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Overview

1.Holography and boundary degrees of freedom

2.Holographic description for 3D quantum gravity amplitudes.

3.Can this be generalized to 4D?

4.Outlook
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Holography

Partition function 
for D-dimensional gravity 

as functional for boundary geometry

∫g(y(x))=q(x)
𝒟g(y) exp(iSgrav[g(y)]) ∫ 𝒟ϕ(x) exp(iSdual[ϕ(x); q(x)])

Partition function 
for a (D-1)-dimensional boundary theory

coupled to boundary geometry

• usually proposed for asymptotic boundaries:
   great restriction on allowed boundary geometries

• open problem: bulk reconstruction

≃

≃

q(x)

ϕ(x)g(y)

q(x)
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Boundary degrees of freedom

Gauge degrees of freedom are converted into “physical” degrees of 
freedom due to the presence of a boundary. 

✤ diffeomorphisms deforming the boundary [Carlip 94: entropy 
 for BTZ black holes]

boundary

“graviton”

[Barnich, Carlip, Donnely, Freidel, Geiller, Gomes, Perez, Pranzetti, Riello, Strominger, …]

Why are these 
boundary degrees of freedom
“physical”? 
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Holography
Boundary degrees

of freedom

3D gravity

• No propagating bulk degrees of freedom in 3D gravity.

• Only boundary degrees left (and finitely many topological ones).

• These can be used to construct a holographic boundary field theory.
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3D gravity:  partition function for solid torus
One-loop partition function
(for asymptotically flat boundary)

[Barnich, Gonzalez, 
 Maloney, Oblak 15]

𝒜[β, γ] = exp ( β
8G ) × ∏

k≥2

1
|1 − exp(ikγ) |2

β

γ

• Matches a BMS3 character [Oblak 15]
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3D gravity:  partition function for solid torus
One-loop partition function
(for asymptotically flat boundary)

[Barnich, Gonzalez, 
 Maloney, Oblak 15]

𝒜[β, γ] = exp ( β
8G ) × ∏

k≥2

1
|1 − exp(ikγ) |2

One loop correction
(coming from the determinant of the 
physical part of Hessian of the action)

We thus have (field) degrees of freedom.

β

γ

What is the dynamics of these degrees of freedom?
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boundary field:
geodesic length from
boundary point to some
central point

Define an effective action for the geodesic lengths, 
which is induced by dynamics for 3D gravity.

Describing boundary deformations

boundary
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Use Regge calculus to construct boundary theory

• discretization of gravity based on a triangulation
• variables are the lengths of edges: can be identified with geodesic lengths

• Triangulate ball-shaped region
• Integrate out all edge length except (possibly) coarse grained

      lengths from some central point to boundary
•  Take continuum limit on boundary.

       Congratulations! 
       You got an (effective) boundary field theory.

Is it local?
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In 3D:  it is!           (For ball shaped regions)

•  Action of Regge gravity (evaluated on solution) is invariant under 
changes of  bulk triangulation.

•  One loop partition function (that is the path integral measure) is 
invariant under changes of bulk triangulation. 

• We can choose for the  evaluation of the (one-loop) path integral
      the coarsest available triangulation.

•  This triangulation has only radial edges, whose lengths defines 
      the boundary field. 

       The effective boundary theory is given by the path integral based 
       on this triangulation, and is therefore local.

[BD, Steinhaus  11]
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FIG. 1: A triangulation of a ball shaped region. All bulk edges are radial, going from the boundary to a
central vertex. . The Regge action for this triangulation can be understood as a boundary action for the
radial edge lengths.

the bulk edge lengths. The latter can be identified with a boundary field, giving the geodesic radial
distance of the boundary to the central vertex. Thus the Regge action itself defines an “e↵ective”
theory for the geodesic radial distance.

As explained in section II, the displacement of the central vertex is a remnant of di↵eomorphism
symmetry. It acts as a gauge symmetry on the boundary field, at least from the perspective of the
gravitational partition function. It can also be seen as a global symmetry from the perspective of
the boundary theory—in fact, it provides only global symmetry parameters. However, to regain
the partition function of gravity, we have to treat this symmetry as a gauge symmetry.

The Regge action is local in the following sense: for two length variables associated to two edges
e and e

0 to couple to each other, e and e
0 both need to be part of at least one D-simplex. Translated

to the boundary, this means that two radial length variables associated to two boundary vertices
v and v

0 can only be coupled to each other if v and v
0 are part of at least one (D � 1) boundary

simplex. Thus, the Regge action is also local when interpreted as a boundary theory. This locality
continues to hold for the coupling of the boundary field to the boundary lengths.

For ball-shaped regions we therefore obtain a local boundary theory. This does not necessarily
hold for other topologies, indeed, for a solid hyper-torus we also obtain non-local terms. These
are, however, suppressed in the limit of large radius.

IV. THE BACKGROUND SPACE TIME

The background spacetime we will consider is a Euclidean signature, flat spacetime with bound-
ary. It generalizes the 3D spacetime known as thermal spinning flat space [51]. This 3D spacetime
is obtained by taking a solid cylinder with radius R and twisting this cylinder by an angle � around
its axis before gluing it to a solid torus. One often uses a “time” coordinate t along the axis of the
cylinder, an angular coordinate ✓ that goes around the central axis, and a radial coordinate r.

For our four-dimensional spacetime we replace the “time” coordinate t with two coordinates y
and z. The solid hyper-cylinder isD2

⇥[0,↵]⇥[0,�], whereD2 is the two-dimensional disk and it has
a two-dimensional central axis [0,↵]⇥ [0,�] coordinatized by y and z. To get a spacetime with one
boundary component we glue the cylinder twice. We first identify the boundaries D2

⇥ {0}⇥ [0,�]
and D

2
⇥ {↵} ⇥ [0,�] with each other after rotating the latter by an angle �y. Next we identify

D
2
⇥ S

1
⇥ {0} and D

2
⇥ S1 ⇥ {�}, once again inserting a rotation by �z of the disk in the second

component. This gives the spacetime

ds
2 = dr

2 + r
2
d✓

2 + dy
2 + dz

2 (4.1)

‘Side results’:
✴Works for finite (non-asymptotic) boundaries.
✴Bulk reconstruction for free.
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Back to solid torus:  Regge calculus
• need to integrate out some variables
• but still “essentially” a local boundary field theory 

   
        One loop partition function:

• reproduces continuum result by Barnich et al
• but holds for finite boundary 
• extended to fluctuating boundary metric: 

 extract boundary  action
• explains puzzling features of the asymptotic one-loop

       partition function

  [Bonzom, BD 15]
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Back to solid torus:  Regge calculus
• need to integrate out some variables
• but still “essentially” a local boundary field theory 

   
        One loop partition function:

• reproduces continuum result by Barnich et al
• but holds for finite boundary 
• extended to fluctuating boundary metric: 

 extract boundary  action
• explains puzzling features of the asymptotic one-loop

       partition function

  [Bonzom, BD 15]

One loop partition function Boundary field theory with Liouville coupling

kinetic term is
degenerate

singular for 
rational angles 

Similar actions obtained with 
completely different and more indirect methods in 
[Barnich, Gomberoff, Gonzales 13;  
Carlip 16: in Lorentzian signature]

𝒜[β, γ] = exp ( β
8G ) × ∏

k≥2

1
|1 − exp(ikγ) |2

Sbdry = ∫ d2x h (ϕQab ∇a ∇bϕ − ℛϕ)

Qab = Kab − Khab
γlower modes 

missing as they
describe rigid translations

of torus 
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Fully non-perturbative boundary theory
(for finite boundary)

Use the Ponzano-Regge model which allows straightforward implementation 
      of metric boundary conditions (as opposed to Chern-Simons).

[BD,  Goeller, Livine, Riello]
1710.04202, (NPB)
1710.04237, (NPB)
1803.02759 (CQG Letters)

[Riello]
1802.02588 (PRD)

• find different boundary theories depending on choice of 
boundary quantum geometry and choice of boundary field

★ deep quantum: statistical (including integrable) models, 
in particular six vertex models

★ general spin network: RSOS model, 
boundary field gives radial distance

★ semi-classical: non-linear sigma model
•  first evaluation of Hessian determinant 

       for extended triangulation       
•  reproduces one-loop result, 

      but it is extended by “Planckian” backgrounds

• singularity structure:  only arises in asymptotic or 
semi-classical limit
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3D quantum gravity 

Can be understood as a theory describing the embedding of a quantum surface 
into quantum flat (or homogeneously curved) space.

Boundary degrees of freedom can lead to highly non-trivial boundary theories. 
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[Asante, BD, Haggard, to appear very soon]

Remark: Can use 4D BF theory to generalize the 

results for the Ponzano-Regge model. 

But we are looking for something closer to gravity.

What about 4D?
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3D gravity vs 4D gravity

3D gravity

Any (triangulated) 2D surface can be

locally embedded into 3D flat space.

There is a flat solution for all 

boundary data. 

4D gravity

A 3D geometry needs to satisfy 

(4D flatness) conditions to be embeddable 

in flat  4D space.

But there are 3D internally curved 

hypersurfaces embeddable into 4D (flat) space.
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Flat sector in 4D gravity

3D  boundary metric 

         6 modes

4 modes inducing

  flat solutions 

(diffeomorphism)

2 modes inducing

curved solutions 

Flat sector

One mode induced by diffeos,

normal to tangential modes

Bulk gravitons

Boundary graviton

3 modes induced by

diffeos tang. to boundary

Boundary diffeos

Can impose the flat sector by considering only boundary metrics inducing flat solutions.
 17



Regge quantum gravity

∫ ∏
bulk

dμ(l) exp(−SRegge[l])

𝒵Regge(lbdry) =

• For flat sector: on-shell action invariant 
under changes of the bulk triangulation 

• Thus as in 3D, we can use the coarsest
      available bulk triangulation.

• There is no (local) triangulation invariant
      path integral measure (to one loop).

[BD, Kaminski, Steinhaus 14 ]

• But singularities in one-loop correction 
(as appeared in 3D) 
are bulk triangulation invariant.
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Regge quantum gravity  RBF-model of flat space

∫ ∏
bulk

dμ(l) exp(−SRegge[l])

𝒵Regge(lbdry) =

• For flat sector: on-shell action invariant 
under changes of the bulk triangulation 

• Thus as in 3D, we can use the coarsest
      available bulk triangulation.

• There is no (local) triangulation invariant
      path integral measure (to one loop).

[BD, Kaminski, Steinhaus 14 ]

• But singularities in one-loop correction 
(as appeared in 3D) 
are bulk triangulation invariant.

[Baratin, Freidel 06]

𝒵BFR(lbdry) =

∫ ∏
bulk

dμBFR(l) ∏
bulk−triang

δ(ϵt(l)) exp(−SRegge[l])

delta functions 
on deficit angles 

reduces to
boundary term

Highly divergent!
• remove redundant delta functions, 

so that the result is triangulation invariant. 
• diffeo-symmetries as in Regge
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Regge quantum gravity  RBF-model of flat space

∫ ∏
bulk

dμ(l) exp(−SRegge[l])

𝒵Regge(lbdry) =

• For flat sector: on-shell action invariant 
under changes of the bulk triangulation 

• Thus as in 3D, we can use the coarsest
      available bulk triangulation.

• There is no (local) triangulation invariant
      path integral measure (to one loop).

[BD, Kaminski, Steinhaus 14 ]

• But singularities in one-loop correction 
(as appeared in 3D) 
are bulk triangulation invariant.

[Baratin, Freidel 06]

𝒵BFR(lbdry) =

∫ ∏
bulk

dμBFR(l) ∏
bulk−triang

δ(ϵt(l)) exp(−SRegge[l])

delta functions 
on deficit angles 

reduces to
boundary term

• On-shell action agrees with Regge on flat
      sector.

• Only non-vanishing for flat sector  

• (One-loop) path integral is 
   triangulation invariant.
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Constructing the boundary field theory

• Choose a background space time.
To have a model we can do computations with: 
4D version of the solid torus  —  the solid three-torus 

• Choose triangulation, such that
- one can take continuum limit on boundary
- we have a very coarse bulk triangulation (for now) 

• Construct linearized Regge action for triangulation.

• Integrate out all edge lengths, except radial edges going from the 
boundary to a central 2d axis.

• Identify flat sector for boundary lengths.

• Restrict effective action to this flat sector.

 21



Background space time: solid three-torus

3

The hyper–cuboids are further subdivided into six tetrahedra, which introduces diagonals and a
hyper-diagonal, see Table ??. All the diagonals and hyper-diagonals are chosen such that there is
an orientation for all edges with the following property: each coordinate of the source vertex of
any given edge is smaller or equal to the corresponding coordinate of the target vertex. (Here we
use the periodic identification to imagine an infinite lattice, so that with this convention diagonals
of the same lengths are all diagonal to each other.) We can thus associate the length fluctuation
variable of a given edge to its source vertex, that is our variables on the boundary are:

`e(s✓, sy, sz) with e = ✓, y, z, ✓y, ✓z, ✓yz . (4.3)

Moving on to the bulk edges we consider the set of edges which have one vertex, which we choose
as source, at the boundary of the solid three-torus, i.e. at r = R, and the other vertex on the
two–dimensional axis, at r = 0. We also associate the coordinates of the source vertex to the
variables associated to these edges:

`e(s✓, sy, sz) with e = r, ry, rz, ryz . (4.4)

We have furthermore a set of bulk variables which have only vertices at r = 0, that is on the two-
dimensional axis. This axis is topologically a two–torus, and is discretized into rectangles, which
are furthermore subdivided by parallel diagonals into triangles. The vertices are parametrized by
(sy, sz). Here we have the variables

`e(sy, sz) with e = ', ⇣,'⇣ . (4.5)

a

b

c

d

FIG. 1: A hyper-cylinder(cubinder)

put pictures and tables on one page, label tables,

A. Fourier transform

The regular lattice of the boundary allows us to define a discrete Fourier transform. The
Fourier transform will (block)–diagonalize the Hessians resulting from the Regge action, which will
hugely simplify their analysis. We have however to take into account the twist angles �y, �z in
the background geometry (??). In the triangulation we incorporate these twists by rotating the
(hyper-) cylinder by the respective twist angles before gluing it to the three–torus.

8

FIG. 2: Di↵erent 2D projections of a 4D hyper-clinder. The red dashed lines indicate the 2D axis where
r = 0.

with r 2 [0, R] and the remaining coordinates subject to the following periodic identifications

(r, ✓, y, z) ⇠ (r, ✓ + 2⇡, y, z),

(r, ✓, y, z) ⇠ (r, ✓ + �y, y + ↵, z),

and (r, ✓, y, z) ⇠ (r, ✓ + �z, y, z + �). (4.2)

Let us evaluate the Einstein action with the Gibbons-Hawking-York (GHY) boundary term

S = �
1

16⇡G

Z
p
gR d

4
x�

1

8⇡G

Z
p

hK d
3
x (4.3)

on this spacetime. There is only a contribution from the boundary term. The extrinsic curvature
tensor of the r = R hypersurface is Kab = diag(R, 0, 0) and the trace is given by K = 1

R
. Together

with
p
h = R this leads to a boundary term which is proportional to the area of the hypersurface

at R = 1:

S = �
↵�

4G
. (4.4)

Note that the twist angles �y and �z do not appear in the classical background action. The one-loop
correction will depend on these angles.

V. THE TRIANGULATION

As discussed in section II, the Regge action evaluated on flat solutions will be bulk triangulation
independent. This allows us to choose a very coarse bulk triangulation. However, we also want
to take the continuum limit on the boundary and will choose a su�ciently general and regular
triangulation to achieve this limit.

The space time under consideration has the topology of a solid three–torus, i.e. D ⇥ S
1
⇥ S

1

where D is a disk and S
1 the circle. We cut this three-torus perpendicular to the two S

1–directions,
that is, along three-planes with fixed y- and z-coordinates. (Care must be taken with the twist
parameters if these pieces are to be re-glued.) Repeatedly cutting in this manner we produce
Ny ⇥Nz building blocks with topology D ⇥ [0, 1]⇥ [0, 1].

These building blocks are then cut along three-planes perpendicular to the disk and along
three–planes with constant angular coordinate ✓. All these cuts go through a “two-dimensional
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FIG. 1: A triangulation of a ball shaped region. All bulk edges are radial, going from the boundary to a
central vertex. . The Regge action for this triangulation can be understood as a boundary action for the
radial edge lengths.

the bulk edge lengths. The latter can be identified with a boundary field, giving the geodesic radial
distance of the boundary to the central vertex. Thus the Regge action itself defines an “e↵ective”
theory for the geodesic radial distance.

As explained in section II, the displacement of the central vertex is a remnant of di↵eomorphism
symmetry. It acts as a gauge symmetry on the boundary field, at least from the perspective of the
gravitational partition function. It can also be seen as a global symmetry from the perspective of
the boundary theory—in fact, it provides only global symmetry parameters. However, to regain
the partition function of gravity, we have to treat this symmetry as a gauge symmetry.

The Regge action is local in the following sense: for two length variables associated to two edges
e and e

0 to couple to each other, e and e
0 both need to be part of at least one D-simplex. Translated

to the boundary, this means that two radial length variables associated to two boundary vertices
v and v

0 can only be coupled to each other if v and v
0 are part of at least one (D � 1) boundary

simplex. Thus, the Regge action is also local when interpreted as a boundary theory. This locality
continues to hold for the coupling of the boundary field to the boundary lengths.

For ball-shaped regions we therefore obtain a local boundary theory. This does not necessarily
hold for other topologies, indeed, for a solid hyper-torus we also obtain non-local terms. These
are, however, suppressed in the limit of large radius.

IV. THE BACKGROUND SPACE TIME

The background spacetime we will consider is a Euclidean signature, flat spacetime with bound-
ary. It generalizes the 3D spacetime known as thermal spinning flat space [51]. This 3D spacetime
is obtained by taking a solid cylinder with radius R and twisting this cylinder by an angle � around
its axis before gluing it to a solid torus. One often uses a “time” coordinate t along the axis of the
cylinder, an angular coordinate ✓ that goes around the central axis, and a radial coordinate r.

For our four-dimensional spacetime we replace the “time” coordinate t with two coordinates y
and z. The solid hyper-cylinder isD2

⇥[0,↵]⇥[0,�], whereD2 is the two-dimensional disk and it has
a two-dimensional central axis [0,↵]⇥ [0,�] coordinatized by y and z. To get a spacetime with one
boundary component we glue the cylinder twice. We first identify the boundaries D2

⇥ {0}⇥ [0,�]
and D

2
⇥ {↵} ⇥ [0,�] with each other after rotating the latter by an angle �y. Next we identify

D
2
⇥ S

1
⇥ {0} and D

2
⇥ S1 ⇥ {�}, once again inserting a rotation by �z of the disk in the second

component. This gives the spacetime

ds
2 = dr

2 + r
2
d✓

2 + dy
2 + dz

2 (4.1)
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FIG. 2: Di↵erent 2D projections of a 4D hyper-clinder. The red dashed lines indicate the 2D axis where
r = 0.

with r 2 [0, R] and the remaining coordinates subject to the following periodic identifications

(r, ✓, y, z) ⇠ (r, ✓ + 2⇡, y, z),

(r, ✓, y, z) ⇠ (r, ✓ + �y, y + ↵, z),

and (r, ✓, y, z) ⇠ (r, ✓ + �z, y, z + �). (4.2)

Let us evaluate the Einstein action with the Gibbons-Hawking-York (GHY) boundary term

S = �
1

16⇡G

Z
p
gR d

4
x�

1

8⇡G

Z
p

hK d
3
x (4.3)

on this spacetime. There is only a contribution from the boundary term. The extrinsic curvature
tensor of the r = R hypersurface is Kab = diag(R, 0, 0) and the trace is given by K = 1

R
. Together

with
p
h = R this leads to a boundary term which is proportional to the area of the hypersurface

at R = 1:

S = �
↵�

4G
. (4.4)

Note that the twist angles �y and �z do not appear in the classical background action. The one-loop
correction will depend on these angles.

V. THE TRIANGULATION

As discussed in section II, the Regge action evaluated on flat solutions will be bulk triangulation
independent. This allows us to choose a very coarse bulk triangulation. However, we also want
to take the continuum limit on the boundary and will choose a su�ciently general and regular
triangulation to achieve this limit.

The space time under consideration has the topology of a solid three–torus, i.e. D ⇥ S
1
⇥ S

1

where D is a disk and S
1 the circle. We cut this three-torus perpendicular to the two S

1–directions,
that is, along three-planes with fixed y- and z-coordinates. (Care must be taken with the twist
parameters if these pieces are to be re-glued.) Repeatedly cutting in this manner we produce
Ny ⇥Nz building blocks with topology D ⇥ [0, 1]⇥ [0, 1].

These building blocks are then cut along three-planes perpendicular to the disk and along
three–planes with constant angular coordinate ✓. All these cuts go through a “two-dimensional

Flat space:

with twists:

Twisted Fourier transform on the boundary:

Boundary: r = R

f(kθ, k′�y, k′�z) ∼ ∫ dθdydz f(θ, y, z) e− iθkθ − iy(k′ �y−
γy
α kθ) − iz(k′ �z−

γz
β kθ)

ky kz
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Triangulation

3

The hyper–cuboids are further subdivided into six tetrahedra, which introduces diagonals and a
hyper-diagonal, see Table ??. All the diagonals and hyper-diagonals are chosen such that there is
an orientation for all edges with the following property: each coordinate of the source vertex of
any given edge is smaller or equal to the corresponding coordinate of the target vertex. (Here we
use the periodic identification to imagine an infinite lattice, so that with this convention diagonals
of the same lengths are all diagonal to each other.) We can thus associate the length fluctuation
variable of a given edge to its source vertex, that is our variables on the boundary are:

`e(s✓, sy, sz) with e = ✓, y, z, ✓y, ✓z, ✓yz . (4.3)

Moving on to the bulk edges we consider the set of edges which have one vertex, which we choose
as source, at the boundary of the solid three-torus, i.e. at r = R, and the other vertex on the
two–dimensional axis, at r = 0. We also associate the coordinates of the source vertex to the
variables associated to these edges:

`e(s✓, sy, sz) with e = r, ry, rz, ryz . (4.4)

We have furthermore a set of bulk variables which have only vertices at r = 0, that is on the two-
dimensional axis. This axis is topologically a two–torus, and is discretized into rectangles, which
are furthermore subdivided by parallel diagonals into triangles. The vertices are parametrized by
(sy, sz). Here we have the variables

`e(sy, sz) with e = ', ⇣,'⇣ . (4.5)

a

b

c

d

FIG. 1: A hyper-cylinder(cubinder)

put pictures and tables on one page, label tables,

A. Fourier transform

The regular lattice of the boundary allows us to define a discrete Fourier transform. The
Fourier transform will (block)–diagonalize the Hessians resulting from the Regge action, which will
hugely simplify their analysis. We have however to take into account the twist angles �y, �z in
the background geometry (??). In the triangulation we incorporate these twists by rotating the
(hyper-) cylinder by the respective twist angles before gluing it to the three–torus.

3

The boundary of the solid three–torus is discretized into a regular hyper–cubical lattice, with
edge–lengths ⇥, Y, Z. We give coordinates

(s✓, sy, sz) 2 [0, 1, . . . , N✓ � 1]⇥ [0, 1, . . . , Ny]⇥ [0, 1, . . . , Nz] (4.2)

The hyper–cuboids are further subdivided into six tetrahedra, which introduces diagonals and a
hyper-diagonal, see Table ??. All the diagonals and hyper-diagonals are chosen such that there is
an orientation for all edges with the following property: each coordinate of the source vertex of
any given edge is smaller or equal to the corresponding coordinate of the target vertex. (Here we
use the periodic identification to imagine an infinite lattice, so that with this convention diagonals
of the same lengths are all diagonal to each other.) We can thus associate the length fluctuation
variable of a given edge to its source vertex, that is our variables on the boundary are:

`e(s✓, sy, sz) with e = ✓, y, z, ✓y, ✓z, ✓yz . (4.3)

Moving on to the bulk edges we consider the set of edges which have one vertex, which we choose
as source, at the boundary of the solid three-torus, i.e. at r = R, and the other vertex on the
two–dimensional axis, at r = 0. We also associate the coordinates of the source vertex to the
variables associated to these edges:

`e(s✓, sy, sz) with e = r, ry, rz, ryz . (4.4)

We have furthermore a set of bulk variables which have only vertices at r = 0, that is on the two-
dimensional axis. This axis is topologically a two–torus, and is discretized into rectangles, which
are furthermore subdivided by parallel diagonals into triangles. The vertices are parametrized by
(sy, sz). Here we have the variables

`e(sy, sz) with e = ', ⇣,'⇣ . (4.5)

put pictures and tables on one page, label tables,
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⇥

Z

Y

R

“Inner 2D axis”

FIG. 1: Hyperprism as a unit block for the discretization for the solid 3-Torus.

A. Fourier transform

The regular lattice of the boundary allows us to define a discrete Fourier transform. The
Fourier transform will (block)–diagonalize the Hessians resulting from the Regge action, which will

Triangulated Hyper-prisms 
-glued to thin solid hyper-cylinders,
-stacked into a thick solid hyper-cylinder,
-whose boundaries are identified to a solid 3-torus.
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Triangulation

3

The hyper–cuboids are further subdivided into six tetrahedra, which introduces diagonals and a
hyper-diagonal, see Table ??. All the diagonals and hyper-diagonals are chosen such that there is
an orientation for all edges with the following property: each coordinate of the source vertex of
any given edge is smaller or equal to the corresponding coordinate of the target vertex. (Here we
use the periodic identification to imagine an infinite lattice, so that with this convention diagonals
of the same lengths are all diagonal to each other.) We can thus associate the length fluctuation
variable of a given edge to its source vertex, that is our variables on the boundary are:

`e(s✓, sy, sz) with e = ✓, y, z, ✓y, ✓z, ✓yz . (4.3)

Moving on to the bulk edges we consider the set of edges which have one vertex, which we choose
as source, at the boundary of the solid three-torus, i.e. at r = R, and the other vertex on the
two–dimensional axis, at r = 0. We also associate the coordinates of the source vertex to the
variables associated to these edges:
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Bulk edge length variables

Edges on
hyper-prism

Length of edge(s) Length
fluctuations

e(1a) e(5c)

R `r
e(2a) e(6c)

e(3b) e(7d)

e(4b) e(8d)

e(1c) e(3d) p
R2 + Y 2 `ry

e(2c) e(4d)

e(1b) e(5d) p
R2 + Z2 `rz

e(2b) e(6d)

e(1d) e(2d)
p
R2 + Y 2 + Z2 `ryz

e(ac) e(bd) Y `'

e(ab) e(cd) Z `⇣

e(ad)
p
Y 2 + Z2 `'⇣

Boundary edge length variables

Edges on
hyper-prism

Length of edge(s) Length
fluctuations

e(12) e(56)
⇥ `✓

e(34) e(78)

e(15) e(37)
Y `y

e(26) e(48)

e(13) e(57)
Z `z

e(24) e(68)

e(16) e(38)
p
⇥2 + Y 2 `✓y

e(14) e(58)
p
⇥2 + Z2 `✓z

e(28) e(17)
p
Y 2 + Z2 `yz

e(18)
p
⇥2 + Y 2 + Z2 `✓yz

TABLE I: The tables relate the length variables to the edges in the hyper-prism, which are shown in Fig.
3. The left table includes all edges which are in the bulk of the solid three–torus. The right table includes
all the edges which are in the boundary of the solid three–torus.

three–torus, and values a to d if the vertex is on the two–dimensional central axis. With the above
choice of orientation v1 is the source target and v2 the target vertex of an edge e(v1v2) appearing
in the table. We can thus associate the length fluctuation variable of a given edge to its source
vertex, that is our variables on the boundary are:

`e(s✓, sy, sz) with e 2 {✓, y, z, ✓y, ✓z, ✓yz}. (5.3)

Moving on to the bulk edges we consider the set of edges that have one vertex, which we choose
as source, at the boundary of the solid three-torus, i.e. at r = R, and the other vertex on the
two–dimensional axis, at r = 0. We also associate the coordinates of the source vertex to the
variables associated to these edges:

`e(s✓, sy, sz) with e 2 {r, ry, rz, ryz}. (5.4)

We have furthermore a set of bulk variables that have only vertices at r = 0, that is on the two-
dimensional axis. This axis is topologically a two–torus, and is discretized into rectangles, which
are furthermore subdivided by parallel diagonals into triangles. The vertices are parametrized by
(sy, sz). Here we have the variables

`e(sy, sz) with e 2 {', ⇣,'⇣}. (5.5)

A. Fourier transform

The regular lattice of the boundary allows us to define a discrete Fourier transform. The Fourier
transform will (block)-diagonalize the Hessians resulting from the Regge action, which will hugely
simplify their analysis. We need to take into account the twist angles �y and �z in the background
geometry (4.2). In the triangulation we incorporate these twists by rotating the hyper-cylinder by
the respective twist angles before gluing it to the three-torus.

We write the twist angles �i, i 2 {y, z} as

�i =
2⇡

N✓

⌥i, (5.6)
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Integrate 
out.

Effective action
for radial edge length
coupled to boundary

geometry.
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Boundary metric:  flat and curved sectors

Holographic description of boundary gravitons in (3+1) dimensions
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Holography for flat sector of 4d gravity. TODO

0

BBBBBBBB@

h✓✓

hyy

hzz

h✓y

h✓z

hyz

h✓yz

1

CCCCCCCCA

0

BBBBBB@

(k2y + k
2
z)

2

k
2

✓
k
2
y

k
2

✓
k
2
z

�
1

R2k✓ky(k2y + k
2
z)

�
1

R2k✓kz(k2y + k
2
z)

k
2

✓
kykz

1

CCCCCCA

0

BBBBBB@

0
k
2
z

k
2
y

0
0

�kzky

1

CCCCCCA

0

BBBBBB@

0
�k✓kykz

+k✓kykz

+1

2
R

2
k
2
z(k

2
y + k

2
z)

�
1

2
R

2
k
2
y(k

2
y + k

2
z)

1

2
k✓(k2y � k

2
z)

1

CCCCCCA

(0.1)

I. INTRODUCTION

The role of boundaries has become more and more important for various approaches to quantum
gravity. Holographic dualities, e.g. the AdS/CFT framework, suggest that a theory of quantum

⇤Electronic address: sasanteATperimeterinstitute.ca
†Electronic address: bdittrichATperimeterinstitute.ca
‡Electronic address: haggardATbard.edu

Holographic description of boundary gravitons in (3+1) dimensions

Seth K. Asante,1, ⇤ Bianca Dittrich,1, 2, † and Hal M. Haggard3, 1, ‡

1Perimeter Institute for Theoretical Physics,
31 Caroline Street North, Waterloo, ON, N2L 2Y5, Canada

2 Institute for Mathematics, Astrophysics and Particle Physics,
Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

3Physics Program, Bard College, 30 Campus Road, Annondale-On-Hudson, NY 12504, USA

Holography for flat sector of 4d gravity. TODO

0

BBBBBBBB@

h✓✓

hyy

hzz

h✓y

h✓z

hyz

h✓yz

1

CCCCCCCCA

0

BBBBBB@

(k2y + k
2
z)

2

k
2

✓
k
2
y

k
2

✓
k
2
z

�
1

R2k✓ky(k2y + k
2
z)

�
1

R2k✓kz(k2y + k
2
z)

k
2

✓
kykz

1

CCCCCCA

0

BBBBBB@

0
k
2
z

k
2
y

0
0

�kzky

1

CCCCCCA

0

BBBBBB@

0
�k✓kykz

+k✓kykz

+1

2
R

2
k
2
z(k

2
y + k

2
z)

�
1

2
R

2
k
2
y(k

2
y + k

2
z)

1

2
k✓(k2y � k

2
z)

1

CCCCCCA

(0.1)

I. INTRODUCTION

The role of boundaries has become more and more important for various approaches to quantum
gravity. Holographic dualities, e.g. the AdS/CFT framework, suggest that a theory of quantum

⇤Electronic address: sasanteATperimeterinstitute.ca
†Electronic address: bdittrichATperimeterinstitute.ca
‡Electronic address: haggardATbard.edu

Holographic description of boundary gravitons in (3+1) dimensions

Seth K. Asante,1, ⇤ Bianca Dittrich,1, 2, † and Hal M. Haggard3, 1, ‡

1Perimeter Institute for Theoretical Physics,
31 Caroline Street North, Waterloo, ON, N2L 2Y5, Canada

2 Institute for Mathematics, Astrophysics and Particle Physics,
Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

3Physics Program, Bard College, 30 Campus Road, Annondale-On-Hudson, NY 12504, USA

Holography for flat sector of 4d gravity. TODO

0

BBBBBBBB@

h✓✓

hyy

hzz

h✓y

h✓z

hyz

h✓yz

1

CCCCCCCCA

0

BBBBBB@

(k2y + k
2
z)

2

k
2

✓
k
2
y

k
2

✓
k
2
z

�
1

R2k✓ky(k2y + k
2
z)

�
1

R2k✓kz(k2y + k
2
z)

k
2

✓
kykz

1

CCCCCCA

0

BBBBBB@

0
k
2
z

k
2
y

0
0

�kzky

1

CCCCCCA

0

BBBBBB@

0
�k✓kykz

+k✓kykz

+1

2
R

2
k
2
z(k

2
y + k

2
z)

�
1

2
R

2
k
2
y(k

2
y + k

2
z)

1

2
k✓(k2y � k

2
z)

1

CCCCCCA

(0.1)

I. INTRODUCTION

The role of boundaries has become more and more important for various approaches to quantum
gravity. Holographic dualities, e.g. the AdS/CFT framework, suggest that a theory of quantum

⇤Electronic address: sasanteATperimeterinstitute.ca
†Electronic address: bdittrichATperimeterinstitute.ca
‡Electronic address: haggardATbard.edu

Holographic description of boundary gravitons in (3+1) dimensions

Seth K. Asante,1, ⇤ Bianca Dittrich,1, 2, † and Hal M. Haggard3, 1, ‡

1Perimeter Institute for Theoretical Physics,
31 Caroline Street North, Waterloo, ON, N2L 2Y5, Canada

2 Institute for Mathematics, Astrophysics and Particle Physics,
Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

3Physics Program, Bard College, 30 Campus Road, Annondale-On-Hudson, NY 12504, USA

Holography for flat sector of 4d gravity. TODO

0

BBBBBBBB@

h✓✓

hyy

hzz

h✓y

h✓z

hyz

h✓yz

1

CCCCCCCCA

0

BBBBBB@

(k2y + k
2
z)

2

k
2

✓
k
2
y

k
2

✓
k
2
z

�
1

R2k✓ky(k2y + k
2
z)

�
1

R2k✓kz(k2y + k
2
z)

k
2

✓
kykz

1

CCCCCCA

0

BBBBBB@

0
k
2
z

k
2
y

0
0

�kzky

1

CCCCCCA

0

BBBBBB@

0
�k✓kykz

+k✓kykz

+1

2
R

2
k
2
z(k

2
y + k

2
z)

�
1

2
R

2
k
2
y(k

2
y + k

2
z)

1

2
k✓(k2y � k

2
z)

1

CCCCCCA

(0.1)

I. INTRODUCTION

The role of boundaries has become more and more important for various approaches to quantum
gravity. Holographic dualities, e.g. the AdS/CFT framework, suggest that a theory of quantum

⇤Electronic address: sasanteATperimeterinstitute.ca
†Electronic address: bdittrichATperimeterinstitute.ca
‡Electronic address: haggardATbard.edu

Boundary graviton

          mode

Simple graviton

        mode

Complicated graviton

        mode

Allows to construct projectors  onto  flat and curved sector.

Can be completed to orthonormal basis, 
by adding (orthonormalized) boundary diffeos.  
Also available for the discretization.
Graviton modes happen to be distinguished dynamically.
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Result

Second order on-shell action splits into two terms with different R scaling (as in 3D):

S|sol = R Sdom + R−1 Ssurp + 𝒪(R−3)
Invariant under 

boundary diffeos.
Quite simple.

Not invariant under 
boundary diffeos.

Quite complicated.

On the flat sector the dominant term of radial effective action is local and given by 
(second order expansion of):

Sbdry = ∫ d3x h (ϕQab ∇a ∇bϕ − ℛϕ)
Qab = Kab − Khab

Exactly as in 3D! 

Boundary gravitons described by a scalar theory (with degenerate kinetic term) 

coupled to boundary Ricci-scalar. 
 26



On the one-loop correction

We also have a degenerate kinetic term:  Qab ∇a ∇b ∼ (k2
y + k2

z )

= (k′�y−
γy

α kθ)2 + (k′�z−
γz

β kθ)2

May have zeros!   Depends on twist angles.  

The one-loop correction includes a factor from integrating out the radial field:  

There are no solutions (to the linearized EOM), for a certain subspace of the flat sector.  

∏
kθ≥2

∏
k′�y,k′�z

1
(k2

y + k2
z )1/2

due to bulk
diffeos

Singularities, resulting from the zeros above,
will persist if we consider a refinement of the triangulation.

Appears also in BFR version.  
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What  have we learned?

• Boundary theory describing boundary gravitons has geodesic distance as field variable. 

   (Could have expected something involving areas of minimal surfaces as suggested by 

    entanglement based bulk reconstruction proposals.)

    Boundary theories very similar in 3D and in 4D.

➡Suggest a general mechanism.

• Hamilton-Jacobi functional / amplitudes have simpler structure for terms dominating at large radius

➡Suggests an approximation scheme for quantum gravity amplitudes.
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Many directions to go

Fully non-perturbative description of flat space: 
Use 2-categorical state sum. Describes a 3D Membrane embedded in (flat) 4D space.

Radial refinement and holographic renormalization: 
Consider a refinement of bulk triangulation and find change of effective action.
Provides a new avenue to define (one-loop) path integral measure.
Connect to holographic renormalization.

Generalized boundaries:
Generalize to other backgrounds and boundary and bulk topologies.
Develop approximation scheme for Hamilton-Jacobi functionals/ quantum gravity 
amplitudes around  “simple” boundaries.

More wide open questions: 
Relation to BMS4?
Black hole entropy?

[Baratin, Freidel 14]

[wip]
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Summary

Aim: 
Concrete model for holography, allowing for finite boundaries and explicit bulk 
reconstruction, connecting perturbative and non-perturbative frameworks.

In 3 and 4 dimensions we have a holographic description for flat/topological sector:
Can this be used in 4D as a starting point for expansion of full theory 
around flat sector?

Explore connection of quantum gravity to (a new kind of) topological theory: 
Many connections to recent developments in condensed matter (topological phases).
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