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Overview

| .Holography and boundary degrees of freedom
2.Holographic description for 3D quantum gravity amplitudes.
3.Can this be generalized to 4D?

4.Outlook



Holography

Partition function Partition function
for D-dimensional gravity i for a (D-1)-dimensional boundary theory
as functional for boundary geometry coupled to boundary geometry

e

12

JQZ P(x) exp(SgyqlP(x); g(x)])

2g(y) exp(iS,,[g(N])
g(y(x))=¢q(x)

(J

q(x) 7

P(x)

* usually proposed for asymptotic boundaries:
great restriction on allowed boundary geometries

* open problem: bulk reconstruction



Boundary degrees of freedom

Gauge degrees of freedom are converted into “physical” degrees of
freedom due to the presence of a boundary.

*** diffeomorphisms deforming the boundary [Carlip 94: entropy
for BTZ black holes]

boundary Why are these
’ e boundary degrees of freedom
graviton “ohysical”?

[Barnich, Carlip, Donnely, Freidel, Geiller, Gomes, Perez, Pranzetti, Riello, Strominger, ...]



Boundary degrees
of freedom

* No propagating bulk degrees of freedom in 3D gravity.

* Only boundary degrees left (and finitely many topological ones).

* These can be used to construct a holographic boundary field theory.



3D gravity: partition function for solid torus

One-loop partition function [Barnich, Gonzalez,
(for asymptotically flat boundary) Maloney, Oblak 15]
1 1
AP, y] = exp G X : 2
k>0 |1 —exp(iky) |

e Matches a BMS3 character [Oblak 15]



3D gravity: partition function for solid torus

One-loop partition function [Barnich, Gonzalez,
(for asymptotically flat boundary) Maloney, Oblak 15]

p ) 1
AP, v] = — | X
[, 7] = exp (SG T T expitn) 2

One loop correction
(coming from the determinant of the
physical part of Hessian of the action)

We thus have (field) degrees of freedom.

What is the dynamics of these degrees of freedom!?



Describing boundary deformations

boundar
/ boundary field:

geodesic length from
boundary point to some
central point

Define an effective action for the geodesic lengths,
which is induced by dynamics for 3D gravity.



Use Regge calculus to construct boundary theory

* discretization of gravity based on a triangulation
* variables are the lengths of edges: can be identified with geodesic lengths

* Triangulate ball-shaped region

* Integrate out all edge length except (possibly) coarse grained
lengths from some central point to boundary

* Take continuum limit on boundary.

Congratulations!
You got an (effective) boundary field theory.

Is it local?



(For ball shaped regions)

Action of Regge gravity (evaluated on solution) is invariant under
changes of bulk triangulation.

One loop partition function (that is the path integral measure) is
invariant under changes of bulk triangulation.  [BD, Steinhaus 11]

We can choose for the evaluation of the (one-loop) path integral
the coarsest available triangulation.

This triangulation has only radial edges, whose lengths defines
the boundary field.

The effective boundary theory is given by the path integral based
on this triangulation, and is therefore local.

‘Side results’:
*Works for finite (non-asymptotic) boundaries.
*Bulk reconstruction for free.



Back to solid torus: Regge calculus [Bonzom, BD 15)

* need to integrate out some variables
* but still “essentially” a local boundary field theory

One loop partition function:

* reproduces continuum result by Barnich et al

but holds for finite boundary

 extended to fluctuating boundary metric:
extract boundary action

* explains puzzling features of the asymptotic one-loop
partition function




Back to solid torus: Regge calculus [Bonzom, BD 15

* need to integrate out some variables
* but still “essentially” a local boundary field theory

One loop partition function:

* reproduces continuum result by Barnich et al

but holds for finite boundary

 extended to fluctuating boundary metric:
extract boundary action

* explains puzzling features of the asymptotic one-loop
partition function

One loop partition function Boundary field theory with Liouville coupling

dp,y] = exp <£> X H : dery — J'dzx\/% (¢Qab Va Vb¢ — ‘%gb)

N2
3G/ s 1= exp(iky) |
ingular for kinetic term is
lower modes sihgd « ab _ gab _ b
i rational angles y degenerate 0
missing as they

describe rigid translations

Similar actions obtained with
of torus

completely different and more indirect methods in
[Barnich, Gomberoff, Gonzales 13;
Carlip 16:in Lorentzian signature]

12



Fully non-perturbative boundary theory

(for finite boundary)

Use the Ponzano-Regge model which allows straightforward implementation
of metric boundary conditions (as opposed to Chern-Simons).

[BD, Goeller, Livine, Riello] * find different boundary theories depending on choice of
1'710.04202, (NPB) boundary quantum geometry and choice of boundary field
1710.04237, (NPB)

1803.02759 (CQG Letters) * deep quantum: statistical (including integrable) models,

in particular six vertex models
* general spin network: RSOS model,
boundary field gives radial distance
* semi-classical: non-linear sigma model
* first evaluation of Hessian determinant
for extended triangulation
* reproduces one-loop result,
but it is extended by “Planckian” backgrounds

[Riello]
1802.02588 (PRD)

* singularity structure: only arises in asymptotic or
semi-classical limit

|3



3D quantum gravity

Can be understood as a theory describing the embedding of a quantum surface
into quantum flat (or homogeneously curved) space.

Boundary degrees of freedom can lead to highly non-trivial boundary theories.



[Asante, BD, Haggard, to appear very soon]

Remark: Can use 4D BF theory to generalize the
results for the Ponzano-Regge model.

But we are looking for something closer to gravity.



3D gravity vs 4D gravity

3D gravity 4D gravity

Any (triangulated) 2D surface can be A 3D geometry needs to satisfy

locally embedded into 3D flat space. (4D flatness) conditions to be embeddable

There is a flat solution for all in flat 4D space.

boundary data. But there are 3D internally curved

hypersurfaces embeddable into 4D (flat) space.

16



Flat sector in 4D gravity

3D boundary metric

6 modes
IS Rs——————
Flat sector
sl - Bulk gravitons
4 modes inducing .

flat solutions 2 modes inducing
(diffeomorphism) curved solutions

, ' RSSRpm—_———

Boundary diffeos Boundary graviton
3 modes induced by One mode induced by diffeos,

diffeos tang. to boundary  normal to tangential modes

PSS RSm—IEE  T RS TR ————

Can impose the flat sector by considering only boundary metrics inducing flat solutions. .



Regge quantum gravity

Z Regge(lbdry) —

JHdu(l) eXP(—Seggel /1)

bulk

* For flat sector: on-shell action invariant
under changes of the bulk triangulation

e Thus as in 3D, we can use the coarsest
available bulk triangulation.

* There is no (local) triangulation invariant
path integral measure (to one loop).

[BD, Kaminski, Steinhaus 14 ]

* But singularities in one-loop correction
(as appeared in 3D)
are bulk triangulation invariant.

18



Regge quantum gravity RBF-model of flat space

[Baratin, Freidel 06]

Z Regge(lbdry) — £ BFR(lbdry) =
JHdﬂ(l) eXP(— Speggel1]) JHduBFRa) [T 8 exp(—SgegeellD)
bulk bulk bulk—triang

reduces to
boundary term

delta functions

on deficit angles

* For flat sector: on-shell action invariant

under changes of the bulk triangulation
Highly divergent!

* remove redundant delta functions,
so that the result is triangulation invariant.
* diffeo-symmetries as in Regge

e Thus as in 3D, we can use the coarsest
available bulk triangulation.

* There is no (local) triangulation invariant
path integral measure (to one loop).

[BD, Kaminski, Steinhaus 14 ]

* But singularities in one-loop correction
(as appeared in 3D)
are bulk triangulation invariant.




Regge quantum gravity

Z Regge(lbdry) —

JHdM(l) eXP(—Seggel /1)

bulk

 For flat sector: on-shell action invariant
under changes of the bulk triangulation

e Thus as in 3D, we can use the coarsest
available bulk triangulation.

* There is no (local) triangulation invariant
path integral measure (to one loop).

[BD, Kaminski, Steinhaus 14 ]

* But singularities in one-loop correction
(as appeared in 3D)
are bulk triangulation invariant.

RBF-model of flat space

[Baratin, Freidel 06]
Z BFR(lbdry) —

JHdMBFR(l) H 6(e(1)) exp(—Sgegeel!])
bulk bulk—triang

delta functions reduces to

. boundary term
on deficit angles Y

* Only non-vanishing for flat sector

* On-shell action agrees with Regge on flat
sector.

* (One-loop) path integral is
triangulation invariant.

20



Constructing the boundary field theory

* Choose a background space time.
To have a model we can do computations with:
4D version of the solid torus — the solid three-torus

* Choose triangulation, such that
- one can take continuum limit on boundary
- we have a very coarse bulk triangulation (for now)

Construct linearized Regge action for triangulation.

Integrate out all edge lengths, except radial edges going from the
boundary to a central 2d axis.

|dentify flat sector for boundary lengths.

Restrict effective action to this flat sector.

21



Background space time: solid three-torus

Flat space: ds* = dr® + r*dg?

with twists:

Boundary: r =R

Twisted Fourier transform on the boundary:

ki 5. ) ~ | d0dydz f10.y.2) e =0k =it

k

Y

dy2

(Ta 97 Y, Z) ~ (Ta 9 + 27T7 Y, Z)a
(r,@,y,z) ~ (T,H—F’Yy,y—l—OZ,Z),
and  (r,0,y,2) ~ (1,0 +7.,y,2 + B).

dz?

k

<

22



Triangulation

Triangulated Hyper-prisms

— “Inner 2D axis” -glued to thin solid hyper-cylinders,

-stacked into a thick solid hyper-cylinder,

-whose boundaries are identified to a solid 3-torus.

23



Triangulation

— “Inner 2D axis”

Triangulated Hyper-prisms

-glued to thin solid hyper-cylinders,

-stacked into a thick solid hyper-cylinder,
-whose boundaries are identified to a solid 3-torus.

Effective action

geometry.

for radial edge length
coupled to boundary

Bulk edge length variables
Edges on|Length of edge(s)|Length
hyper-prism fluctuations
e(la) e(bc)
e(2a) e(6c) R
e(3b) e(7d)
e(4b) e(8d)
e(le) e(3d)
e20) edd) | VETY fry
e(1b) e(bd)
o) e6a) | VETZ e
e(ld) e(2d) | VRZ+Y?2+ Z2 Cry
e(ac) e(bd) Y s
e(ab) e(cd) Z e
e(ad) VY2 72 e

>

Boundary edge length variables

Edges on|Length of edge(s)|Length
hyper-prism fluctuations
e(12) e(56) o

e(34) e(78)

e(15) e(37) v

e(26) e(48)

e(13) e(57) 7

e(24) e(68)

e(16) e(38) VO?2 +Y?2

e(14) e(58) VO2 + 72

e(28) e(17) VY?2+ 72

e(18) VO2 4 Y2+ 72

24



Boundary metric: flat and curved sectors

Boundary

metric
( hog
hyy \
hZZ
hy,

h

Yz
\hﬁyz/

(

)

Boundary graviton Simple graviton Complicated graviton
mode mode mode
(k; + k2)° \ [0 ( 0

kak: k2 —kokyk.

K2k k. +kokyk.
~ghzhok, (K2 + k2) 0 +5 /2K (ky + k)
o hghs (k2 + k2) 0 —g Rk, (ky + k)

Kk, ) \—k.k, \ Sko(k2—k2)

Can be completed to orthonormal basis,

by adding (orthonormalized) boundary diffeos.

Also available for the discretization.

Graviton modes happen to be distinguished dynamically.

Allows to construct projectors onto flat and curved sector.

25



Result

Second order on-shell action splits into two terms with different R scaling (as in 3D):

Sisol = R Sgom + R7'S.__ + OR™)

Surp

Invariant under Not invariant under
boundary diffeos. boundary diffeos.

Quite simple. Quite complicated.

On the flat sector the dominant term of radial effective action is local and given by
(second order expansion of):

Soary = Jd%\/ﬁ (pQ*°V Vo — RP)
Qab — Kab . Khab
Exactly as in 3D!

Boundary gravitons described by a scalar theory (with degenerate kinetic term)

coupled to boundary Ricci-scalar. -6



On the one-loop correction

We also have a degenerate kinetic term: Qab V.V, ~ (kyz + kzz)

/ 7y / Yz
= (kj=—ky)? + (K= Sky)?

May have zeros! Depends on twist angles.

There are no solutions (to the linearized EOM), for a certain subspace of the flat sector.

The one-loop correction includes a factor from integrating out the radial field:

I I I I Singularities, resulting from the zeros above,
ko>2 KK (k2 + k2)1/2 will persist if we consider a refinement of the triangulation.
0= ’
due to bulk
diffeos

Appears also in BFR version. .



What have we learned?

* Boundary theory describing boundary gravitons has geodesic distance as field variable.
(Could have expected something involving areas of minimal surfaces as suggested by
entanglement based bulk reconstruction proposals.)

Boundary theories very similar in 3D and in 4D.

= Suggest a general mechanism.

* Hamilton-Jacobi functional / amplitudes have simpler structure for terms dominating at large radius

= Suggests an approximation scheme for quantum gravity amplitudes.

28



Many directions to go

Fully non-perturbative description of flat space:

Use 2-categorical state sum. Describes a 3D Membrane embedded in (flat) 4D space.
[Baratin, Freidel 14]

Radial refinement and holographic renormalization:  [wip]

Consider a refinement of bulk triangulation and find change of effective action.
Provides a new avenue to define (one-loop) path integral measure.

Connect to holographic renormalization.

Generalized boundaries:

Generalize to other backgrounds and boundary and bulk topologies.

Develop approximation scheme for Hamilton-Jacobi functionals/ quantum gravity
amplitudes around “simple” boundaries.

More wide open questions:
Relation to BMS4?
Black hole entropy?

29



Summary

Aim:
Concrete model for holography, allowing for finite boundaries and explicit bulk
reconstruction, connecting perturbative and non-perturbative frameworks.

In 3 and 4 dimensions we have a holographic description for flat/topological sector:
Can this be used in 4D as a starting point for expansion of full theory
around flat sector?

Explore connection of quantum gravity to (a new kind of) topological theory:
Many connections to recent developments in condensed matter (topological phases).
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