partially trans-
missive power-recycling mirror at the input provides addi-
tional resonant buildup of the laser light in the interferometer
as a whole [49,50]: 20Wof laser input is increased to 700W
incident on the beam splitter, which is further increased to
100 kW circulating in each arm cavity. Third, a partially
transmissive signal-recycling mirror at the output optimizes

FIG. 2. Top: Estimated gravitational-wave strain amplitude
from GW150914 projected onto H1. This shows the full
bandwidth of the waveforms, without the filtering used for Fig. 1.
The inset images show numerical relativity models of the black
hole horizons as the black holes coalesce. Bottom: The Keplerian
effective black hole separation in units of Schwarzschild radii
(RS ¼ 2GM=c2) and the effective relative velocity given by the
post-Newtonian parameter v=c ¼ ðGMπf=c3Þ1=3, where f is the
gravitational-wave frequency calculated with numerical relativity
and M is the total mass (value from Table I).
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Imprints	of	BH	area	quantization:	tidal	heating

The	BH	is	immersed	in	a	sea	of	gravitational	perturbations	that	alters	the	gravitational	field	of	the	
background	Kerr	metric	(tidal	deformations)

The	absorption	of	energy	and	angular	momentum	by	the	horizon	from	these	GWs	backreacts	on	the	
binary’s	evolution,	resulting	in	a	correction	to	the	GW	phase:

Tidal	heating:	the	work	done	by	the	tidal	forces	is	used	partially	to	extract	the	BH	rotational	energy,	and	is	
partially	dissipated	into	area	increase	(“heating”). 

8⇡
�A = T �S = �Q

propagation time, the events have a combined signal-to-
noise ratio (SNR) of 24 [45].
Only the LIGO detectors were observing at the time of

GW150914. The Virgo detector was being upgraded,
and GEO 600, though not sufficiently sensitive to detect
this event, was operating but not in observational
mode. With only two detectors the source position is
primarily determined by the relative arrival time and
localized to an area of approximately 600 deg2 (90%
credible region) [39,46].
The basic features of GW150914 point to it being

produced by the coalescence of two black holes—i.e.,
their orbital inspiral and merger, and subsequent final black
hole ringdown. Over 0.2 s, the signal increases in frequency
and amplitude in about 8 cycles from 35 to 150 Hz, where
the amplitude reaches a maximum. The most plausible
explanation for this evolution is the inspiral of two orbiting
masses, m1 and m2, due to gravitational-wave emission. At
the lower frequencies, such evolution is characterized by
the chirp mass [11]
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where f and _f are the observed frequency and its time
derivative and G and c are the gravitational constant and
speed of light. Estimating f and _f from the data in Fig. 1,
we obtain a chirp mass of M≃ 30M⊙, implying that the
total mass M ¼ m1 þm2 is ≳70M⊙ in the detector frame.
This bounds the sum of the Schwarzschild radii of the
binary components to 2GM=c2 ≳ 210 km. To reach an
orbital frequency of 75 Hz (half the gravitational-wave
frequency) the objects must have been very close and very
compact; equal Newtonian point masses orbiting at this
frequency would be only ≃350 km apart. A pair of
neutron stars, while compact, would not have the required
mass, while a black hole neutron star binary with the
deduced chirp mass would have a very large total mass,
and would thus merge at much lower frequency. This
leaves black holes as the only known objects compact
enough to reach an orbital frequency of 75 Hz without
contact. Furthermore, the decay of the waveform after it
peaks is consistent with the damped oscillations of a black
hole relaxing to a final stationary Kerr configuration.
Below, we present a general-relativistic analysis of
GW150914; Fig. 2 shows the calculated waveform using
the resulting source parameters.

III. DETECTORS

Gravitational-wave astronomy exploits multiple, widely
separated detectors to distinguish gravitational waves from
local instrumental and environmental noise, to provide
source sky localization, and to measure wave polarizations.
The LIGO sites each operate a single Advanced LIGO

detector [33], a modified Michelson interferometer (see
Fig. 3) that measures gravitational-wave strain as a differ-
ence in length of its orthogonal arms. Each arm is formed
by two mirrors, acting as test masses, separated by
Lx ¼ Ly ¼ L ¼ 4 km. A passing gravitational wave effec-
tively alters the arm lengths such that the measured
difference is ΔLðtÞ ¼ δLx − δLy ¼ hðtÞL, where h is the
gravitational-wave strain amplitude projected onto the
detector. This differential length variation alters the phase
difference between the two light fields returning to the
beam splitter, transmitting an optical signal proportional to
the gravitational-wave strain to the output photodetector.
To achieve sufficient sensitivity to measure gravitational

waves, the detectors include several enhancements to the
basic Michelson interferometer. First, each arm contains a
resonant optical cavity, formed by its two test mass mirrors,
that multiplies the effect of a gravitational wave on the light
phase by a factor of 300 [48]. Second, a partially trans-
missive power-recycling mirror at the input provides addi-
tional resonant buildup of the laser light in the interferometer
as a whole [49,50]: 20Wof laser input is increased to 700W
incident on the beam splitter, which is further increased to
100 kW circulating in each arm cavity. Third, a partially
transmissive signal-recycling mirror at the output optimizes

FIG. 2. Top: Estimated gravitational-wave strain amplitude
from GW150914 projected onto H1. This shows the full
bandwidth of the waveforms, without the filtering used for Fig. 1.
The inset images show numerical relativity models of the black
hole horizons as the black holes coalesce. Bottom: The Keplerian
effective black hole separation in units of Schwarzschild radii
(RS ¼ 2GM=c2) and the effective relative velocity given by the
post-Newtonian parameter v=c ¼ ðGMπf=c3Þ1=3, where f is the
gravitational-wave frequency calculated with numerical relativity
and M is the total mass (value from Table I).
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and amplitude in about 8 cycles from 35 to 150 Hz, where
the amplitude reaches a maximum. The most plausible
explanation for this evolution is the inspiral of two orbiting
masses, m1 and m2, due to gravitational-wave emission. At
the lower frequencies, such evolution is characterized by
the chirp mass [11]
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where f and _f are the observed frequency and its time
derivative and G and c are the gravitational constant and
speed of light. Estimating f and _f from the data in Fig. 1,
we obtain a chirp mass of M≃ 30M⊙, implying that the
total mass M ¼ m1 þm2 is ≳70M⊙ in the detector frame.
This bounds the sum of the Schwarzschild radii of the
binary components to 2GM=c2 ≳ 210 km. To reach an
orbital frequency of 75 Hz (half the gravitational-wave
frequency) the objects must have been very close and very
compact; equal Newtonian point masses orbiting at this
frequency would be only ≃350 km apart. A pair of
neutron stars, while compact, would not have the required
mass, while a black hole neutron star binary with the
deduced chirp mass would have a very large total mass,
and would thus merge at much lower frequency. This
leaves black holes as the only known objects compact
enough to reach an orbital frequency of 75 Hz without
contact. Furthermore, the decay of the waveform after it
peaks is consistent with the damped oscillations of a black
hole relaxing to a final stationary Kerr configuration.
Below, we present a general-relativistic analysis of
GW150914; Fig. 2 shows the calculated waveform using
the resulting source parameters.

III. DETECTORS

Gravitational-wave astronomy exploits multiple, widely
separated detectors to distinguish gravitational waves from
local instrumental and environmental noise, to provide
source sky localization, and to measure wave polarizations.
The LIGO sites each operate a single Advanced LIGO

detector [33], a modified Michelson interferometer (see
Fig. 3) that measures gravitational-wave strain as a differ-
ence in length of its orthogonal arms. Each arm is formed
by two mirrors, acting as test masses, separated by
Lx ¼ Ly ¼ L ¼ 4 km. A passing gravitational wave effec-
tively alters the arm lengths such that the measured
difference is ΔLðtÞ ¼ δLx − δLy ¼ hðtÞL, where h is the
gravitational-wave strain amplitude projected onto the
detector. This differential length variation alters the phase
difference between the two light fields returning to the
beam splitter, transmitting an optical signal proportional to
the gravitational-wave strain to the output photodetector.
To achieve sufficient sensitivity to measure gravitational

waves, the detectors include several enhancements to the
basic Michelson interferometer. First, each arm contains a
resonant optical cavity, formed by its two test mass mirrors,
that multiplies the effect of a gravitational wave on the light
phase by a factor of 300 [48]. Second, a partially trans-
missive power-recycling mirror at the input provides addi-
tional resonant buildup of the laser light in the interferometer
as a whole [49,50]: 20Wof laser input is increased to 700W
incident on the beam splitter, which is further increased to
100 kW circulating in each arm cavity. Third, a partially
transmissive signal-recycling mirror at the output optimizes

FIG. 2. Top: Estimated gravitational-wave strain amplitude
from GW150914 projected onto H1. This shows the full
bandwidth of the waveforms, without the filtering used for Fig. 1.
The inset images show numerical relativity models of the black
hole horizons as the black holes coalesce. Bottom: The Keplerian
effective black hole separation in units of Schwarzschild radii
(RS ¼ 2GM=c2) and the effective relative velocity given by the
post-Newtonian parameter v=c ¼ ðGMπf=c3Þ1=3, where f is the
gravitational-wave frequency calculated with numerical relativity
and M is the total mass (value from Table I).
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Ėorb = �ĖGWs � ĖBH
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Imprints	of	BH	area	quantization:	tidal	heating

• The	existence	of	a	threshold	in	the	BH	energy	spectrum	makes	absorption	of	low	frequency	GWs	
highly	suppressed	during	most	of	the	inspiral:	different	binary	evolution	with	respect	to	GR	prediction.

!�n � 2⌦H

 TH ⇡ 0• Therefore	the	lack	of	absorption		will	leave	its	imprint	in	the	phase	of	GWs	emitted:

• For	quasicircular,	extreme	mass-raso	inspirals,	such	sdal	effects	can	signficantly	increase	the	durason	
of	the	signal	

! ⇠ 2⌦orb(r)

 TH =  PP

�
F (ai, q) v

5 log v +G(q)v8[1� 3 log v]
�

A. del Rio        Penn State

(2.5PN	x	Log	v	correction)



• Some	analysis	[Maselli	et	al,	2018]	show	that	LISA		and	ET	will	reach	the	desired	sensitivity	to	discriminate	
among		different		values	of	

• As	inspiral	shrinks,	GW	frequency	increases,	and	a	set	of	absorption	“resonances”	[Cardoso,	dR,	Kimura,	
2019]	could	emerge.

<< 1
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Imprints	of	BH	area	quantization:	tidal	heating

• Phenomenological	approach:

A. del Rio        Penn State

h̃(!) = A(!)ei( PP(!)+�(!) TH(!)+...)
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propagation time, the events have a combined signal-to-
noise ratio (SNR) of 24 [45].
Only the LIGO detectors were observing at the time of

GW150914. The Virgo detector was being upgraded,
and GEO 600, though not sufficiently sensitive to detect
this event, was operating but not in observational
mode. With only two detectors the source position is
primarily determined by the relative arrival time and
localized to an area of approximately 600 deg2 (90%
credible region) [39,46].
The basic features of GW150914 point to it being

produced by the coalescence of two black holes—i.e.,
their orbital inspiral and merger, and subsequent final black
hole ringdown. Over 0.2 s, the signal increases in frequency
and amplitude in about 8 cycles from 35 to 150 Hz, where
the amplitude reaches a maximum. The most plausible
explanation for this evolution is the inspiral of two orbiting
masses, m1 and m2, due to gravitational-wave emission. At
the lower frequencies, such evolution is characterized by
the chirp mass [11]
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where f and _f are the observed frequency and its time
derivative and G and c are the gravitational constant and
speed of light. Estimating f and _f from the data in Fig. 1,
we obtain a chirp mass of M≃ 30M⊙, implying that the
total mass M ¼ m1 þm2 is ≳70M⊙ in the detector frame.
This bounds the sum of the Schwarzschild radii of the
binary components to 2GM=c2 ≳ 210 km. To reach an
orbital frequency of 75 Hz (half the gravitational-wave
frequency) the objects must have been very close and very
compact; equal Newtonian point masses orbiting at this
frequency would be only ≃350 km apart. A pair of
neutron stars, while compact, would not have the required
mass, while a black hole neutron star binary with the
deduced chirp mass would have a very large total mass,
and would thus merge at much lower frequency. This
leaves black holes as the only known objects compact
enough to reach an orbital frequency of 75 Hz without
contact. Furthermore, the decay of the waveform after it
peaks is consistent with the damped oscillations of a black
hole relaxing to a final stationary Kerr configuration.
Below, we present a general-relativistic analysis of
GW150914; Fig. 2 shows the calculated waveform using
the resulting source parameters.

III. DETECTORS

Gravitational-wave astronomy exploits multiple, widely
separated detectors to distinguish gravitational waves from
local instrumental and environmental noise, to provide
source sky localization, and to measure wave polarizations.
The LIGO sites each operate a single Advanced LIGO

detector [33], a modified Michelson interferometer (see
Fig. 3) that measures gravitational-wave strain as a differ-
ence in length of its orthogonal arms. Each arm is formed
by two mirrors, acting as test masses, separated by
Lx ¼ Ly ¼ L ¼ 4 km. A passing gravitational wave effec-
tively alters the arm lengths such that the measured
difference is ΔLðtÞ ¼ δLx − δLy ¼ hðtÞL, where h is the
gravitational-wave strain amplitude projected onto the
detector. This differential length variation alters the phase
difference between the two light fields returning to the
beam splitter, transmitting an optical signal proportional to
the gravitational-wave strain to the output photodetector.
To achieve sufficient sensitivity to measure gravitational

waves, the detectors include several enhancements to the
basic Michelson interferometer. First, each arm contains a
resonant optical cavity, formed by its two test mass mirrors,
that multiplies the effect of a gravitational wave on the light
phase by a factor of 300 [48]. Second, a partially trans-
missive power-recycling mirror at the input provides addi-
tional resonant buildup of the laser light in the interferometer
as a whole [49,50]: 20Wof laser input is increased to 700W
incident on the beam splitter, which is further increased to
100 kW circulating in each arm cavity. Third, a partially
transmissive signal-recycling mirror at the output optimizes

FIG. 2. Top: Estimated gravitational-wave strain amplitude
from GW150914 projected onto H1. This shows the full
bandwidth of the waveforms, without the filtering used for Fig. 1.
The inset images show numerical relativity models of the black
hole horizons as the black holes coalesce. Bottom: The Keplerian
effective black hole separation in units of Schwarzschild radii
(RS ¼ 2GM=c2) and the effective relative velocity given by the
post-Newtonian parameter v=c ¼ ðGMπf=c3Þ1=3, where f is the
gravitational-wave frequency calculated with numerical relativity
and M is the total mass (value from Table I).
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difference is ΔLðtÞ ¼ δLx − δLy ¼ hðtÞL, where h is the
gravitational-wave strain amplitude projected onto the
detector. This differential length variation alters the phase
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beam splitter, transmitting an optical signal proportional to
the gravitational-wave strain to the output photodetector.
To achieve sufficient sensitivity to measure gravitational

waves, the detectors include several enhancements to the
basic Michelson interferometer. First, each arm contains a
resonant optical cavity, formed by its two test mass mirrors,
that multiplies the effect of a gravitational wave on the light
phase by a factor of 300 [48]. Second, a partially trans-
missive power-recycling mirror at the input provides addi-
tional resonant buildup of the laser light in the interferometer
as a whole [49,50]: 20Wof laser input is increased to 700W
incident on the beam splitter, which is further increased to
100 kW circulating in each arm cavity. Third, a partially
transmissive signal-recycling mirror at the output optimizes
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Resonant	orbits



What	are	the	expectations	from	LQG?



Properties	of	area	spectrum	in	LQG

• Standard	area	operator	in	LQG:	spectrum	is	not	equally	spaced

22

• An	effectively	continuous	absorption	spectrum	would	be	recovered	for	macroscopic	BHs.	
Echoes	would	not	be	expected,	a	priori.	

energy	spectrum	is	quasi-continuous�A ⇠ e�
p
A/lp

• Spacing	between	neighbouring	eigenvalues	can	be	estimated	as	[Barreira,	Carfora,	Rovelli;	1996]:
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FIG. 1. Plot of the black hole degeneracy spectrum D(a), in units of 1019, for a range of area values
(in units of 4⇡�`2

P
, where � is the Immirzi parameter and `P the Planck length). The band structure

can be traced all the way back to the smaller values of the area.

ing out the peaks in the degeneracy spectrum (or, rather, the steps in the entropy) and
describing them as Gaussians (or better by Gaussian distributions, that can be written in
terms of the error function erf) it is possible to obtain a smoothed representation for the
black hole entropy. The low area behavior, that has been studied so far in the literature,
is captured in a very effective way by this model. It is possible to show that the interest-
ing structure of the entropy seen for small black holes disappears in an area regime for
which the smooth approximation is still valid. However, the preceding analysis does not
exclude a revival of the entropy quantization for larger areas (or in the asymptotic limit)
because the smoothed model fails to reproduce the exact value of the Immirzi parameter
� and, hence, the correct growth rate of the entropy (although very good approximations
for � are obtained in practice).

The lay out of the paper is the following. After this introduction we will devote Sec-
tion II to give the basic definitions related to the entropy and the black hole degeneracy
spectrum. In Section III we will study the statistical properties of the peaks by introduc-
ing their moment-generating function. We will obtain the mean and the variance for the
peak distribution and discuss the computation of higher moments. The approximation
obtained by modeling the steps as Heaviside step functions (with discontinuities located
at the area values given by the mean value of the areas associated with the peaks) will
be discussed next in Section IV. As we will see, the approximation obtained in this way

 

mull
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• For	microscopic	area	values	and	no	rotation,	BH	degeneracy	spectrum	shows	a	periodic	band	structure

• Effectively	reproduces	the	B-M	uniform	area	quantization,	with	linewidths	compatible	with	Hawking	
evaporation.	Echoes	would	be	expected	for	microscopic	BHs.

�A ⇠ l2p

� ⇠ �Hawk
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• BH	entropy	can	only	increase	in	periodic	steps:	it	constrains	absorption	of	GWs

Properties	of	area	spectrum	in	LQG

extra variable z. This means that, in this case, we will not
directly get the function PðsÞ appearing in (3.23) but rather
a function of Pðs; zÞ such that the inverse Laplace trans-
form of s# 1Pðs; zÞ in the variable s is a Laurent polynomial
in z, with area dependent coefficients, whose constant term
gives the desired sum. In practice this requires the compu-
tation of a contour integral in z or, equivalently, an inverse
Fourier transform in the additional variable ! defined by
z ¼ ei! [18]. By following this procedure we find
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appearing in this function can be

simplified if we use the Pell equations (3.7), yi!
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Now, by using (3.22) we obtain the following expression
for the entropy as an inverse Laplace transform (and an
additional inverse Fourier transform to deal with the pro-
jection constraint):

expS& ðaÞ ¼
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(3.26)

where x0 is a real number larger than the real part of all the
singularities of the integrand in the previous expression.
This expression is valid for those area values a ( 0 that do
not belong to the spectrum of the LQG area operator and,
in particular, it gives the exact value of S& ða#Þ for the CS
prequantized values of the area. For areas of the form aLQGn

the previous formula gives the arithmetic mean of the left
and right limits when a ! aLQG)n .

The expression (3.26) can be used to study the asymp-
totic behavior of the entropy, whose exponential growth as
a function of the area is explained by the presence of the
pole in the integrand of (3.26) with the largest real part

[19]. This pole determines, in particular, the value of the
Immirzi parameter $ ¼ 0:237 . . . that must be chosen in
order to reproduce the Bekenstein-Hawking law. An addi-
tional logarithmic correction of the form

# 1
2 logða=‘2PÞ

can also be derived from (3.26). When the projection
constraint is ignored, the entropy is given by

expS*& ðaÞ ¼
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"
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k¼ 1

e# s
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kðkþ 2Þ

p ## 1
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from which it is easy to see that the linear behavior of
entropy with area and the value of $ are unaltered.
However, there are no logarithmic corrections in this case.
It must be pointed out that, from a purely numerical

point of view, (3.26) and (3.27) are rather bad because of
the inherent difficulties associated with numerically com-
puting improper integrals. Nonetheless, it can be seen that
the formula (3.26) gives the exact result for the lowest
values of the area spectrum by comparing to a direct
numerical computation (that is impractical to extend for
larger areas). Entropy computations are carried out in
practice by using the exact values for the black hole
degeneracy spectrum obtained by using the exact combi-
natorial methods described above and adding up. A sample
result for S& ðaÞ is shown in Fig. 2, which displays a
characteristic step modulation superimposed to a linear
growth. This behavior may be present for large areas as a
consequence of the fact that the analytic structure of the
integrand in (3.26) is rather complicated and, in particular,
the (real) pole that determines the growth of the entropy
and fixes the value of $ is an accumulation point for the
real parts of the poles in the integrand [18].
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FIG. 2 (color online). Plot of S& ðaÞ in terms of the area (in
units of 4"$‘2P). The computation of S& ðaÞ has been done by
using the algorithm based in the number-theoretical method
discussed in the paper.
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FIG. 7. Comparison between the exact values of the entropy S⇤ and their Gaussian approximation
for two different area intervals. The necessary computations are made possible by the introduc-
tion of the master generating functions (II.3). We can see that the Gaussian approximation works
remarkably well in both cases. The fading of the oscillations in the entropy for the largest area
interval is evident. Similar plots for area intervals around 70 show an essentially linear growth.
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Properties	of	area	spectrum	in	LQG

A & l2p A >> l2p

• Periodic	band	structure	tends	to	disappear	as	BH	area	becomes	macroscopic
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• This	conclusion	is	obtained	counting	only	the	number	of	microstates	compatible	with	the	macrostate	
(M,	J=0).	Rotation	is	completely	ignored.

Does	the	periodic	structure	emerge	for	macroscopic	BHs	if	the	full	degeneracy	spectrum	is	calculated?	

A. del Rio        Penn State

Properties	of	area	spectrum	in	LQG

A & l2p A >> l2p

S(A, J) = ? (Frodden	et	al;	2012)



• Flux-area	operator:	alternative	choice	within	LQG (Barbero,	Lewandowski,	Villaseñor;	2011)

Area	spectrum	is	equally	spaced:

• Similar	to	Bekenstein-Mukhanov	quantization.	Echoes	are	expected	even	for	macroscopic	BHs	with	
this	proposal.	GW	observations	could	be	used	to	measure	or	bound	the	Barbero-Immirzi	parameter

25A. del Rio        Penn State

Properties	of	area	spectrum	in	LQG
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• What	about	tidal	heating?

⇠ M�
M


�A

`2p
+ f(J/M2

)
�J

~

�
kHz

• If	angular	momentum	is	quantized	in	the	usual	way,	we	still	have	a	threshold	even	if	area	spectrum	is	
effectively	continuous.
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• LQG	could	still	affect	the	GW	signal	through	tidal	heating.

GW	absorption

non-absorption
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Possible	avenues	for	LQG

• H_int	is	given	by	dipole	approximation	in	the	electromagnetic	analogue

27A. del Rio        Penn State

• Effective	boundary	conditions:	study	how	a	quantum	horizon	interacts	with	GWs	to	calculate	the	
absorption	probability	distribution	accurately

• Can	LQG	do	this	calculation	(quadrupolar	moment	approximation)?

Regge-Wheeler	eqn:

Figure 1. The effective gravitational potential (2.2) with s = l = 2 is shown in terms of the tortoise
coordinate x. At x = x✏ there is a reflective surface with reflection coefficient R(!). The boundary
conditions for purely outgoing waves at infinity are shown.

2 The quantum filter

2.1 Framework

We focus entirely on the regime which describes the late-time dynamics of post-merger bina-
ries. In particular, the geometry is taken to depart only slightly from a BH vacuum solution
of the field equations. For simplicity we consider only non-spinning BHs, but our results can
straightforwardly be extended to Kerr geometries. Then, the dynamics can be linearized and
expanded in spin-s spherical harmonics, with s = 0, 1, 2 for scalar field, electromagnetic or
gravitational fluctuations [13]. It is possible to show that all massless fields are governed by
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• Effective	geometry	approach	(analogous	to	LQC):	same	boundary	conditions,	but	area	quantization	is	
encoded	in	corrections	to	the	gravitational	potential	at	the	horizon

⇥
@2t � @2r⇤ + V e↵

l (r)
⇤
 (r⇤, t) = 0

Figure 1. The effective gravitational potential (2.2) with s = l = 2 is shown in terms of the tortoise
coordinate x. At x = x✏ there is a reflective surface with reflection coefficient R(!). The boundary
conditions for purely outgoing waves at infinity are shown.
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• Can	LQG	predict	an	effective	potential	at	the	horizon?

Figure 4. The norm of the Fourier transform (3.5) of the first (left) and second (right) echo computed
numerically as a function of frequency. The case of Dirichlet boundary conditions is shown in solid
black, double barrier in dotted red (we adopt 2M = 1 units). The dips correspond to the filtered
frequencies that leaked through the barrier into the BH, and they coincide with the reflection coefficient
(see Fig. 5).

Figure 5. Comparison of the Fourier transform of the first two echos obtained either by numerically
solving the double barrier boundary condition and obtaining  ̃B

k , or through filtering: multiplying
the Fourier transform of the numerical Dirichlet signal  ̃D

k by Rk, where R is the analytic reflection
amplitude for the double square barrier. The results agree very well and establish the validity of this
approximation. The latter procedure could be used with any R derived from a theory of the physics
near a black hole horizon. Conversely, if echoes are detected, their Fourier transform can be used to
measure R and compare it to the predictions from black hole area quantization.

where the prime denotes filtering. The factor Rk takes into account the k times the wave
packet bounced off the boundary. This gives us a Fourier transformed echo that should be a
good approximation to  ̃B

k .
We use for R(!) the analytic reflection coefficient for the double barrier potential with

the same parameters (3.3) as for the time evolution. The outcome of this algorithm is shown
in Fig. 5, where we compare against the original Fourier transform  ̃B

k . The agreement is
good, validating our procedure.

The real time waveform of any filtered signal is given by the inverse Fourier transform
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Fourier	analysis	shows	
characteristic	absorption	freq.

Possible	avenues	for	LQG

(Effective	Regge-Wheeler	eqn)
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Conclusions

The	study	of	the	interaction	between	BHs	and	GWs	could	be	helpful	in	revealing	quantum	aspects	of	BHs

If	we	assume:		

• BHs	admit	a	quantum	description	in	terms	of	a	Hamiltonian	operator	H	in	a	suitable	Hilbert	space		

• Existence	of	orthonormal	basis	of	eigenstates	|M	>,	with	eigenvalues	M	determined	by	uniform,	
Planck	scale	area	quantization	

Then	there	is	basis	to	expect	imprints	of	BH	area	quantization	in	GW	physics.
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Conclusions

•	GW	echoes	and	suppressed	tidal	heating	could	be	signs	of	area	quantization,	from	which	the	fundamental	
quantum	of	black	hole	area	could	be	measured.		

THANK	YOU

• The	possibility	of	detecting	these	imprints	strongly	depends	on	having	accurate	waveforms.	Accurate	
calculations	require	details	of	the	microscopic	BH	degrees	of	freedom	and	the	way	they	interact	with	the	
radiation	field.	LQG	could	provide	these	details.
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