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Overview

Motivation.

How to construct continuum physical theory with refining time evolution.

As an exercise construct BF vacuum: dualize the Ashtekar-Lewandowski construction.

Need to dualize everything!

BF refinement and BF cylindrical consistent observables.

Holonomies and integrated fluxes

BF measure and cylindrically consistent inner product.

Compactification /discretization of excitations via inductive limit construction.

Remarks on diffeomorphism symmetry and (full) dynamics. .

Simplicity constraints again co®



How to construct (continuum) physical
vacuum.

[Bahr: cylindrical consistent path integral measure]
[BD, 12: dynamical cylindrical consistency]
[BD, Steinhaus | 3: Refining by time evolution]



What is vacuum?

~ coarse representation of vacuum |

(Hartle-Hawking) wave function
associated to closed boundary
of space time,
given by amplitude for basic space time
building block

[Oeckl: generalized boundary proposal]
[Conrady, Rovelli et al 03]

[Hoehn: discrete generalized boundary proposal 14]

S
J"d'fl) ~ Refined vacuum wave function
| by evolving i.e. with refining
Pachner moves.

[BD, Steinhaus | 3: Refining by time evolution]



Refining: adding degrees of freedom in
(interpolating) vacuum state

- Same refining can be applied to a general state:

[BD, Hoehn, Steinhaus, ...]

fits nicely the heuristics
of tensor network
renormalization

[BD 12]
general state




[BD, Steinhaus | 3: Refining by time evolution]

Lesson: think about refining with Pachner moves.
Can we use this to construct continuum limit
in the same way standard LQG is based on

(dual) graph refinements!?



As we will see this makes sense for topological theories and
allows the construction of the continuum theory via
inductive/projective limit used in LQG.

This limit does not only describe the topological theory but also excitations!

In fact we obtain a representation (of gauge invariant projection) of the

(modified) holonomy flux algebra.

Thus the space of refining Dirac observables’ = cylindrically consistent observables

is (unexpectedly) large.



Excitations and vacuum (general) oyl - e
Je
i

(discretized)

vacuum

state

topological field

theory /

determine observables stable
under refining time evolution

(dynamics)

continuum

excitations q

‘inductive limit’
construction

Hilbert space

for excitations




Cylindrically consistent amplitude maps

For non-topological theories:
Refining operations (Pachner moves) do not necessarily commute.

[Comparable to the requirement to satisfy Dirac constraint algebra.]

However can hope that after some refining-coarse graining discretization independence is

restored.
This allows the construction of a family of cylindrically consistent amplitudes

associated to a family of discretizations (not necessarily simplices) of boundary manifolds.

[BD 12, ILQGS talk 2012] [Read BD, Steinhaus 13!]

Cylindrical consistency allows an interpretation of these amplitudes as acting on continuum

boundary Hilbert space (only labelled by topology!).

Defines the continuum (physical) theory starting from

spin foam amplitudes.



From AL to BF: Dualize everything!



Main lesson: dualize everything!

(BF refining needs triangulation)

[Gambini, Griego, Pullin 97,

Bobienski, Lewandowski, Mroczek 01: A two-surface

quantization of Lorentzian gravity]

[Bianchi 09 ] [LOST-F 05/04]
LQG as theory of curvature defects.

Uniqueness theorem for AL

[Freidel, Geiller, Ziprick | 1] vacuum.

LQG continuum phase space with BF gauge fixing. Can there be another vacuum?

[Baratin, Oriti & Baratin, BD, Oriti, Tambornini 10 ]

Non-commutative flux representation of LQG.

[ BD, Guedes, Oriti 2]
LQG in terms of E-bar instead of A-bar?
Problem: Usual refining is not consistent with E-bar!
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Loop quantum gravity vacua

geometric variables:

connection

{A7E\}:5

flux: spatial geometry

Ashtekar - Lewandowski vacuum (90’s) 3 BF (topological) theory vacuum

wvac(A) =1 E =0

peaked on degenerate (spatial) geometry
maximal uncertainty in connection

excitations:
spin network states supported on graphs

(representation)
labels for edges

[Koslowski: vacuum with shifted E]

wvac (EGauss ) =1

peaked on flat connections
maximal uncertainty in spatial geometry

, F(A)=0

excitations:
flux states supported on (d-|)D-surfaces

group) labels
for faces

shift connection to homogeneous curvature!?
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Loop quantum gravity with AL vacuum

[ ...Ashtekar, Isham, Lewandowski 93]

*based on dual graphs: carry excitations (spin networks = functional of holonomies labelled by spins)
refining operations on this graph: matches composition of holonomies

ecylindrically consistent holonomy and flux observables: commute with this refining

*allows the construction of a cylindrically consistent measure

and inner product and the definition of the continuum Hilbert space via a so-called inductive limit

add add
g
f(9)
ga!
/\// sub sub
— —
g
f(9)
ga! .
g
f(9)

Refinement operation on holonomies and fluxes. [Thiemann 00, QSD7] [ BD, Guedes, Oriti 12]
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BF refinement and BF cylindrically consistent

observables

[ BD, Geiller 14]
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Set-up for BF vacuum

More (regular) structure than just dual )
graph!

[Bonzom, Smerlak |12: needed for BF quantization]

[Gurau: colored triangulation] -/

esimplicial version “of LQG, see also [Thiemann 00, QSD7]

*instead of embedding dual graph, embed triangulation (vertices)

*refining given by operation on triangulation (and not on dual graph)
eclassical phase space: projective limit of phase spaces as in [Thiemann 00, QSD7]

*however change AL embedding to BF embedding

15



Set-up

emanifold with auxiliary metric

eset of embedded triangulations

eembedded vertices: carry coordinate labels
*edges: geodesics with respect to auxiliary metric (replaces piecewise linear)

etriangles, tetrahedra: given by minimal surfaces

*dual complex (for instance barycentric, however details do not matter)

with a root node (fixing a reference frame)

erefining operations given by refining Alexander moves
(alternative: set of refining Pachner moves)

eequips the set of triangulations with a partial (directed)* order

16



Alexander moves

subdividing (sub) simplices

In d=2: subdividing a triangle

AN
T OY
V
H

—>

subdividing an edge

Vo
X
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Alexander moves

subdividing (sub) simplices

In d=3:

A
I

subdividing a tetrahedron:

R
N4

subdividing a triangle:

subdividing an edge:

(there are infinitely many of those moves)
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Phase spaces

*for now fix triangulation and a root node
especify a set of point separating functions

egauge invariance: we consider phase space functions invariant under gauge
transformations at all nodes except at the root

-closed holonomies with source at root
h7
-integrated (simplicial) fluxes transported to the root
(can understand these as vector fields acting on functions of holonomies)

d=2: X, d=3: X, (+transport to root (tree), + tree on O)

-Poisson brackets deducible from basic (standard) Poisson brackets:

(XE g} = gT" (XF, X} = fHmxm

[Thiemann 00, QSD7]
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Integrated simplicial fluxes

In d=2 (with an almost canonical choice of parallel transport): [Thiemann 00, QSD7]
[Freidel, Louapre 04 ]

[Husain 91]

for one edge:

L * “x\a —1
X, = / oy Ba (€ 0) € (OB

for a path in the triangulation:

Interpretation: vector from source vertex to target vertex of path.

In (2+1) gravity closed paths give Dirac observables - but here we allow open paths!
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Composition of integrated simplicial fluxes

replaces composition of holonomies in AL embedding

X7T2 OX7T1 — 6_1 X7T2€7T207T1 —I_ X7T1

2071

A

I,
[ | eT)
5
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Integrated simplicial fluxes

In d=3 (need a surface tree for parallel transport):

black arrows: elementary fluxes

blue: piece of a surface

red: bonsai tree for piece of surface
parallel transport (dashed red) takes place

in tetrahedra below’ the surface

For composition of integrated fluxes need to specify a bridge’ edge

(which connects the two surface trees).
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Continuum phase space

Can be defined as a projected limit
[Thiemann 00, QSD7: for AL embedding]

of phase spaces associated to fixed triangulations.

The discussion needed for that is exactly the same as for

cylindrically consistency of the quantum observables.

: BF
AL embedding embedding
holonomies compose stay constant

fluxes stay constant compose




Quantum theory
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Refining for (holonomy) wave functions

We glue this dual complex
to the spatial hypersurface:
integrate over red edges.

Impose flat holonomies.

Ee (g, -

/5(95192/98/95191) 0(9595" 97" 9,9, ") 0(9:9,90 95 97" 9,)

Gy

5(97/'9;198/96/)2#(91’ T 7957 T ) dgl T dg5

Solving the delta functions and

gauge fixing at the old’ nodes:

Ee5(¢)(91/7 Tt 798/7 o )
5(97,9;198/96/)¢(917 s 7957 o )

Determines refining map for

holonomies.

25



The root

Gauge fixing determines behaviour of root, in case it coincides with an old node.

2L

new root , — I~

Thus not only holonomies going through the

region are cylindrically consistent, but also

]/y/ holonomies starting at the root.
/ Ec (f(hy) ) f (Mg (y) JEe ()

old root : :
9’ Moreover gauge action at root commutes with
refining:
E(A
R (wa) — Gh< )Ee(w)
. —1
9, = 9,/9¢ g, = 97—/ g,
g, — 9,
2 2 9. — 9./
g p—

3 3/
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Integrated (exponentiated) fluxes: action

([h'T*X,n)", g} = ghT'h™!

| Exponentiated fluxes act by
exp(ai{[h_th]Z, }) = Ry exp(o; T)h—1 right translations.

Define: « = exp(a;T")

We will need exponentiated fluxes.

27



Integrated (exponentiated) fluxes: consistency

old new Basically follows from Gauss constraints and the
root root fact that we add a flat (Gauss-closed) piece of
geometry.

Thus a vector pointing from one vertex to the
next vertex stays invariant after subdividing (in a

flat manner).

Eey(¥)(gys 2 Ggrr )
¢( o, g5, ) —> = 0(9,95 9995 )0(9y5 -+ 955 ")

% A
9y = 9gr 575
—1
XZ(_X{I O Xg—l(Ee5¢)
6 5
—1
_= 5(97/95/ 98/96/)¢(gl7..' 7957'°') gl :g1,g8,1 -1
v 9, — 97/194/
1 }
X:E)_lw(7g5’) — w( e 957...) 5 g5/

\ E65(ngl¢)(91’7”' 798".”)
— 5(97/95—/198/g6/)¢(gl’... ,Q_lg 7..-
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Same mechanism in (3+1)D

Subdividing a

tetrahedron.

(Gluing a 4-simplex)

Subdividing a triangle.
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The measure: dualize AL measure

Excitations via

AL-vacuum Spin network basis
holonomy observables
nar(A) = 1 5> Y(A) = v (A) - nan(A)
v

HAL(YVy) = 0z 0

AL measure
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BF vacuum and excitations

First consider fixed triangulation. Gauge fix with maximal tree.

Leafs are in one-to-one correspondence with fundamental

cycles Cy .
[Lﬁi BF vacuum (does not depend on tree): constant in (Gauss-) fluxes.

ner = [ 1,0(Ce) = 11,9(g¢)

Obtain basis of excitations by action of exponentiated

o

(integrated) fluxes:
t holonomy from root
14

to source of leaf X{ag} — R{Adte(ag)}nBF — H5(ggozg).
/

Excitations are labelled by group elements : (Xy

Can group average at root.
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Measure

Basis of excitations labelled by group elements. X{ay) = R{Adte (ap)} TIBF — H 5(ggozg).

For Abelian groups:

Define measure in the choice as formal Kronecker Delta leads to
same way as the AL Bohr compactification of the dual group (Z for U(I)).
measure:

For Non-Abelian groups:

Bohr compactification of the dual torus group

WAL X{O%} H 5 Ckg sufficient? (as in SU(2) quantum group)
14

Choice as group delta:

Same inner product as with Haar measure:
/R{O/e_lae} Hé(gf) H5(9£') dlngg H5 'y oze
0 1z

Shows independence of choice of tree.
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Can now attempt to construct the continuum limit as

an inductive limit of Hilbert spaces in the same way as in standard LQG.

Need to make sure that inner product is cylindrically consistent, i.e. does not

depend on the choice of triangulation it is computed on.

For the Bohr compactification this is the case.
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Compactification of excitations

If we choose group delta, we need to modify the inner product to make it cylindrically consistent.

With some regulated group delta function:

<¢1 9 ¢2 > € [Bahr, hopefully to appear very soon]
9

(Y1, 19)" = lim

e—0 <77BF, 77BF>6

Heuristically equivalent to a Bohr compactification. Need exponentiated fluxes.

Lesson: Inductive Hilbert space construction puts discrete topology on excitations.

For AL: dual graphs with discrete labels. For BF: (d-2) objects in triangulations with group labels.

[Okolow 13] Constructs (inductive Hilbert space) continuum limit
for non-compact configuration spaces RN
via a projective limit of density matrices (i.e. functionals).

Results also in a Bohr compactification / almost periodic functions.

Generalize this to (cotangent space of) Lie groups!
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Deformations/ Generalizations

Dualising the Koslowski shift (introduction of background triad):

leads to shift of background connection.

A homogeneous curvature requires flux dependent background connection,

which requires change in (group) measure to keep holonomies as unitary operators.

Thus one expects a deformation of the symmetry group. Derivation of quantum group!?

Can we use non-commutative flux representation and compactify this space?

35



(Spatial) Diffeomorphism symmetry

A \ Common refinement.

Identifies BF vacuum on different

triangulations as one (spatial

i§ / diffeomorphism invariant state).

Finite (spatial) diffeomorphisms:  R» ~ FF

(Right shift with holonomy around vertex.)

Needs exponentiated flux. (Diffeos and exponentiated fluxes not

weakly continuous.)

Might explain finite action interpretation’ of Hamiltonian.

In (3+1)d: complications due to simplicity
constraints, but doable. [Zapata 96, BD & Ryan 08]
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On Hamiltonian dynamics and simplicity constraints

Good news!
Some Hamiltonian constraints are already there!

Dual regularization mechanism to Thiemann-
Hamiltonian.

[classical: BD & Ryan 08,

*non-graph changing (interpretation as tent move)
Bonzom & Dittrich |3

Y A ) .
for “flat or homogeneous sector’ (stacked spheres) and in quantum: Barrett , Crane 96,

(2+1)D free of discretization anomalies .
Bonzom | |, Bonzom, Freidel |1, ]

e graph’ changing: Pachner or Alexander moves: spin foam dynamics
edynamics can be understood as first refining and then imposing dynamics [Example: BD, Steinhaus 13]

ecould impose dynamics by gluing spin foam amplitudes [Alesci, Rovelli 10]
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On Hamiltonian dynamics and simplicity constraints

Coming back to “spin foam amplitudes give the physical vacuum”
(Why are we not already with a very physical vacuum?

This BF vacuum has constant distribution in twisted geoemtries.) [Speziale, Freidel 10]

Can we get (Regge) physical vacuum with (almost) constant distribution in
Regge like geometries, and (some) suppression of non-Regge geometries?

This however is a non-local problem (Area constraints are non-local).

Tautological claim :
Imposition of simplicity constraints making everyone happy
equivalent to
Continuum limit, i.e. with construction of physical vacuum.
We therefore need coarse graining and refining ...

... coming in the next ILQGS talk.
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Conclusions and outlook

We have an understanding of how to construct the physical vacuum as a

continuum obiject, starting from spin foam amplitudes.

The construction of the BF vacuum /representation is a nice exercise
towards this end:

Realization of a condensate state.
Very near to spin foam dynamics.
Might facilitate extraction of low energy physics, cosmology etc.

Many generalizations possible. One is:

Does it allow SL(2,C) Hilbert space, supporting self dual variables?
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