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Figure 3. The left panel shows a B1 basis for the two–tetrahedra–triangulation of the 3–sphere. Here we did
not depict the over–crossing graph copy Fu and the vacuum loops associated to the 2–handle constraints.
This copy can be transformed, using sliding across the 2–handle vacuum loops, to the same 2–handle vacuum
loops. The basis is labelled by six quantum numbers and diagonalizes Wilson loop operators around the
(six) edges of the triangulation.
The right panel shows a B2 basis. The strands and vacuum loop on the backside of the genus 3 surface are
depicted in grey. Note that for both bases we have 6 vacuum loops. But always three vacuum loops can be
generated from the other three loops, using the projection property (modulo factors of D) and the sliding
property of the loops. The graph Fu can be identified with the one–skeleton of the dual complex to the
triangulation: two four–valent nodes (expanded into three–valent ones) representing the two tetrahedra and
connected with each other by four links, representing the four triangles. This basis diagonalizes Wilson loop
operators around the four triangles of the triangulation and in addition two Wilson loops around pairs of
triangles.
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Figure 4. The left panel shows the Heegaard diagram for the 4–simplex triangulation. The Heegaard
surface is of genus six. Six of the ten attaching curves for the 2–handles are shown. The other four curves
are generated from these six curves. Note that the curve for the triangle t(124) under–crosses the handle
representing the edge e(15).
The right panel shows a B1 basis for the 4–simplex triangulation. For each vertex of the triangulation one
can choose a cutting of the associated four–punctured sphere into two three–punctured ones. Again we have
not shown the over—crossing graph copy. Using the 2–handle vacuum loops, as well as the vacuum loop
around the edge e(15), one can transform the over–crossing graph copy to the 2–handle vacuum loops.

Such a dual structure of holonomy operators, around both edges and triangles of a 4–simplex,
plays also an important role in [23], which constructs the 4–simplex amplitude for a spin foam
model describing gravity with a cosmological constant, and examines the semi–classical limit of
this amplitude. [23] also discusses the phase space associated to the boundary of a homogeneously
curved simplex, and notes the dual role of the two kinds of holonomies. We conjecture that the
Hilbert spaces and operators constructed in this work provide a quantization of the phase spaces
discussed in [23].



Part I: Motivation and Main Results 



We constructed a (2+1)D quantum geometry based on Turaev-Viro TQFT:

Vacuum stated peaked on homogeneously curved geometries. 

Curvature excitations described by defects.

How to generalize this construction to (3+1) D?

Key problem: braiding relations are central for the (2+1)D theory.

[BD, Geiller 2016]

We developed a strategy:  

Lift (2+1)D TQFT to (3+1)D theory with line defects.

[Delcamp, BD  2016],

Applied this strategy to Turev-Viro TQFT.

[BD arxiv: 1701.02037 [hep-th]]

Recent developments

[Baerenz, Barrett 2016][Haggard, Han, Kaminski, Riello 14-15],relations to

canonical formulation,
          including defects

canonical quantization

[BD, Steinhaus 2013:  From TQFT to quantum geometry] 



Results
•  Rigorous implementation of quantum group structure into (3+1)D LQG.  

        Strong evidence that this facilitates implementation of positive cosmological constant.
 

quantum group structure

                 where

• A new family of (3+1)D quantum geometry realizations 
based on vacuum peaked on homogeneously curved geometry: Crane-Yetter TQFT.

• Finiteness properties:
• Hilbert spaces (associated to fixed triangulations/ graphs) are finite dimensional.
• Important for (numerical) coarse graining efforts.
• All (graph preserving) geometric operators have discrete and bounded spectra. 

                         

[Smolin, Major, Noui, Perez, Pranzetti, Dupuis, Girelli, Bonzom, 

Livine, Haggard, Han, Kaminski, Riello, Rovelli, Vidotto, …]

SU(2)k k =
6⇡

`2p ⇤
[Smolin, Major]



Results
This quantum geometry features a very interesting self-duality.  (Born reciprocity.)

• Spectra of curvature operator and (exponentiated) area operators coincide. 

Both operators are implemented as Wilson loop operators. 
                 
Diagonalized by the spin network bases and curvature bases respectively.

         Spectrum for normalized  Wilson loop operator

[also Haggard, Han, Kaminski, Riello 2014-2015]
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If we consider a normalized k–Wilson loop operator, that is a k–Wilson loop operator divided by
the (signed) quantum dimension v

2
k

we obtain as eigenvalue
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Thus we can extract in the limit the SU(2) Casimir eigenvalue j(j+1). in the loop quantum gravity
interpretation [29] this gives the square of the area of the triangle enclosed by the Wilson loop.
The limit (5.4) for the eigenvalues of the normalized Wilson loop operators suggest a geometric
interpretation for these operators: In SU(2) one can approximate the Casimir operator of the
group via a sum over the cosine function applied to the Lie algebra generators [11]. Due to the
exponentiation this operator does however violate gauge invariance. One can however project the
operator back to a gauge invariant one, and the resulting spectrum approximates the Casimir
spectrum j(j + 1) for su�ciently small representation labels [11]. For larger j the bound imposed
by taking the cosine of the generators sets in.

The eigenvalues (5.4) show also this behaviour, with the representation k of the Wilson loop
functioning as the exponentiation parameter and playing the same role as a step size for a discrete
Laplacian. Thus we can relate the normalized Wilson loop around the triangles to an (exponenti-
ated) area operator. Here the gauge invariance is manifestly preserved however.

Another reason to identify the Wilson loop around triangles with an exponentiated area operator
is the analysis of [23]. There one considers phase spaces associated to homogeneously curved
simplices. The holonomy around a homogeneously curved triangle is thus constraint by the fact
that the curvature integrated over the triangle has to be proportional to the area of the triangle. A
third reason is provided by [18], which constructs the lift of state spaces and operators for three–
dimensional TQFT’s to state spaces and operators for four–dimensional TQFT’s with line defects
to BF theory with classical groups. In this case ribbon operators that go around triangles and
preserve the 2–handle constraints map indeed to (exponentiated) flux operators, from which one
can define via gauge averaging the (exponentiated) area operators.

For (normalized) Wilson loops along C1 curves, that is around the edges of a triangulation, one
finds – of course – the same eigenvalues. These operators are diagonalized in the B1 basis [5].
These eigenvalues (5.4) do indeed approach in the limit k ! 1 the eigenvalue for the normalized
SU(2) Wilson loop operator (with representation label k)

sin((2k + 1)✓)

(2k + 1) sin(✓)
(5.5)

for a state peaked on a curvature (class) angle ✓ along the encircled edge. Thus curvature is
discretized as we can identify ✓ = ⇡

k+2(2j + 1).

The fact that (exponentiated) area operators and curvature operators have the same eigenvalues
hints towards a duality relation, see also [30]. We conjecture that this fact is due to the polar duality
[44] for spherical simplices: For a given spherical simplex � one can construct a dual simplex �

0

whose lenghts are determined by the dihedral angles of �.

VI. EXAMPLES

Here we will consider a number of examples of triangulations and topologies.

• Two bases dual to each other:
•            spin network basis based on dual graph
• curvature bases based on one-skeleton of triangulation - also labelled by             spins

     
          (Many more bases, including bases adjusted to coarse graining schemes.)

[Delcamp, BD, Riello JHP 2016, Delcamp, BD to appear]

SU(2)k

SU(2)k



Strategy:   from (2+1)D  TQFT to a (3+1)D theory    

                with line defects [Delcamp, BD: JMP 2017]

(2+1)D TQFT

assigns degrees of freedom
to non-contractible curves
on a surface 

want to assign degrees of 
freedom
to curves around edges of
triangulation

(3+1)D TQFT: 3-sphere with 
 one-skeleton of (tetrahedral)
 triangulation removed

curves around triangles 
are contractible in 
3-sphere 

curves around the
edges of the 
triangulation are
not contractible

Use (2+1) D theory to assign state space to a 3D triangulation. 
But impose (contractibility/ flatness) constraints associated to curves 
around triangles.



Heegaard splitting and diagrams

A Heegaard diagram is a Heegaard surface decorated with 
generating basis of one-handle cycles and two-handle cycles. 

Compact 3D manifold
      (e.g. 3-sphere)Handlebody 1

Handlebody 2

inside
tetrahedron

outside
tetrahedronHandlebody I      Handlebody 2  [

⌘

Handlebody I      Handlebody 2  

Heegaard surface  

one-handle cycle: 
contractible in handlebody 1 

two-handle cycle: 
contractible in handlebody 2 

Heegaard diagrams encode uniquely topology of 3D manifold.

\
⌘



Heegaard diagrams

Heegaard diagrams can be constructed from a triangulation of the 3D manifold. 

Set of cycles around triangles generates (over-completely) all curves that are contractible even
if we do take out the one-skeleton of the triangulation.

        
        Thus it is sufficient to impose flatness constraints for the cycles around the triangles.

Heegaard surface  

one-handle cycle: 
contractible in handlebody 1 

two-handle cycle: 
contractible in handlebody 2 



Part II: Explicit construction



Strategy
1. Hilbert space, operators and bases for a closed surface.

2. Apply this to a Heegaard surface constructed via a triangulation.

3. Impose constraints for 2-handle cycles and find operators and bases 
                   consistent with these constraints.



Remark: 

This talk is mostly focussed on describing Hilbert space and operators 
for a fixed triangulation. 
Refinements implementing a vacuum based on the Crane-Yetter TQFT 
can be defined. The operators that we will discuss here are consistent 
with respect to these refinements.

Open possibility: refinements implementing an Ashtekar-Lewandowski 
type vacuum and finding operators consistent with these refinements.

Remark: fixed triangulation

refinement



Hilbert space for 

(2+1)D  Turaev-Viro   TQFT
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Figure 1. A basis for a genus 3 surface. Three of the shown vacuum loops can be contracted to a trivial
cycle after using repeatedly the sliding property with the remaining vacuum loops.

Bases: It is rather involved to find a set of independent states under the equivalence relations
(3.3) and (3.4). However a systematic way of constructing a basis for a given genus g surface is
known [3, 35, 36]. It is a generalization of the so–called fusion basis for punctured spheres [3].
These bases are defined to be orthonormal, which equips the Hilbert space with an inner product.

If the surface ⌃ is a sphere, all cycles are contractible, and the equivalence relations (3.1–3.4)
can be used the reduce any graph to the empty graph. The Hilbert space associated to the sphere
is therefore one–dimensional. The first non–trivial case is that ⌃ has the topology of the torus.
Two bases for the torus are depicted in equation (3.10.) The bases diagonalize over– and under–
crossing Wilson loops around the equator (for the basis depicted on the left side) or the meridian
(for the basis depicted on the right side) respectively, as we will see further below. The two bases
are connected by a unitary transformation
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described by a so–called S–matrix (here of the Drinfeld double of SU(2)k), which factorizes into
parts describing the over–crossing and under–crossing graphs respectively:
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For a genus g � 2 surface we decompose the surface into pants, that is three–punctures spheres.
To this end we need to cut the surface along (3g� 3) non–contractible curves. We will refer to this
set of cutting curves as C

B

. We can construct a trivalent graph F dual to this set of curves. (This
graph is also called a spine.) That is each link of F crosses one curve, and each pant component
carries one node of the graph F . A basis can now be constructed as follows: We double the graph
F to a double strand graph, where one copy F

o

of the graph is formed from over–crossing strands
and the other copy F

u

from under–crossing strands. Along each cutting curve we draw a vacuum
loop, that over–crosses the under–crossing graph copy and under–crosses the over–crossing graph
copy.6 Figure 1 shows a choice for vacuum loops and the over– and under–crossing graphs for a
genus 3 surface.

The set of these states given by all admissible colourings of the double graph, defines an or-
thonormal basis for the Hilbert space H(⌃).

6 The set of vacuum loops will in general be over–complete, in the sense that vacuum loops can be slid over each
other and then projected out. There will be however a minimal set of vacuum loops that cannot be further reduced.
This corresponds to a set of independent cycles in the graph F . Note however that for each redundant vacuum
loop that we remove we need to multiply the state with a factor of D, so that the norm remains invariant.



Hilbert space for (2+1)D Turaev-Viro TQFT

[Levin,Wen;  Koenig, Kuperberg, Reichardt; Kirillov;  BD, Geiller]

here:  for surfaces without punctures

Kinematical (but gauge invariant) Hilbert space:

States based on spin-labelled three-valent graphs with             coupling rules imposed on the 
nodes.

j = 0,
1

2
, 1, . . . ,

k

2
Admissible spins:

SU(2)k

24

and their square roots v
j

(with (�1)1/2 = i). The total quantum dimension is defined as
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sX

j

v

4
j

=

r
k + 2

2
sin�1

✓
⇡

k + 2

◆
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This brings us to the recoupling theory for SU(2)k. As in the group case we can tensor represen-
tations (although with a deformed co–product). Admissible triples are triples of representations
that include the trivial representation in their tensor product. Such triples are defined by the
following conditions:

i  j + k, j  i+ k, k  i+ j, i+ j + k 2 N, i+ j + k  k. (A5)

Note the last condition, which is special to the quantum group SU(2)k.
The so–called F–symbols transform between di↵erent bracketings for the tensor product. It

also appears in the F–move equivalence relation in (3.3). To define the F–symbols we introduce
first for any admissible triple (i, j, k) the quantity

�(i, j, k) := �

ijk

s
[i+ j � k]![i� j + k]![�i+ j + k]!

[i+ j + k + 1]!
, (A6)

where [n]! := [n][n� 1] . . . [2][1].
The (Racah–Wigner) quantum {6j} symbol is then given by the formula
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where the sum runs over

max(i+j+m, i+l+n, k+j+n, k+l+m)  z  min(i+j+k+l, i+k+m+n, j+l+m+n). (A8)

Now the F -symbols are defined as
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We will furthermore need the so–called R–matrices, which allows as to resolve over– and under
crossings in the graphical calculus:
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Thus, using a special case of the F–move (3.3)
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Coupling rules:

57

The explicit expression for the R-matrix of SU(2)
k

is
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from which one can see that Rij
k = Rji

k and Ri0
i = 1. Now, the S-matrix has entries defined via the

R-matrix as

DSij = sij = i j , (A10)

and using expression (3.24) we get the explicit expression
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With this notation, we see that sij corresponds to the evaluation of the Hopf link in the three-
sphere, and we understand the normalization coe�cient S

00

= Z = D�1. The S-matrix satisfies
the properties
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and can be used to compute the fusion coe�cients via the famous Verlinde formula
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When written in the form

(Ni)jk = �ijk =
X

l

Sjl

✓
Sil
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the Verlinde formula shows that the S-matrices diagonalize the fusion matrices.

Appendix B: Basis states for a two-surface of genus g � 1

In this appendix, we briefly discuss the choice of basis for the graph Hilbert space on a punctured
surface of genus g � 1.

Let us start by considering the case of a torus with no punctures. A minimal graph for the torus
has two three-valent nodes and three strands, and covers the two independent non-contractible
cycles. A possible choice of minimal graph is represented on figure 6. By analogy with the

Figure 6: Example of a minimal graph on a torus without punctures.

construction of the basis for the punctured sphere, one could a priori assume that a basis for the

j1

j2j3

labelling undirected edges of the graph.



Hilbert space for (2+1)D Turaev-Viro TQFT

Physical Hilbert space  - impose ‘flatness’ constraints:

Flatness constraint are imposed as equivalence relations between graph states: 
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In the following we define the graphs, colourings and equivalence relations in more detail:

Graphs: We consider trivalent graphs embedded into the surface ⌃. For SU(2)k, which has
self–dual representations, we do not need an orientation for the strands of the graphs.

Colourings: We colour the strands of a given graph with irreducible admissible representations
of SU(2)k, that is with lables j = 0, 1/2, . . . , k/2. These labels also correspond to simple objects
from the fusion category associated to SU(2)k. For each node we impose a coupling condition:
the three representations meeting at a (trivalent) node need to include the trivial representation
in their fusion product. (For SU(2)k the ordering in this fusion product does not influence the
coupling conditions, which are detailed in (A5).)

Equivalence relations: On the space of embedded coloured graphs we impose the following
equivalence relations:

• Strands can be (isotopically) deformed:

j = j

. (3.1)

• Strands with trivial representations can be omitted:

0

j

j

= j

. (3.2)

• The local connectivity of the graph can be changed by a so–called F–move:
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. (3.3)

The F–symbol is defined in the appendix, equation (A9).

• Contractible loops of a graph can be annihilated using bubble moves:

k

i

l

j =
v

i

v

j

v

k

�

kl

�

ijk

k

l
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Here v

j

= (�1)j
p

d

j

is the square root of the quantum dimension of the representation
j. With d

j

we denote the quantum number [2j + 1] defined in (A2). Note the special case
k = l = 0 and thus i = j, stating that the j–bubble graph is equivalent to v

2
j

times the
empty graph.

Crossings: We can also allow crossing of strands, but we need to keep track which strands are
over–crossing and which are under–crossings. A crossing can be resolved into two three–valent
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Crossings: We can also allow crossing of strands, but we need to keep track which strands are
over–crossing and which are under–crossings. A crossing can be resolved into two three–valent

Rather involved now: 
Finding a basis of independent states and operators consistent with equivalence relations.
We need a) braiding and b) vacuum strands to define these.

Strands can be (isotopically) deformed. Strands with trivial spin can be omitted.

2-2 Pachner move.  Involving the F-symbol. 3-1 Pachner move.  Involving the F-symbol.
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where we have used the normalization condition (3.9e) for the F -symbol. Using (3.16) repeatedly,
as well as the quantum trace evaluation (3.5), equation (3.17) becomes

vk
vivj

�2

ijkv
2

k = �ijkv
2

k, (3.18)

from which we get that �ijk = vivj/vk.
As a consequence of the bubble-move, we therefore also find that

ji k = vivjvk�ijk. (3.19)

Now, this relation can be used to derive the following important result:

v2i v
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j = i j =
X

k
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vivj

ki j =
X

k

�ijkv
2

k, (3.20)

where in the first step we have used an F -move with a strand of spin 0 between the two loops.
This implies that the quantum trace evaluations (3.5) obey the fusion rule, or, in other words,
that the vj ’s provide a one-dimensional representation of the fusion algebra. Because of the fourth
condition in (3.3), one has ↵i↵j↵k = 1 if �ijk = 1, which implies that the quantum dimensions
themselves also satisfy the fusion rule, i.e.

didj =
X

k

�ijkdk. (3.21)

Now, if we introduce the vector d whose components are given by the quantum dimensions, (3.21)
can be written as didj =

P
k(Ni)jkdk = (Nid)j . This means that Nid = did, i.e. that d is an

eigenvector for the fusion matrices Ni with eigenvalue di. We can also see that the total quantum
dimension (3.13) is nothing but the norm of this vector.

Next, the bubble-move can be combined with the F -move to obtain the relation
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F ijk
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, (3.22)

which is nothing but the algebraic expression of the 3–1 Pachner move. Moreover, as a special case
of the F -move one has that the decomposition of the identity
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which can further be combined with the braiding relation (3.10) to obtain the following resolutions
of crossings:
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(3.24)



a) Braiding

Strands can cross each other.  Such crossings can be resolved using the R-matrix of            .
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one can conclude that
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For SU(2)k the R-matrix is given as
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⇣
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k(k+1)�i(i+1)�j(j+1)
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. (A13)

The S-matrix is defined as

DS

ij

:= s

ij

:= i

j

, (A14)

that is one has to remove first the crossings with the help of (A12) and reduce the resulting graphs
via F–moves to bubbles. These can be related to the empty graph via the bubble move (3.4). The
resulting coe�cient between the right hand side of (A14) and the empty graph state defines the
s–matrix:

s
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=
X

l

v

2
l

R

ij

l

R

ji

l

= (�1)2(i+j)[(2i+ 1)(2j + 1)]. (A15)

The S-matrix for SU(2)k is invertible and unitary, making SU(2)k into a modular fusion category.
Note that the S–matrix is also real and symmetric:

S
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,

X
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. (A16)

For the basis transformation (3.12) on the punctured torus we need generalizations of the S–
matrix given by
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[2] M. Bärenz and J. Barrett, “Dichromatic state sum models for four-manifolds from pivotal functors,”
arXiv:1601.03580 [math-ph].

[3] R. König, G. Kuperberg and B. W. Reichardt, “Quantum computation with Turaev–Viro codes”,
Annals of Physics 325, 2707-2749 (2010), arXiv:1002.2816 [quant-ph].

[4] Y. Hu, N. Geer and Y.-S. Wu, “Full Dyon Excitation Spectrum in Generalized Levin–Wen Models”,
(2015), arXiv:1502.03433 [cond-mat.str-el].

[5] B. Dittrich and M. Geiller, “Quantum gravity kinematics from extended TQFTs,”, to appear in NJP,
arXiv:1604.05195 [hep-th].

SU(2)k

25

one can conclude that

i

j

j

=
X

k

v

k

v

i

v

j

R

ij

k

i

k

i

j

j

,

i

j

j

=
X

k

v

k

v

i

v

j

�
R

ij

k

�⇤
i

k

i

j

j

.

(A12)

For SU(2)k the R-matrix is given as

R

ij

k

= (�1)k�i�j

⇣
q

k(k+1)�i(i+1)�j(j+1)
⌘1/2

. (A13)

The S-matrix is defined as

DS

ij

:= s

ij

:= i

j

, (A14)

that is one has to remove first the crossings with the help of (A12) and reduce the resulting graphs
via F–moves to bubbles. These can be related to the empty graph via the bubble move (3.4). The
resulting coe�cient between the right hand side of (A14) and the empty graph state defines the
s–matrix:

s

ij

=
X

l

v

2
l

R

ij

l

R

ji

l

= (�1)2(i+j)[(2i+ 1)(2j + 1)]. (A15)

The S-matrix for SU(2)k is invertible and unitary, making SU(2)k into a modular fusion category.
Note that the S–matrix is also real and symmetric:

S

ij

= S

ji

,

X

l

S

il

S

lj

= �

ij

. (A16)

For the basis transformation (3.12) on the punctured torus we need generalizations of the S–
matrix given by

A

i

kj

=
1

D v

i

j

k

i

, B

i

kj

=
1

D v

i

j

k

i

. (A17)

[1] V. Turaev and O. Viro, “State sum invariants of 3 manifolds and quantum 6j symbols”, Topology 31
865 (1992). J. W. Barrett and B. W. Westbury, “Invariants of piecewise linear three manifolds”, Trans.
Am. Math. Soc. 348 (1996) 3997, [arXiv:hep-th/9311155]].
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We can thus define the so-called s-matrix as the evaluation of the Hopf link. 

(Planar graphs are equivalent to a number times the empty graph. This number is called the 
 evaluation of the planar graph.)

sjk = (�1)2k+2j
sin

✓
⇡

k+2 (2j + 1)(2k + 1)

◆

sin

✓
⇡

k+2

◆gives

An important identity:

7

nodes using the relations (A12). Note that double over– or under– crossings can be also resolved
by deforming one of the strands:

= (3.5)

A particular important identity involves a strand circling another strand:

j

j

i

=
s

ij

s0j

j

j

, (3.6)

where s

ij

is the so–called (rescaled) S–matrix defined in (A14, A15).

Vacuum strands: Vacuum strands are defined as weighted sums over the strands labelled by
admissible irreducible representations of SU(2)k:

j

j

:=
1

D
X

k

v

2
k

k

l

. (3.7)

A loop made out of a vacuum strand enjoys a special property known as sliding property. This
holds for loops enclosing an arbitrary complicated region. The sliding property makes the region
enclosed by the vacuum loop invisible to outside strands, in the sense that we can slide strands
over the region:

j

j

=

j

j

. (3.8)

Thus we are allowed to deform Wilson lines, or holonomies operators, across the enclosed region.
We can therefore interpret the vacuum loop as enforcing flatness over the enclosed region.

Note that the insertion of a normalized vacuum loop, that is of a vacuum loop weighted with
1/D, defines a projection operators P, satisfying P � P = P. To see this, slide one vacuum loop
over the other loop and use the bubble move relation (3.4).

Furthermore, vacuum loops encircling a strand, force the associated representation label to be
trivial:

j

j

= D �

j0. (3.9)

This killing property holds (only) for modular fusion categories (such as SU(2)k), in which the
S–matrix is invertible. The killing property can be generalized to pre–modular fusion categories,
but in this case only the non–transparent part of the strand going through the vacuum loop is
annihilated, see [2]. Transparent objects are objects that braid trivially with all other objects of
the category. The killing property will play an important role in our discussion for the (3 + 1)–
dimensional theory.
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b) Vacuum strands

7

nodes using the relations (A12). Note that double over– or under– crossings can be also resolved
by deforming one of the strands:

= (3.5)

A particular important identity involves a strand circling another strand:

j

j

i

=
s

ij

s0j

j

j

, (3.6)

where s

ij

is the so–called (rescaled) S–matrix defined in (A14, A15).

Vacuum strands: Vacuum strands are defined as weighted sums over the strands labelled by
admissible irreducible representations of SU(2)k:

j

j

:=
1

D
X

k

v

2
k

k

l

. (3.7)

A loop made out of a vacuum strand enjoys a special property known as sliding property. This
holds for loops enclosing an arbitrary complicated region. The sliding property makes the region
enclosed by the vacuum loop invisible to outside strands, in the sense that we can slide strands
over the region:

j

j

=

j

j

. (3.8)

Thus we are allowed to deform Wilson lines, or holonomies operators, across the enclosed region.
We can therefore interpret the vacuum loop as enforcing flatness over the enclosed region.

Note that the insertion of a normalized vacuum loop, that is of a vacuum loop weighted with
1/D, defines a projection operators P, satisfying P � P = P. To see this, slide one vacuum loop
over the other loop and use the bubble move relation (3.4).

Furthermore, vacuum loops encircling a strand, force the associated representation label to be
trivial:

j

j

= D �

j0. (3.9)

This killing property holds (only) for modular fusion categories (such as SU(2)k), in which the
S–matrix is invertible. The killing property can be generalized to pre–modular fusion categories,
but in this case only the non–transparent part of the strand going through the vacuum loop is
annihilated, see [2]. Transparent objects are objects that braid trivially with all other objects of
the category. The killing property will play an important role in our discussion for the (3 + 1)–
dimensional theory.

Vacuum strands are defined as weighted sum over strands labelled by admissible spins:

6

In the following we define the graphs, colourings and equivalence relations in more detail:

Graphs: We consider trivalent graphs embedded into the surface ⌃. For SU(2)k, which has
self–dual representations, we do not need an orientation for the strands of the graphs.

Colourings: We colour the strands of a given graph with irreducible admissible representations
of SU(2)k, that is with lables j = 0, 1/2, . . . , k/2. These labels also correspond to simple objects
from the fusion category associated to SU(2)k. For each node we impose a coupling condition:
the three representations meeting at a (trivalent) node need to include the trivial representation
in their fusion product. (For SU(2)k the ordering in this fusion product does not influence the
coupling conditions, which are detailed in (A5).)

Equivalence relations: On the space of embedded coloured graphs we impose the following
equivalence relations:

• Strands can be (isotopically) deformed:

j = j

. (3.1)

• Strands with trivial representations can be omitted:

0

j

j

= j

. (3.2)

• The local connectivity of the graph can be changed by a so–called F–move:

i

m

k

l

j

=
X

n

F

ijm

kln

i

n

k

l

j

. (3.3)

The F–symbol is defined in the appendix, equation (A9).

• Contractible loops of a graph can be annihilated using bubble moves:

k

i

l

j =
v

i

v

j

v

k

�

kl

�

ijk

k

l

. (3.4)

Here v

j

= (�1)j
p
d

j

is the square root of the quantum dimension of the representation
j. With d

j

we denote the quantum number [2j + 1] defined in (A2). Note the special case
k = l = 0 and thus i = j, stating that the j–bubble graph is equivalent to v

2
j

times the
empty graph.

Crossings: We can also allow crossing of strands, but we need to keep track which strands are
over–crossing and which are under–crossings. A crossing can be resolved into two three–valent
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and their square roots v
j

(with (�1)1/2 = i). The total quantum dimension is defined as

D :=

sX

j

v

4
j

=

r
k + 2

2
sin�1

✓
⇡

k + 2

◆
. (A4)

This brings us to the recoupling theory for SU(2)k. As in the group case we can tensor represen-
tations (although with a deformed co–product). Admissible triples are triples of representations
that include the trivial representation in their tensor product. Such triples are defined by the
following conditions:

i  j + k, j  i+ k, k  i+ j, i+ j + k 2 N, i+ j + k  k. (A5)

Note the last condition, which is special to the quantum group SU(2)k.
The so–called F–symbols transform between di↵erent bracketings for the tensor product. It

also appears in the F–move equivalence relation in (3.3). To define the F–symbols we introduce
first for any admissible triple (i, j, k) the quantity

�(i, j, k) := �

ijk

s
[i+ j � k]![i� j + k]![�i+ j + k]!

[i+ j + k + 1]!
, (A6)

where [n]! := [n][n� 1] . . . [2][1].
The (Racah–Wigner) quantum {6j} symbol is then given by the formula

⇢
i j m

k l n

�
:=�(i, j,m)�(i, l, n)�(k, j, n)�(k, l,m)

X

z

(�1)z[z + 1]!

⇥
⇣
[i+ j + k + l � z]![i+ k +m+ n� z]![j + l +m+ n� z]!

⌘�1

[z � i� j �m]![z � i� l � n]![z � k � j � n]![z � k � l �m]!
, (A7)

where the sum runs over

max(i+j+m, i+l+n, k+j+n, k+l+m)  z  min(i+j+k+l, i+k+m+n, j+l+m+n). (A8)

Now the F -symbols are defined as

F

ijm

kln

:= (�1)i+j+k+l

p
[2m+ 1][2n+ 1]

⇢
i j m

k l n

�
. (A9)

We will furthermore need the so–called R–matrices, which allows as to resolve over– and under
crossings in the graphical calculus:
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Thus, using a special case of the F–move (3.3)
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nodes using the relations (A12). Note that double over– or under– crossings can be also resolved
by deforming one of the strands:

= (3.5)

A particular important identity involves a strand circling another strand:
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, (3.6)

where s

ij

is the so–called (rescaled) S–matrix defined in (A14, A15).

Vacuum strands: Vacuum strands are defined as weighted sums over the strands labelled by
admissible irreducible representations of SU(2)k:
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. (3.7)

A loop made out of a vacuum strand enjoys a special property known as sliding property. This
holds for loops enclosing an arbitrary complicated region. The sliding property makes the region
enclosed by the vacuum loop invisible to outside strands, in the sense that we can slide strands
over the region:

j

j

=

j

j

. (3.8)

Thus we are allowed to deform Wilson lines, or holonomies operators, across the enclosed region.
We can therefore interpret the vacuum loop as enforcing flatness over the enclosed region.

Note that the insertion of a normalized vacuum loop, that is of a vacuum loop weighted with
1/D, defines a projection operators P, satisfying P � P = P. To see this, slide one vacuum loop
over the other loop and use the bubble move relation (3.4).

Furthermore, vacuum loops encircling a strand, force the associated representation label to be
trivial:

j

j

= D �

j0. (3.9)

This killing property holds (only) for modular fusion categories (such as SU(2)k), in which the
S–matrix is invertible. The killing property can be generalized to pre–modular fusion categories,
but in this case only the non–transparent part of the strand going through the vacuum loop is
annihilated, see [2]. Transparent objects are objects that braid trivially with all other objects of
the category. The killing property will play an important role in our discussion for the (3 + 1)–
dimensional theory.

A vacuum loop is similar to a          function.   Wilson lines (strands) can be deformed across a region
enclosed by a vacuum loop.

�(g)

total quantum
dimension

Sliding property:
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where s
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A loop made out of a vacuum strand enjoys a special property known as sliding property. This
holds for loops enclosing an arbitrary complicated region. The sliding property makes the region
enclosed by the vacuum loop invisible to outside strands, in the sense that we can slide strands
over the region:
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Thus we are allowed to deform Wilson lines, or holonomies operators, across the enclosed region.
We can therefore interpret the vacuum loop as enforcing flatness over the enclosed region.

Note that the insertion of a normalized vacuum loop, that is of a vacuum loop weighted with
1/D, defines a projection operators P, satisfying P � P = P. To see this, slide one vacuum loop
over the other loop and use the bubble move relation (3.4).

Furthermore, vacuum loops encircling a strand, force the associated representation label to be
trivial:

j

j

= D �

j0. (3.9)

This killing property holds (only) for modular fusion categories (such as SU(2)k), in which the
S–matrix is invertible. The killing property can be generalized to pre–modular fusion categories,
but in this case only the non–transparent part of the strand going through the vacuum loop is
annihilated, see [2]. Transparent objects are objects that braid trivially with all other objects of
the category. The killing property will play an important role in our discussion for the (3 + 1)–
dimensional theory.

Killing property:

Vacuum loops encircling a strand force the associated spin label to be trivial.



Hilbert space for (2+1)D:  Bases

For the torus:

8

Figure 1. A basis for a genus 3 surface. Three of the shown vacuum loops can be contracted to a trivial
cycle after using repeatedly the sliding property with the remaining vacuum loops.

Bases: It is rather involved to find a set of independent states under the equivalence relations
(3.3) and (3.4). However a systematic way of constructing a basis for a given genus g surface is
known [3, 35, 36]. It is a generalization of the so–called fusion basis for punctured spheres [3].
These bases are defined to be orthonormal, which equips the Hilbert space with an inner product.

If the surface ⌃ is a sphere, all cycles are contractible, and the equivalence relations (3.1–3.4)
can be used the reduce any graph to the empty graph. The Hilbert space associated to the sphere
is therefore one–dimensional. The first non–trivial case is that ⌃ has the topology of the torus.
Two bases for the torus are depicted in equation (3.10.) The bases diagonalize over– and under–
crossing Wilson loops around the equator (for the basis depicted on the left side) or the meridian
(for the basis depicted on the right side) respectively, as we will see further below. The two bases
are connected by a unitary transformation

j

u

j

o

=
X

k

o

,k

u

S
j

o

j

u

,k

o

k

u

k

o

k

u

(3.10)

described by a so–called S–matrix (here of the Drinfeld double of SU(2)k), which factorizes into
parts describing the over–crossing and under–crossing graphs respectively:

S
j

o

j

u

,k

o

k

u

= S

j

o

k

o

S

j

u

k

u

. (3.11)

For a genus g � 2 surface we decompose the surface into pants, that is three–punctures spheres.
To this end we need to cut the surface along (3g� 3) non–contractible curves. We will refer to this
set of cutting curves as C

B

. We can construct a trivalent graph F dual to this set of curves. (This
graph is also called a spine.) That is each link of F crosses one curve, and each pant component
carries one node of the graph F . A basis can now be constructed as follows: We double the graph
F to a double strand graph, where one copy F

o

of the graph is formed from over–crossing strands
and the other copy F

u

from under–crossing strands. Along each cutting curve we draw a vacuum
loop, that over–crosses the under–crossing graph copy and under–crosses the over–crossing graph
copy.6 Figure 1 shows a choice for vacuum loops and the over– and under–crossing graphs for a
genus 3 surface.

The set of these states given by all admissible colourings of the double graph, defines an or-
thonormal basis for the Hilbert space H(⌃).

6 The set of vacuum loops will in general be over–complete, in the sense that vacuum loops can be slid over each
other and then projected out. There will be however a minimal set of vacuum loops that cannot be further reduced.
This corresponds to a set of independent cycles in the graph F . Note however that for each redundant vacuum
loop that we remove we need to multiply the state with a factor of D, so that the norm remains invariant.

Basis states parametrized by two spins    
labelling an under- and over-crossing strand.

(j
u

, j
o

)

We will see that this basis diagonalizes    
over- and under-crossing Wilsonloops 
parallel to the vacuum loop.
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Figure 1. A basis for a genus 3 surface. Three of the shown vacuum loops can be contracted to a trivial
cycle after using repeatedly the sliding property with the remaining vacuum loops.

Bases: It is rather involved to find a set of independent states under the equivalence relations
(3.3) and (3.4). However a systematic way of constructing a basis for a given genus g surface is
known [3, 35, 36]. It is a generalization of the so–called fusion basis for punctured spheres [3].
These bases are defined to be orthonormal, which equips the Hilbert space with an inner product.

If the surface ⌃ is a sphere, all cycles are contractible, and the equivalence relations (3.1–3.4)
can be used the reduce any graph to the empty graph. The Hilbert space associated to the sphere
is therefore one–dimensional. The first non–trivial case is that ⌃ has the topology of the torus.
Two bases for the torus are depicted in equation (3.10.) The bases diagonalize over– and under–
crossing Wilson loops around the equator (for the basis depicted on the left side) or the meridian
(for the basis depicted on the right side) respectively, as we will see further below. The two bases
are connected by a unitary transformation
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u
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described by a so–called S–matrix (here of the Drinfeld double of SU(2)k), which factorizes into
parts describing the over–crossing and under–crossing graphs respectively:

S
j

o

j

u

,k

o

k

u

= S

j

o

k

o

S

j

u

k

u

. (3.11)

For a genus g � 2 surface we decompose the surface into pants, that is three–punctures spheres.
To this end we need to cut the surface along (3g� 3) non–contractible curves. We will refer to this
set of cutting curves as C

B

. We can construct a trivalent graph F dual to this set of curves. (This
graph is also called a spine.) That is each link of F crosses one curve, and each pant component
carries one node of the graph F . A basis can now be constructed as follows: We double the graph
F to a double strand graph, where one copy F

o

of the graph is formed from over–crossing strands
and the other copy F

u

from under–crossing strands. Along each cutting curve we draw a vacuum
loop, that over–crosses the under–crossing graph copy and under–crosses the over–crossing graph
copy.6 Figure 1 shows a choice for vacuum loops and the over– and under–crossing graphs for a
genus 3 surface.

The set of these states given by all admissible colourings of the double graph, defines an or-
thonormal basis for the Hilbert space H(⌃).

6 The set of vacuum loops will in general be over–complete, in the sense that vacuum loops can be slid over each
other and then projected out. There will be however a minimal set of vacuum loops that cannot be further reduced.
This corresponds to a set of independent cycles in the graph F . Note however that for each redundant vacuum
loop that we remove we need to multiply the state with a factor of D, so that the norm remains invariant.

S-transformation (generalized Fourier transformation):
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o

j
u
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o

k
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=
1
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k
o

sj
u

k
u

[ Kohno 1992;  Alagic et al 2010]



Hilbert space for (2+1)D:  Bases

For g>1 surface:

To each pant decomposition of the surface we can associate a basis.
          

 These bases states include a 
•  set of vacuum loops
•  over-crossing graph (dual to vacuum loops)
• under-crossing graph (dual to vacuum loops).

      

[ Kohno 1992;  Alagic et al 2010]
3

FIG. 2: Three examples of decompositions of the genus-two
surface ⌃2 into three-punctured spheres. In each case, a triva-
lent adjacency graph of the punctured spheres is shown in red.

rules, F -symbols F ijm
kln and R-symbols Rjk

i . These ten-
sors obey certain identities, such as the pentagon and
hexagon equations, which can be found in, e.g., [27, 31].

Let g 2 N, g � 2. The space HC,g can be defined by
specifying an orthonormal basis. Decompose the genus-g
surface ⌃g into three-punctured spheres (or “pants”) by
cutting along 3g�3 noncontractible curves, as illustrated
in Fig. 2. Dual to such a decomposition is a trivalent
graph �. Direct arbitrarily the edges of �. A basis vec-
tor |`i

�

is a fusion-consistent labeling of the edges of � by
particles of the category C. Fusion-consistency is defined
by the fusion rules, i.e., a set of triples (i, j, k) that are al-
lowed to meet at every vertex, and particle duality, which
switches the direction of an edge, replacing a label i by
the antiparticle i⇤. Define the states B

�

:= {|`i
�

}` to be
orthonormal, and their span to be HC,g. Note that this
definition gives a natural encoding of HC,g into qudits,
with one qudit to store the label of each edge of �. The
directed graph � can be stored in a classical register.

The above definition depends on �, but alternative
pants decompositions simply represent di↵erent bases B

�

for the same Hilbert space. To convert between all possi-
ble pants decompositions of ⌃g we need two moves, each
corresponding to a local unitary operator.

The F move relates bases that di↵er by a “flip” of a cut
between two three-punctured spheres. In the qudit en-
coding, it is a five-qudit unitary, with four control qudits.
Its action is given by

=
X

n

F ijm
kln (6)

The S move applies when two boundaries of a single
three-punctured sphere are connected. It is a two-qudit

unitary, with one control qudit, and its action is given by

=
X

k

Si
jk (7)

Most presentations of modular tensor categories do not
explicitly provide values for Si

jk. However, as discussed

in [2], Si
jk can be calculated by the identity

DSi
jk =

X

l: (j,k⇤,`)
fusion-consistent

F ik⇤k
lj⇤j

dlp
di
Rkj⇤

l Rjk⇤

l⇤ =

(8)
(The last expression uses ribbon graph notation.)
The action ⇢C,g of MCG(g) on HC,g can now be speci-

fied by the action of the Dehn-twist generators on basis
vectors. For a Dehn twist about a curve �, apply a se-
quence of F and S moves to change into a basis B

�

, i.e., a
pants decomposition of ⌃g, in which � divides two three-
punctured spheres. In such a basis, the Dehn twist acts
diagonally: if the edge of � crossing � has label i, the
twist applies a phase shift of Rii⇤

0

.
To complete the definition of WRTC(M(g, x)) from

Eq. (3), it remains to define the state |vC,gi. As on the
right-hand side of Eq. (7), decompose ⌃g with a merid-
ional cut through each handle. Then |vC,gi is the state in
which every edge of � is labeled by 0, the trivial particle.
Let us now prove Theorem 1. Although not obvious

from Eq. (1), the original tensor-network-contraction-
based definition of the Turaev-Viro invariant, Theorem 1
is a straightforward consequence of the definition based
on the representation ⇢C,g, and of known density results.
The Turaev-Viro and WRT invariants for M(g, x) can

be approximated essentially by implementing ⇢C,g(x).
The algorithm maintains a classical register storing the
graph �, together with a quantum register containing the
current state in HC,g in the basis B

�

. If C has N parti-
cle types, the algorithm uses an N -dimensional qudit for
each edge of �. Then ⇢C,g(xj) can be applied by using a
sequence of F and S moves, i.e., certain local unitaries,
to change to a basis in which xj acts diagonally. Since
xj is one of the generators from Fig. 1, starting with the
graph � of Fig. 3(a) (for which every edge is labeled 0
in |vC,gi) at most one F and one S move are needed.
An estimate to within ✏ of the desired matrix element
hvC,g| ⇢C,g(x) |vC,gi can be given, except with probabil-
ity �, using O(log(1/�)/✏2) Hadamard tests, as in [3].
To prove BQP-hardness we reduce from the BQP-

complete problem of deciding whether |h0g|⌥ |0gi|2 is
larger than 5/6 or less than 1/6, given the g-qubit quan-
tum circuit ⌥ [3]. Let C be the modular tensor category
associated with SU(2)k or SO(3)k, with k � 3 and k + 2

(j
u

, j
o

)



Hilbert space for (2+1)D:  Operators

Operators consistent with equivalence relation:
Insertion of under- and over-crossing Wilson loops. 

Ribbon operators: parallel under- and over-crossing loop, labelled by           .
For classical group: ribbon operators combine holonomy and (integrated) flux operators.

(j
u

, j
o

)
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The type of bases described above diagonalizes the Wilson loops which are parallel to the
vacuum loops. This can be seen by sliding the Wilson loop across the vacuum loop:

k

o

k

u

j

u

j

o

=

j

u

j

o

k

o

k

u

=
s

j

o

k
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v
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j
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j

u

k
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2
j

u

j

u

j

o

(3.15)

where the (rescaled) S–matrix s

jk

= DS

jk

determines the eigenvalues of the Wilson loop operators.

IV. HEEGAARD SPLITTINGS AND DIAGRAMS

Let M be a three–dimensional closed, orientable, connected and compact manifold M. The
topology of such a manifold can be encoded into a Heegaard diagram [38, 39]. Such a diagram is
defined as a set of non–contractible and non–intersecting curves on a closed (so–called Heegaard)
surface ⌃.

This Heegaard surface arises through a Heegaard splitting of the manifold M, that is a repre-
sentation of M = M1 [ M2 as the union of two handle bodies M1 and M2. Handlebodies are
three–dimensional manifolds with boundary that arise from the gluing of closed three–dimensional
balls. This gluing is accomplished by identifying pairwise disks on the boundary of the 3–balls.

The Heegaard surface ⌃ = @M1 = @M2 is defined as the boundary of these handlebodies and
can threfore be considered to be a surface embedded into M, that splits M into two parts.

The Heegaard surface can be equipped with two sets of closed, non–contractible (on ⌃), curves.
The first set C1 are curves that can be contracted by homotopy in M1 to trivial cycles. Here we
need only to consider a minimal generating set of equivalence classes of curves, where two curves
are equivalent if they are related by homotopy on ⌃. Likewise, the second set C2 is given by
(equivalence classes of) curves which can be contracted in M2.

Here we will be interested in representing states on a manifold with defects. These defects
will prevent the contractibility of the curves from the set C1, that is the defect structure can be
identified with the handle body M1.

We can achieve a Heegaard splitting through a triangulation � of the manifold M. (Or more
generally by using a discretization of M via a cell complex.) To this end we consider the one–
skeleton �1 of the triangulation, that is the set of edges and vertices. The handlebody M1 will
be given by the closure of a regular neighbourhood of this one–skeleton. This can be imagined as
a blow–up of the one–skleleton. Indeed, we can construct such a blow–up of a one–skeleton as a
handlebody by identifying the blowed up vertices as 3–balls that are glued to each other via the
(blowed up) edges. This one–skeleton will be allowed to carry the (curvature) defects by defining
curves from the set C1 to be not contractible. A (possibly over-complete) set C1 of such curves is
given by choosing a cycle around each edge of the triangulation. The (over–) completeness of this
set follows from the same argument as we present for the set C2 below.

We will however impose contractibility for the second set of curves C2. A set of curves, which
are contractible through M2, can be also constructed from the triangulation: We consider the set
of triangles in the triangulation and for each triangle t take the curve that arises from t \ ⌃(�),
where ⌃(�) is the embedded Heegaard surface defined by the triangulation �. This set C2({t})
determined by the triangles is (over–) complete: cutting the handlebody M2 along disks that

Wilson loops parallel to vacuum loops in basis states act diagonally:

Over- and under-crossing graphs and Wilson loops decouple.
Eigenvalues of Wilson loops determined by s-matrix.

sliding
property



From (2+1)D to (3+1)D 

We discussed:
• choice of basis for (2+1)D Hilbert space
• consistent operators: under- and over-crossing Wilson loops.                     

For these constructions braiding relations play a very important role. 
Using the encoding of a 3D manifold into a Heegaard surface we can export these
braiding relations to the (3+1)D theory. 

To proceed:
a) Construct bases for Heegaard surface.
b) Impose constraints.  
c) Find operators preserving constraints.                  



Example:  defect loop in 3-sphere 

The corresponding Heegaard surface: a torus. 
Flatness constraint along equator of this torus.

flatness constraint (over-crossing vacuum loop) 
along equator

8

Figure 1. A basis for a genus 3 surface. Three of the shown vacuum loops can be contracted to a trivial
cycle after using repeatedly the sliding property with the remaining vacuum loops.

Bases: It is rather involved to find a set of independent states under the equivalence relations
(3.3) and (3.4). However a systematic way of constructing a basis for a given genus g surface is
known [3, 35, 36]. It is a generalization of the so–called fusion basis for punctured spheres [3].
These bases are defined to be orthonormal, which equips the Hilbert space with an inner product.

If the surface ⌃ is a sphere, all cycles are contractible, and the equivalence relations (3.1–3.4)
can be used the reduce any graph to the empty graph. The Hilbert space associated to the sphere
is therefore one–dimensional. The first non–trivial case is that ⌃ has the topology of the torus.
Two bases for the torus are depicted in equation (3.10.) The bases diagonalize over– and under–
crossing Wilson loops around the equator (for the basis depicted on the left side) or the meridian
(for the basis depicted on the right side) respectively, as we will see further below. The two bases
are connected by a unitary transformation
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described by a so–called S–matrix (here of the Drinfeld double of SU(2)k), which factorizes into
parts describing the over–crossing and under–crossing graphs respectively:
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o

j
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,k

o

k

u

= S

j

o

k

o

S

j

u

k
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. (3.11)

For a genus g � 2 surface we decompose the surface into pants, that is three–punctures spheres.
To this end we need to cut the surface along (3g� 3) non–contractible curves. We will refer to this
set of cutting curves as C

B

. We can construct a trivalent graph F dual to this set of curves. (This
graph is also called a spine.) That is each link of F crosses one curve, and each pant component
carries one node of the graph F . A basis can now be constructed as follows: We double the graph
F to a double strand graph, where one copy F

o

of the graph is formed from over–crossing strands
and the other copy F

u

from under–crossing strands. Along each cutting curve we draw a vacuum
loop, that over–crosses the under–crossing graph copy and under–crosses the over–crossing graph
copy.6 Figure 1 shows a choice for vacuum loops and the over– and under–crossing graphs for a
genus 3 surface.

The set of these states given by all admissible colourings of the double graph, defines an or-
thonormal basis for the Hilbert space H(⌃).

6 The set of vacuum loops will in general be over–complete, in the sense that vacuum loops can be slid over each
other and then projected out. There will be however a minimal set of vacuum loops that cannot be further reduced.
This corresponds to a set of independent cycles in the graph F . Note however that for each redundant vacuum
loop that we remove we need to multiply the state with a factor of D, so that the norm remains invariant.
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A. A defect along a loop

We start with a simple example and choose M to be the 3–sphere with a defect loop inserted.
We therefore define a genus 1 Heegaard splitting of the sphere: The handle–body M1 is given by
a solid torus, its equatorial line defines the loop carrying the defect. (Thus loops encircling this
defect line are not contractible.) The Heegaard diagram includes also an attaching curve (below
as red dashed line) for the 2–handle which is along the equator of the torus:

(6.1)

The B1 and B2 basis, after the 2–handle constraints have been imposed, are as follows:

B1(i) :=
i

, B2(j) :=

j

. (6.2)

The two bases are connected by an S–transformation

B1(i) =
X

j

S

ij

B2(j) . (6.3)

We consider two kinds of operators: under-crossing Wilson loops along meridians and equators of
the torus. The meridian k–Wilson loops Wmeri(k) are diagonalized by the B1 basis, whereas they
generate the B2 basis from the state B2(0):

Wmeri(k)B B(0) = B(k) (6.4)

Analogously the equatorial Wilson loops are diagonalized by the B2 basis, whereas they generate
from the vacuum B1(0) the states of the B1 basis.

Note that a B1(0) basis state is expressed via the S–transformation as the following combination
of B2 states:

X

j

v

2
j

D B2(j) , (6.5)

which describes a vacuum loop along the meridian under–crossing a vacuum loop along the equator.
The B2(0) state is equivalent to the state given by a pair of vacuum loops along the equator over
and under–crossing a vacuum loop along the meridian. Indeed using the sliding and annihilation
property of the vacuum loops one can show that such a state reduced to the state shown on the
right hand side of (6.3).
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A. Imposing the 2–handle constraints

In section III we discussed di↵erent bases for the Hilbert space H(⌃). We now want to choose
a basis that simplifies the imposition of the 2–handle constraints.

A basis for a surface ⌃ can be specified by choosing a set of curves C
B

, along which ⌃ is cut into
three–punctured spheres. Let us choose C

B

such that it includes the set C2. As explained in section
IV these curves cut ⌃(�) into four–punctured spheres. (If we use other lattices we may obtain
spheres with a di↵erent number of punctures.) Thus all that remains to do is to choose for each of
these spheres one closed curve that cuts a given four–punctured sphere into two three–punctured
ones. Note that these additional cycles can be generated from the cycles in C2.

The basis associated to the set C
B

is then constructed by (a) inserting a vacuum loop along
each loop in C

B

. (It is actually su�cient to consider only vacuum loops along curves in C2, as
the corresponding cycles generate all the cycles in C

B

.) And (b) we construct a graph F dual
to the curves in C

B

. We then consider a doubling of this graph F ; one copy F
u

made of under-
crossing strands and the other copy F

u

of over-crossing strands. In particular F
u

under-crosses
the vacuum lines along curves in C

B

and F
o

over-crosses the same vacuum lines. Allowing all
admissible colourings of these graphs we obtain a basis for H(⌃).

We now impose the 2–handle constraints, that is impose the projectors given by over-crossing
vacuum loops along curves in C2. Along a given curve c in C2 we thus have two vacuum loops:
one, c

o

is over-crossing the dual strand in both graphs F
u

and F
o

, and the other vacuum loop c

u

is over-crossing F
u

but under-crossing F
o

. We can slide the vacuum loop c

u

over c
o

. This does not
a↵ect F

u

, as it under–crosses both vacuum loops. However after the sliding, the vacuum loop c

u

is encircling the strand of F
o

which is dual to c. Hence according to the killing property (3.9) the
strand is annihilated, i.e. only states in which this strand of F

o

carries the trivial label, survive:

j

u

j

o

=

j

u

j

o

= D �

j

o

0

j

u

. (5.1)

This annihilation applies to all strands of the over–crossing copy F
o

, that cross loops in C2. The
cycles in C2 do generate however also the remaining cycles in C

B

, and in fact the entire copy F
o

is
annihilated. That is all strands of this copy F

o

are forced to carry the trivial representation label
j = 0.

Thus we have a basis of the constrained Hilbert space H(⌃, C2) labelled by all admissible colour-
ings of the graph F

u

, which is dual to a set of cutting curves C
B

obtained from completing the set
C2. We will refer to such a basis as B2–basis.

We have seen that the 2–handle constraints kill the over–crossing copy of the graph F
o

. The
resulting state space can be identified with the state space for the WTR model. Indeed, the TV
partition function is in a precise sense given by a square of the WTR partition function [40, 41].

B. Bases and Fourier transform

We can express this set of states, satisfying the 2–handle constraints, also in an alternative basis.
As explained in section III a basis transformation can be implemented via S and F maps. Both
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Example:  defect loop in 3-sphere 
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A. A defect along a loop

We start with a simple example and choose M to be the 3–sphere with a defect loop inserted.
We therefore define a genus 1 Heegaard splitting of the sphere: The handle–body M1 is given by
a solid torus, its equatorial line defines the loop carrying the defect. (Thus loops encircling this
defect line are not contractible.) The Heegaard diagram includes also an attaching curve (below
as red dashed line) for the 2–handle which is along the equator of the torus:

(6.1)

The B1 and B2 basis, after the 2–handle constraints have been imposed, are as follows:

B1(i) :=
i

, B2(j) :=

j

. (6.2)

The two bases are connected by an S–transformation

B1(i) =
X

j

S

ij

B2(j) . (6.3)

We consider two kinds of operators: under-crossing Wilson loops along meridians and equators of
the torus. The meridian k–Wilson loops Wmeri(k) are diagonalized by the B1 basis, whereas they
generate the B2 basis from the state B2(0):

Wmeri(k)B B(0) = B(k) (6.4)

Analogously the equatorial Wilson loops are diagonalized by the B2 basis, whereas they generate
from the vacuum B1(0) the states of the B1 basis.

Note that a B1(0) basis state is expressed via the S–transformation as the following combination
of B2 states:
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2
j

D B2(j) , (6.5)

which describes a vacuum loop along the meridian under–crossing a vacuum loop along the equator.
The B2(0) state is equivalent to the state given by a pair of vacuum loops along the equator over
and under–crossing a vacuum loop along the meridian. Indeed using the sliding and annihilation
property of the vacuum loops one can show that such a state reduced to the state shown on the
right hand side of (6.3).
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We therefore define a genus 1 Heegaard splitting of the sphere: The handle–body M1 is given by
a solid torus, its equatorial line defines the loop carrying the defect. (Thus loops encircling this
defect line are not contractible.) The Heegaard diagram includes also an attaching curve (below
as red dashed line) for the 2–handle which is along the equator of the torus:

(6.1)

The B1 and B2 basis, after the 2–handle constraints have been imposed, are as follows:

B1(i) :=
i

, B2(j) :=

j

. (6.2)

The two bases are connected by an S–transformation

B1(i) =
X

j

S

ij

B2(j) . (6.3)

We consider two kinds of operators: under-crossing Wilson loops along meridians and equators of
the torus. The meridian k–Wilson loops Wmeri(k) are diagonalized by the B1 basis, whereas they
generate the B2 basis from the state B2(0):

Wmeri(k)B B(0) = B(k) (6.4)

Analogously the equatorial Wilson loops are diagonalized by the B2 basis, whereas they generate
from the vacuum B1(0) the states of the B1 basis.

Note that a B1(0) basis state is expressed via the S–transformation as the following combination
of B2 states:

X

j

v

2
j

D B2(j) , (6.5)

which describes a vacuum loop along the meridian under–crossing a vacuum loop along the equator.
The B2(0) state is equivalent to the state given by a pair of vacuum loops along the equator over
and under–crossing a vacuum loop along the meridian. Indeed using the sliding and annihilation
property of the vacuum loops one can show that such a state reduced to the state shown on the
right hand side of (6.3).

=
X

i

sji
D

Here over-crossing
graph copy given 
by vacuum loop.

j
Spin network 
basis:
based on graph 
dual to curvature 
defects.

Diagonalizes (under-crossing)
Wilson loop around equator. 

i
Curvature 
basis:
based on graph 
along curvature 
defects

Diagonalizes (under-crossing)
Wilson loops around meridian. 

Measure area 
(of surface spanned by curvature defect). 

Measures curvature 
(of curvature defect). 

(quantum group)
Fourier transform



Spin network basis for general 3D triangulation 

• Heegaard surface from thickening of one-skeleton of triangulation. 
• Flatness constraints: (over-crossing) vacuum loops along triangle boundaries.

• Basis determined by pant-decomposition. Choose one adjusted to the dual graph. 
             

• Flatness constraints surpress over-crossing graph copy: 

Left with under-crossing graph dual to triangulation:
(quantum deformed) spin network basis. 

inside
tetrahedron

outside
tetrahedron

j3

j1
j2

j4
j5 j6



Curvature basis for general 3D triangulation 

• Choose pant-decomposition adjusted to the one-skeleton of the triangulation
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Figure 3. The left panel shows a B1 basis for the two–tetrahedra–triangulation of the 3–sphere. Here we did
not depict the over–crossing graph copy Fu and the vacuum loops associated to the 2–handle constraints.
This copy can be transformed, using sliding across the 2–handle vacuum loops, to the same 2–handle vacuum
loops. The basis is labelled by six quantum numbers and diagonalizes Wilson loop operators around the
(six) edges of the triangulation.
The right panel shows a B2 basis. The strands and vacuum loop on the backside of the genus 3 surface are
depicted in grey. Note that for both bases we have 6 vacuum loops. But always three vacuum loops can be
generated from the other three loops, using the projection property (modulo factors of D) and the sliding
property of the loops. The graph Fu can be identified with the one–skeleton of the dual complex to the
triangulation: two four–valent nodes (expanded into three–valent ones) representing the two tetrahedra and
connected with each other by four links, representing the four triangles. This basis diagonalizes Wilson loop
operators around the four triangles of the triangulation and in addition two Wilson loops around pairs of
triangles.

1 2

3

4 5

Figure 4. The left panel shows the Heegaard diagram for the 4–simplex triangulation. The Heegaard
surface is of genus six. Six of the ten attaching curves for the 2–handles are shown. The other four curves
are generated from these six curves. Note that the curve for the triangle t(124) under–crosses the handle
representing the edge e(15).
The right panel shows a B1 basis for the 4–simplex triangulation. For each vertex of the triangulation one
can choose a cutting of the associated four–punctured sphere into two three–punctured ones. Again we have
not shown the over—crossing graph copy. Using the 2–handle vacuum loops, as well as the vacuum loop
around the edge e(15), one can transform the over–crossing graph copy to the 2–handle vacuum loops.

Such a dual structure of holonomy operators, around both edges and triangles of a 4–simplex,
plays also an important role in [23], which constructs the 4–simplex amplitude for a spin foam
model describing gravity with a cosmological constant, and examines the semi–classical limit of
this amplitude. [23] also discusses the phase space associated to the boundary of a homogeneously
curved simplex, and notes the dual role of the two kinds of holonomies. We conjecture that the
Hilbert spaces and operators constructed in this work provide a quantization of the phase spaces
discussed in [23].

Under-crossing graph along one-skeleton of triangulation which
can be freely labelled by spins: labels of the curvature basis.
Over-crossing graph given by vacuum loops around triangles.

• After imposing flatness constraints:  curvature basis.

• (Curvature or Crane-Yetter) vacuum state:  
trivial spins associated to all edges of (triangulation) graph. 

    
       Non-degenerate vacuum state for all topologies. 
       Crane-Yetter invariant is ‘trivial’.



Operators for the (3+1)D theory
Under-crossing Wilson loops preserve flatness constraints. 

Wilson loops around 
triangles. 

Wilson loops around
edges. 

• diagonalized by spin network basis
• measure area of triangles:

1.  classical group case:   
      ribbon operators  preserving constraints 
      map to integrated flux operators 
      associated to triangles
2.  [HHKR]:  Wilson loop around triangle  

 measures homogeneous curvature
 which is proportional to area  

3.   spectra match in classical limit      
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If we consider a normalized k–Wilson loop operator, that is a k–Wilson loop operator divided by
the (signed) quantum dimension v

2
k

we obtain as eigenvalue

sin
⇣

⇡

k+2(2j + 1)(2k + 1)
⌘
sin

⇣
⇡

k+2

⌘

sin
⇣

⇡

k+2(2k + 1))
⌘
sin

⇣
⇡

k+2(2j + 1))
⌘ k!1�! 1� 8

3 j(j + 1) k(k + 1)
⇣

⇡

k+2

⌘2
.(5.4)

Thus we can extract in the limit the SU(2) Casimir eigenvalue j(j+1). in the loop quantum gravity
interpretation [29] this gives the square of the area of the triangle enclosed by the Wilson loop.
The limit (5.4) for the eigenvalues of the normalized Wilson loop operators suggest a geometric
interpretation for these operators: In SU(2) one can approximate the Casimir operator of the
group via a sum over the cosine function applied to the Lie algebra generators [11]. Due to the
exponentiation this operator does however violate gauge invariance. One can however project the
operator back to a gauge invariant one, and the resulting spectrum approximates the Casimir
spectrum j(j + 1) for su�ciently small representation labels [11]. For larger j the bound imposed
by taking the cosine of the generators sets in.

The eigenvalues (5.4) show also this behaviour, with the representation k of the Wilson loop
functioning as the exponentiation parameter and playing the same role as a step size for a discrete
Laplacian. Thus we can relate the normalized Wilson loop around the triangles to an (exponenti-
ated) area operator. Here the gauge invariance is manifestly preserved however.

Another reason to identify the Wilson loop around triangles with an exponentiated area operator
is the analysis of [23]. There one considers phase spaces associated to homogeneously curved
simplices. The holonomy around a homogeneously curved triangle is thus constraint by the fact
that the curvature integrated over the triangle has to be proportional to the area of the triangle. A
third reason is provided by [18], which constructs the lift of state spaces and operators for three–
dimensional TQFT’s to state spaces and operators for four–dimensional TQFT’s with line defects
to BF theory with classical groups. In this case ribbon operators that go around triangles and
preserve the 2–handle constraints map indeed to (exponentiated) flux operators, from which one
can define via gauge averaging the (exponentiated) area operators.

For (normalized) Wilson loops along C1 curves, that is around the edges of a triangulation, one
finds – of course – the same eigenvalues. These operators are diagonalized in the B1 basis [5].
These eigenvalues (5.4) do indeed approach in the limit k ! 1 the eigenvalue for the normalized
SU(2) Wilson loop operator (with representation label k)

sin((2k + 1)✓)

(2k + 1) sin(✓)
(5.5)

for a state peaked on a curvature (class) angle ✓ along the encircled edge. Thus curvature is
discretized as we can identify ✓ = ⇡

k+2(2j + 1).

The fact that (exponentiated) area operators and curvature operators have the same eigenvalues
hints towards a duality relation, see also [30]. We conjecture that this fact is due to the polar duality
[44] for spherical simplices: For a given spherical simplex � one can construct a dual simplex �

0

whose lenghts are determined by the dihedral angles of �.

VI. EXAMPLES

Here we will consider a number of examples of triangulations and topologies.

For normalized
  -Wilson loop:

• diagonalized by curvature basis
• measures curvature around edges

k

[ Delcamp, BD JMP 2017]



Operators for the (3+1)D theory

Under-crossing Wilson loops encode curvature and area operators. 
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If we consider a normalized k–Wilson loop operator, that is a k–Wilson loop operator divided by
the (signed) quantum dimension v

2
k

we obtain as eigenvalue

sin
⇣

⇡

k+2(2j + 1)(2k + 1)
⌘
sin

⇣
⇡

k+2

⌘

sin
⇣

⇡

k+2(2k + 1))
⌘
sin

⇣
⇡

k+2(2j + 1))
⌘ k!1�! 1� 8

3 j(j + 1) k(k + 1)
⇣

⇡

k+2

⌘2
.(5.4)

Thus we can extract in the limit the SU(2) Casimir eigenvalue j(j+1). in the loop quantum gravity
interpretation [29] this gives the square of the area of the triangle enclosed by the Wilson loop.
The limit (5.4) for the eigenvalues of the normalized Wilson loop operators suggest a geometric
interpretation for these operators: In SU(2) one can approximate the Casimir operator of the
group via a sum over the cosine function applied to the Lie algebra generators [11]. Due to the
exponentiation this operator does however violate gauge invariance. One can however project the
operator back to a gauge invariant one, and the resulting spectrum approximates the Casimir
spectrum j(j + 1) for su�ciently small representation labels [11]. For larger j the bound imposed
by taking the cosine of the generators sets in.

The eigenvalues (5.4) show also this behaviour, with the representation k of the Wilson loop
functioning as the exponentiation parameter and playing the same role as a step size for a discrete
Laplacian. Thus we can relate the normalized Wilson loop around the triangles to an (exponenti-
ated) area operator. Here the gauge invariance is manifestly preserved however.

Another reason to identify the Wilson loop around triangles with an exponentiated area operator
is the analysis of [23]. There one considers phase spaces associated to homogeneously curved
simplices. The holonomy around a homogeneously curved triangle is thus constraint by the fact
that the curvature integrated over the triangle has to be proportional to the area of the triangle. A
third reason is provided by [18], which constructs the lift of state spaces and operators for three–
dimensional TQFT’s to state spaces and operators for four–dimensional TQFT’s with line defects
to BF theory with classical groups. In this case ribbon operators that go around triangles and
preserve the 2–handle constraints map indeed to (exponentiated) flux operators, from which one
can define via gauge averaging the (exponentiated) area operators.

For (normalized) Wilson loops along C1 curves, that is around the edges of a triangulation, one
finds – of course – the same eigenvalues. These operators are diagonalized in the B1 basis [5].
These eigenvalues (5.4) do indeed approach in the limit k ! 1 the eigenvalue for the normalized
SU(2) Wilson loop operator (with representation label k)

sin((2k + 1)✓)

(2k + 1) sin(✓)
(5.5)

for a state peaked on a curvature (class) angle ✓ along the encircled edge. Thus curvature is
discretized as we can identify ✓ = ⇡

k+2(2j + 1).

The fact that (exponentiated) area operators and curvature operators have the same eigenvalues
hints towards a duality relation, see also [30]. We conjecture that this fact is due to the polar duality
[44] for spherical simplices: For a given spherical simplex � one can construct a dual simplex �

0

whose lenghts are determined by the dihedral angles of �.

VI. EXAMPLES

Here we will consider a number of examples of triangulations and topologies.

Spectra are discrete and bounded and coincide:

A  self-dual quantum geometry. 



Examples with even more self-duality
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Figure 3. The left panel shows a B1 basis for the two–tetrahedra–triangulation of the 3–sphere. Here we did
not depict the over–crossing graph copy Fu and the vacuum loops associated to the 2–handle constraints.
This copy can be transformed, using sliding across the 2–handle vacuum loops, to the same 2–handle vacuum
loops. The basis is labelled by six quantum numbers and diagonalizes Wilson loop operators around the
(six) edges of the triangulation.
The right panel shows a B2 basis. The strands and vacuum loop on the backside of the genus 3 surface are
depicted in grey. Note that for both bases we have 6 vacuum loops. But always three vacuum loops can be
generated from the other three loops, using the projection property (modulo factors of D) and the sliding
property of the loops. The graph Fu can be identified with the one–skeleton of the dual complex to the
triangulation: two four–valent nodes (expanded into three–valent ones) representing the two tetrahedra and
connected with each other by four links, representing the four triangles. This basis diagonalizes Wilson loop
operators around the four triangles of the triangulation and in addition two Wilson loops around pairs of
triangles.

1 2

3

4 5

Figure 4. The left panel shows the Heegaard diagram for the 4–simplex triangulation. The Heegaard
surface is of genus six. Six of the ten attaching curves for the 2–handles are shown. The other four curves
are generated from these six curves. Note that the curve for the triangle t(124) under–crosses the handle
representing the edge e(15).
The right panel shows a B1 basis for the 4–simplex triangulation. For each vertex of the triangulation one
can choose a cutting of the associated four–punctured sphere into two three–punctured ones. Again we have
not shown the over—crossing graph copy. Using the 2–handle vacuum loops, as well as the vacuum loop
around the edge e(15), one can transform the over–crossing graph copy to the 2–handle vacuum loops.

Such a dual structure of holonomy operators, around both edges and triangles of a 4–simplex,
plays also an important role in [23], which constructs the 4–simplex amplitude for a spin foam
model describing gravity with a cosmological constant, and examines the semi–classical limit of
this amplitude. [23] also discusses the phase space associated to the boundary of a homogeneously
curved simplex, and notes the dual role of the two kinds of holonomies. We conjecture that the
Hilbert spaces and operators constructed in this work provide a quantization of the phase spaces
discussed in [23].

Curvature basis for 4-simplex.
(Over-crossing graph copy, which is 
given by vacuum loops 
around triangles, is suppressed.)  

Spin network basis for 4-simplex.
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z

x

y

Figure 5. The left panel shows a Heegaard diagram for the 3–torus. The x, y and z directions have to be
periodically identified. The Heegaard surface is based on a lattice constructed from a cube whose sides have
been identified pairwise. This surface is of genus three: there is a punctured sphere corresponding to one
vertex of the triangulation and three one–handles corresponding to the three edges of the lattice. There are
three two–handles corresponding to the three pairs of identified sides. The attaching curves are shown in
blue, green and red. To obtain the Heegaard surface for a lattice with more cubes we just need to glue more
of the basic building blocks, shown in the panel, to each other.
The right panel shows a choice for a B1 basis, where for clarity we have omitted vacuum loops and the
over–crossing graph Fu.

D. The 3–torus

Next we consider the 3–torus, but this time we work with a cubical lattice. To begin with we
choose the smallest possible lattice consisting of one cube, three edges and one vertex. The dual
complex is given by the same cubical lattice. The Heegaard diagram for such a lattice is depicted
in figure 5, as well as a choice for the B1 basis.

The B1 basis diagonalizes Wilson loops around the edges of the (direct) lattice – or alternatively
around the plaquettes of the dual lattice, whereas the B2 lattice diagonalizes loops around the faces
of the direct lattice, or around the links of the dual lattice.

The basis allows us to identify the 3–torus Hilbert space (also with a more refined lattice) with
the one proposed by Walker and Wang [24]. The Walker–Wang models generalize the Levin–Wen
string net models [25] from (2+1) dimensions to (3+1) dimensions. The Hilbert space is defined as
a span of states based on a cubical lattice, whose nodes have been expanded to three–valent nodes.
Then plaquette operators are introduced by defining Wilson loop operators for the plaquettes of
the lattice together with their planar projections, so that the graphical equivalences (3.3,3.4,A12)
can be used. This can be done such that the plaquette operators commute.

It is clear that such a prescription is also provided by the B2 basis. (The B1 basis would also
provide such a prescription, but one traditionally understands under ‘plaquette’ operators Wilson
loop operators around the faces of the dual lattice, or equivalently around the edges of the direct
lattice. Thus we identify the original prescription of the Walker–Wang model with the B2 basis.)
The plaquette operators are given by (under–crossing) Wilson loops around the edges of the lattice,
which – as the loops are not intersecting on the Heegaard surface – clearly commute. In addition
we have Wilson loop operators around the links of the dual lattice, which are however diagonal in
the B2 basis. An important di↵erence between the version of the Walker–Wang model discussed
here and the original definition [24], is the presence of over–crossing vacuum loops. In our view
this feature leads however to an improved and more consistent version of the model. This feature
allows in particular the straightforward identification of the (unique) ground state.

Our treatment provides also a dual basis for the Walker–Wang model, namely the B1 basis. This
basis diagonalizes the plaquette operators, which in the definition of the Walker–Wang model, con-
tribute to the Hamiltonian operator. (A second part of the Hamiltonian measures gauge invariance
violations at the nodes, which we here do not consider.) The B1 basis therefore diagonalizes the
Hamiltonian of this model. As we have argued in section VB the ground state for this Hamiltonian

Curvature basis for 3 torus 
with cubical lattice.
(Over-crossing graph copy and 
vacuum loops are surpressed.)  

Spin network basis for 3-torus.
(With Vacuum loops suppressed)

quantum-quantum 4-simplex quantum-quantum 3-torus



Conclusion

•  enforcing a most important advantage  of LQG/spin foams:  relation to TQFT
• could be crucial for continuum limit (do we already have a geometric phase?)
• exchange of elegant techniques between (now also canonical) quantum gravity and TQFT

     
• new vacua can serve as starting point of approximation scheme for dynamics

          (Consistent Boundary Framework) 

• this  quantum geometry realization offers many advantages 
• spectra of intrinsic and extrinsic geometric operators are discrete and bounded
• self-duality
• finiteness properties important for (numerical) coarse graining schemes
• new bases important for coarse graining 

• new view on quantum geometries 
• many new directions (next slide)
• are there other quantum geometries (4D TQFTs) out there?
• how do predictions depend on choice of representation?

[Barrett, Crane, Smolin] 

[BD 2012-14] 

[BD, Steinhaus 2013:  From TQFT to quantum geometry] 



Outlook

• boundaries and torsion
• compression bodies: Heegaard decomposition with boundary
• expect surface anyons as excitations confined to boundary
• interpretation for lifted punctures with torsion defects?

[Keyserlingk et al PRB 2013, …]

• further generalizations ala                  
• weaken flatness constraints for triangles
• allows for degenerate ground state (non-trivial 4D invariants)
• introduces torsion degrees?

[Baerenz, Barrett 2016]

• systematic way to construct 4D TQFTs with defects: 
lift other 3D TQFTs  or string net models to 4D, e.g.  group algebra models                

More quantum geometries:

Analysis of current model:

• geometric interpretation of states and operators 
• phase space
• Barbero-Immirzi parameter

[Charles, Livine; 

  Haggard, Han, Kaminski, Riello]

• refinements and coarse graining [Delcamp, BD w.i.p.]
• fusion basis for (3+1)D

[Delcamp, BD w.i.p.]
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Further applications spin foam amplitudes  
with 

curved  simplices 

Lift of (2+1)D  TQFTs

to (3+1)D  state spaces.

A new family of 
bases for lattice 
gauge theory, 

including coarse 
graining

basis.

math. physics:
new 4D topological 

invariants   

condensed 
matter:
(3+1)D 

topological 
phases

with surface 
anyons

Models are UV 
and IR finite. 

Allows numerical 
coarse graining.

boundaries:

[Delcamp, BD: JMP 2017]

[Delcamp, BD, Riello JHP 2016;  
Delcamp BD to appear]

[BD, Martin-Benito, 

Steinhaus, NJP 2014 

BD, Schnetter,

Seth, Steinhaus, PRD 2016;

Delcamp, BD 2016]

[Haggard, Han, 
Kaminski, Riello 14-15]

[Baerenz, Barrett 2016]

[Walker-Wang 2011] [Keyserlingk et al PRB 2013, …]



Hilbert space for (2+1)D:  Bases

For g>1 surface:

Decompose surface into three-punctured spheres,  aka ‘pants’:
By cutting surface along (3g-3) non-contractible curves. 
This set of cutting curves defines the basis.

Construct the graph      dual to the cutting curves.  Assign labels
to each edge of this dual graph. 

         Assign a vacuum loop to each cutting curve. 
         Double     to an under-crossing copy        labelled by         spins
         and an over-crossing copy        labelled by       spins.
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FIG. 2: Three examples of decompositions of the genus-two
surface ⌃2 into three-punctured spheres. In each case, a triva-
lent adjacency graph of the punctured spheres is shown in red.

rules, F -symbols F ijm
kln and R-symbols Rjk

i . These ten-
sors obey certain identities, such as the pentagon and
hexagon equations, which can be found in, e.g., [27, 31].

Let g 2 N, g � 2. The space HC,g can be defined by
specifying an orthonormal basis. Decompose the genus-g
surface ⌃g into three-punctured spheres (or “pants”) by
cutting along 3g�3 noncontractible curves, as illustrated
in Fig. 2. Dual to such a decomposition is a trivalent
graph �. Direct arbitrarily the edges of �. A basis vec-
tor |`i

�

is a fusion-consistent labeling of the edges of � by
particles of the category C. Fusion-consistency is defined
by the fusion rules, i.e., a set of triples (i, j, k) that are al-
lowed to meet at every vertex, and particle duality, which
switches the direction of an edge, replacing a label i by
the antiparticle i⇤. Define the states B

�

:= {|`i
�

}` to be
orthonormal, and their span to be HC,g. Note that this
definition gives a natural encoding of HC,g into qudits,
with one qudit to store the label of each edge of �. The
directed graph � can be stored in a classical register.

The above definition depends on �, but alternative
pants decompositions simply represent di↵erent bases B

�

for the same Hilbert space. To convert between all possi-
ble pants decompositions of ⌃g we need two moves, each
corresponding to a local unitary operator.

The F move relates bases that di↵er by a “flip” of a cut
between two three-punctured spheres. In the qudit en-
coding, it is a five-qudit unitary, with four control qudits.
Its action is given by

=
X

n

F ijm
kln (6)

The S move applies when two boundaries of a single
three-punctured sphere are connected. It is a two-qudit

unitary, with one control qudit, and its action is given by

=
X

k

Si
jk (7)

Most presentations of modular tensor categories do not
explicitly provide values for Si

jk. However, as discussed

in [2], Si
jk can be calculated by the identity

DSi
jk =

X

l: (j,k⇤,`)
fusion-consistent

F ik⇤k
lj⇤j

dlp
di
Rkj⇤

l Rjk⇤

l⇤ =

(8)
(The last expression uses ribbon graph notation.)
The action ⇢C,g of MCG(g) on HC,g can now be speci-

fied by the action of the Dehn-twist generators on basis
vectors. For a Dehn twist about a curve �, apply a se-
quence of F and S moves to change into a basis B

�

, i.e., a
pants decomposition of ⌃g, in which � divides two three-
punctured spheres. In such a basis, the Dehn twist acts
diagonally: if the edge of � crossing � has label i, the
twist applies a phase shift of Rii⇤

0

.
To complete the definition of WRTC(M(g, x)) from

Eq. (3), it remains to define the state |vC,gi. As on the
right-hand side of Eq. (7), decompose ⌃g with a merid-
ional cut through each handle. Then |vC,gi is the state in
which every edge of � is labeled by 0, the trivial particle.
Let us now prove Theorem 1. Although not obvious

from Eq. (1), the original tensor-network-contraction-
based definition of the Turaev-Viro invariant, Theorem 1
is a straightforward consequence of the definition based
on the representation ⇢C,g, and of known density results.
The Turaev-Viro and WRT invariants for M(g, x) can

be approximated essentially by implementing ⇢C,g(x).
The algorithm maintains a classical register storing the
graph �, together with a quantum register containing the
current state in HC,g in the basis B

�

. If C has N parti-
cle types, the algorithm uses an N -dimensional qudit for
each edge of �. Then ⇢C,g(xj) can be applied by using a
sequence of F and S moves, i.e., certain local unitaries,
to change to a basis in which xj acts diagonally. Since
xj is one of the generators from Fig. 1, starting with the
graph � of Fig. 3(a) (for which every edge is labeled 0
in |vC,gi) at most one F and one S move are needed.
An estimate to within ✏ of the desired matrix element
hvC,g| ⇢C,g(x) |vC,gi can be given, except with probabil-
ity �, using O(log(1/�)/✏2) Hadamard tests, as in [3].
To prove BQP-hardness we reduce from the BQP-

complete problem of deciding whether |h0g|⌥ |0gi|2 is
larger than 5/6 or less than 1/6, given the g-qubit quan-
tum circuit ⌥ [3]. Let C be the modular tensor category
associated with SU(2)k or SO(3)k, with k � 3 and k + 2

[ Kohno 1992;  Alagic et al 2010]

Transformations between bases
can be generated by 
• (generalized) S-transformations 
• F-transformations (recoupling move)

S-trafo

F-trafo

[Alagic et al 2010]
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FIG. 2: Three examples of decompositions of the genus-two
surface ⌃2 into three-punctured spheres. In each case, a triva-
lent adjacency graph of the punctured spheres is shown in red.
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hexagon equations, which can be found in, e.g., [27, 31].

Let g 2 N, g � 2. The space HC,g can be defined by
specifying an orthonormal basis. Decompose the genus-g
surface ⌃g into three-punctured spheres (or “pants”) by
cutting along 3g�3 noncontractible curves, as illustrated
in Fig. 2. Dual to such a decomposition is a trivalent
graph �. Direct arbitrarily the edges of �. A basis vec-
tor |`i

�

is a fusion-consistent labeling of the edges of � by
particles of the category C. Fusion-consistency is defined
by the fusion rules, i.e., a set of triples (i, j, k) that are al-
lowed to meet at every vertex, and particle duality, which
switches the direction of an edge, replacing a label i by
the antiparticle i⇤. Define the states B

�

:= {|`i
�

}` to be
orthonormal, and their span to be HC,g. Note that this
definition gives a natural encoding of HC,g into qudits,
with one qudit to store the label of each edge of �. The
directed graph � can be stored in a classical register.

The above definition depends on �, but alternative
pants decompositions simply represent di↵erent bases B

�

for the same Hilbert space. To convert between all possi-
ble pants decompositions of ⌃g we need two moves, each
corresponding to a local unitary operator.

The F move relates bases that di↵er by a “flip” of a cut
between two three-punctured spheres. In the qudit en-
coding, it is a five-qudit unitary, with four control qudits.
Its action is given by

=
X

n

F ijm
kln (6)

The S move applies when two boundaries of a single
three-punctured sphere are connected. It is a two-qudit

unitary, with one control qudit, and its action is given by

=
X

k

Si
jk (7)

Most presentations of modular tensor categories do not
explicitly provide values for Si

jk. However, as discussed

in [2], Si
jk can be calculated by the identity

DSi
jk =

X

l: (j,k⇤,`)
fusion-consistent

F ik⇤k
lj⇤j

dlp
di
Rkj⇤

l Rjk⇤

l⇤ =

(8)
(The last expression uses ribbon graph notation.)
The action ⇢C,g of MCG(g) on HC,g can now be speci-

fied by the action of the Dehn-twist generators on basis
vectors. For a Dehn twist about a curve �, apply a se-
quence of F and S moves to change into a basis B

�

, i.e., a
pants decomposition of ⌃g, in which � divides two three-
punctured spheres. In such a basis, the Dehn twist acts
diagonally: if the edge of � crossing � has label i, the
twist applies a phase shift of Rii⇤

0

.
To complete the definition of WRTC(M(g, x)) from

Eq. (3), it remains to define the state |vC,gi. As on the
right-hand side of Eq. (7), decompose ⌃g with a merid-
ional cut through each handle. Then |vC,gi is the state in
which every edge of � is labeled by 0, the trivial particle.
Let us now prove Theorem 1. Although not obvious

from Eq. (1), the original tensor-network-contraction-
based definition of the Turaev-Viro invariant, Theorem 1
is a straightforward consequence of the definition based
on the representation ⇢C,g, and of known density results.
The Turaev-Viro and WRT invariants for M(g, x) can

be approximated essentially by implementing ⇢C,g(x).
The algorithm maintains a classical register storing the
graph �, together with a quantum register containing the
current state in HC,g in the basis B

�

. If C has N parti-
cle types, the algorithm uses an N -dimensional qudit for
each edge of �. Then ⇢C,g(xj) can be applied by using a
sequence of F and S moves, i.e., certain local unitaries,
to change to a basis in which xj acts diagonally. Since
xj is one of the generators from Fig. 1, starting with the
graph � of Fig. 3(a) (for which every edge is labeled 0
in |vC,gi) at most one F and one S move are needed.
An estimate to within ✏ of the desired matrix element
hvC,g| ⇢C,g(x) |vC,gi can be given, except with probabil-
ity �, using O(log(1/�)/✏2) Hadamard tests, as in [3].
To prove BQP-hardness we reduce from the BQP-

complete problem of deciding whether |h0g|⌥ |0gi|2 is
larger than 5/6 or less than 1/6, given the g-qubit quan-
tum circuit ⌥ [3]. Let C be the modular tensor category
associated with SU(2)k or SO(3)k, with k � 3 and k + 2
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each edge of �. Then ⇢C,g(xj) can be applied by using a
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xj is one of the generators from Fig. 1, starting with the
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quence of F and S moves to change into a basis B
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punctured spheres. In such a basis, the Dehn twist acts
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which every edge of � is labeled by 0, the trivial particle.
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is a straightforward consequence of the definition based
on the representation ⇢C,g, and of known density results.
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be approximated essentially by implementing ⇢C,g(x).
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cle types, the algorithm uses an N -dimensional qudit for
each edge of �. Then ⇢C,g(xj) can be applied by using a
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to change to a basis in which xj acts diagonally. Since
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Basis for TV -TQFT Basis for  WRT -TQFT

Quantization of Chern-Simon theory.

ZTV = |ZWTR|2

[Barrett et al JMP 2007] WRT partition function as boundary observable of 
Crane-Yetter model.


