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Overview
A. Motivation and summary

B. Coarse graining and continuum limit for classical system:       
the 2D scalar field

C. Formalization: cylindrical consistency 

D. Coarse graining for quantum systems: tensor network 
algorithms

E. Applications to spinfoams / spinnets
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Why coarse graining spin foams?

•Extract effective dynamics of the regime with many building blocks (‘large scale’ regime) 

•Do the models lead to a phase describing 4D smooth manifolds on macroscopic scales?  
  [Spin foams are generalized lattice gauge theories. Standard non-Abelian lattice gauge theory in 4D is believed to be confining,  
    which correspond to a phase where degenerate geometries dominate.]

•Metric degrees of freedoms at all scales?

•Restoration of diff or triangulation/lattice independence? [Bahr, BD et al 09-11, Rovelli ’11]

•Large scale limit not equal `large j limit/few building blocks’ for spin foams? 
   [Hellmann, Kaminski 12, Perini 12]

•applications to cosmology (effective dynamics for homogeneous modes), ...
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Coarse graining state sums: splitting the sum
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simplicity constraints

Holonomy formulation

This parametrization covers BC, EPRL and FK models.

Integrating out gv, g′v gives a tensor network model.

generalizes correspondence between
4D lattice gauge theories and

2D Ising like models
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coarse field variables
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•How to block finer variables into coarser ones?

•What is the [finite dimensional] space of models, renormalization flow takes place in?

•How to truncate the flow back to this space?

•How to deal with non-local couplings?

•How to coarse grain the boundary? 
 Should we require triangulation independence for the boundary? 

amplitude function

effective amplitude
includes sum over
finer field variables

Localize truncations,
diagonalize only subparts
of transfer operator

iteration procedure

determine embedding maps

embedding map after 3 iterations
Plateau (scale free dynamics) of almost constant embedding maps around phase transition

iteration step

approximation

embedding maps
needed to compare results
for different bond dimensions

convergence defines continuum limit

27
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•How to block finer variables into coarser ones?

•What is the [finite dimensional] space of models, renormalization flow takes place in?

•How to truncate the flow back to this space?

•How to deal with non-local couplings?

•How to coarse grain the boundary? 
 Should we require triangulation independence for the boundary? 

➡ tensor network renormalization provides answers
•THIS TALK:
  -procedure for classical systems: blocking and truncation chosen by hand        [BD 12]

  -procedure for quantum systems: blocking and truncation chosen dynamically 
      [methods developed in condensed matter/ q-information: Levin-Nave, Wen-Gu, Vidal, Verstraete, ...’00’s+]

 

Questions for coarse graining
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Summary of the method
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[Oeckl 03]

State sums with (generalized) boundaries
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Coarse graining space time regions
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Embedding boundaries
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Classical procedure: 2D scalar field
 [BD New J. Phys. 12]
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Classical procedure: 2D scalar field
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We want to define an
effective amplitude
acting on coarser

boundary Hilbert space H1

Take (rescaled) effective amplitude
as new amplitude for original region

(no rescaling necessary for gravity or
reparametrization invariant systems)

Need to relate coarser and
finer bdry Hilbert spaces

by embedding maps

Via the embedding map we can find
the effective amplitude functional

A′ on H1.

Take A′ as new amplitude functional.
Iterate and find fixed point.

quantum classical

Amplitude functional −→ Hamilton’s (principal) function

||

action evaluated on solution
depending on boundary data

Discrete action (for field theories):
first guess of Hamilton’s principal function

for basic building blocks
depending on discretization of boundary data

-basic building block: square
-scalar field φ associated to vertices
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Discrete action (for field theories):
first guess of Hamilton’s principal function

for basic building blocks
depending on discretization of boundary data

-basic building block: square
-scalar field φ associated to vertices

-action for massless free field

19

ι : (φ1,φ2, . . .) !→ (φ1,
3
4φ1 + 1

4φ2,
1
2 (φ1 + φ2),

1
4φ1 + 3

4φ2,φ2, . . .) (0.130)

S′
4 = (φ1 + φ2)

2 + (φ2 + φ3)
2 + (φ3 + φ4)

2 + (φ4 + φ1)
2 − α(φ1 − φ2 + φ3 − φ4)

2 (0.131)

S4 = (φ1 + φ2)
2 + (φ2 + φ3)

2 + (φ3 + φ4)
2 + (φ4 + φ1)

2 (0.132)

α =
2

3
(0.133)

S∗
!4 = S∗

!(φi) +

φ1γ12 + . . . − φ1γ23 + . . . +

2.28γ2
12 + . . . − 1.20γ12γ23 + . . . − 0.34γ12γ34 + . . . (0.134)

S∗
!16 = S∗

!(φi) +

φ1γ12 + . . . − φ1γ23 + . . . +

2.20γ2
12 + . . . − 1.18γ12γ23 + . . . − 0.36γ12γ34 + . . . +

φ · κ + γ · κ + κ · κ –terms (0.135)

S = . . . λa2(φ4
1 + φ4

2 + φ4
3 + φ4

4)

S∗ = . . . − 0.0045λ2a4φ6
1 + . . .

S∗ = . . . − 0.0051λ2a4φ6
1 + . . .

cb ∼ cb′

A family of functions {Sb}b∈B is cylindrically consistent on the inductive family defined by
(Cb, ιb), if

Sb = ι∗bb′Sb′ , i.e. Sb(c) = Sb′(ιbb′(c)) ∀c ∈ Cb (0.136)

where ι∗bb′ is the pullback of ιbb′ . This just implements that the value of the function F should
not depend on the representative on which one chooses to evaluate.

Pb : Hb !→ C . (0.137)

ιbb′ : ψb !→ ψb′ where ψb′(φ1, γ12,φ2, . . .) = ψb(φ1,φ2, . . .) . (0.138)
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e )
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αē φs(e) φt(e)

φ1 φ2 φ3 φ4 φ0 → solution

φ12 = 1
2(φ1 + φ2) + γ12 , φ23 = 1

2(φ2 + φ3) + γ23 φ34 = 1
2(φ3 + φ4) + γ34

φ41 = 1
2(φ4 + φ1) + γ41

1
2(φ2 + φ3)

14

Eρ χρ((h
f
e )−1 hf ′

e )

ω(hf ) =
∑

ρ dimρ ω̃ρ χρ(hf )

Z ′ =
∑

ρ(
Eρ

dimρ)
"E(ω̃ρ)"F

Eρ = dimρ exp(β−1Cas(ρ)) and/or ω̃ρ = exp(β′−1Cas(ρ))

( Eρ

dimρ), (ω̃ρ) =

{

1

0

ω̃j+,j− = δj+,j−

ω̃j+,j− =
∑

k δj+, 1+γ
2

k δj−, |1−γ|
2

k

ω̃′
ρ =

∑

ρ1,ρ2

(ω̃ρ1)
4(ω̃ρ2)

4 dimρ1 dimρ2

dimρ
nρρ1ρ2 (0.123)

ω̃ρ=0 = 1 (0.124)

a b c d
a1 a2 b1 b2 c1 c2 d1 d2

ι : Cbound → Cbound′ (0.125)

(a, b, c, d) "→ ι(a, b, c, d) = (a1, a2, b1, b2, c1, c2, d1, d2) (0.126)

T ′(ι(a, b, c, d)) (0.127)

T (a, b, c, d) (0.128)

T, T ′, T ′′, T ′′′, . . . → T ∗ (0.129)
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We want to define an
effective amplitude
acting on coarser

boundary Hilbert space H1

Take (rescaled) effective amplitude
as new amplitude for original region

(no rescaling necessary for gravity or
reparametrization invariant systems)

Need to relate coarser and
finer bdry Hilbert spaces

by embedding maps

Via the embedding map we can find
the effective amplitude functional

A′ on H1.

Take A′ as new amplitude functional.
Iterate and find fixed point.

quantum classical

Amplitude functional −→ Hamilton’s (principal) function

||

action evaluated on solution
depending on boundary data

Discrete action (for field theories):
first guess of Hamilton’s principal function

for basic building blocks
depending on discretization of boundary data

-basic building block: square
-scalar field φ associated to vertices

-action for massless free field

S4(φ1, . . . ,φ4)

S8(φ1, . . . ,φ4,φ12, . . . ,φ41)
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2 − α(φ1 − φ2 + φ3 − φ4)
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3
(0.132)
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Sb = ι∗bb′Sb′ , i.e. Sb(c) = Sb′(ιbb′(c)) ∀c ∈ Cb (0.135)

where ι∗bb′ is the pullback of ιbb′ . This just implements that the value of the function F should
not depend on the representative on which one chooses to evaluate.
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Iteration procedure

We want to define an
effective amplitude
acting on coarser

boundary Hilbert space H1

Take (rescaled) effective amplitude
as new amplitude for original region

(no rescaling necessary for gravity or
reparametrization invariant systems)

Need to relate coarser and
finer bdry Hilbert spaces

by embedding maps

Via the embedding map we can find
the effective amplitude functional

A′ on H1.

Take A′ as new amplitude functional.
Iterate and find fixed point.

classical quantum

Hamilton’s (principal) function −→ Amplitude functional
embeddings of configuration spaces −→ embedding of bdry Hilbert spaces

||

action evaluated on solution
depending on boundary data

Discrete action (for field theories):
first guess of Hamilton’s principal function

for basic building blocks
depending on discretization of boundary data

-basic building block: square
-scalar field φ associated to vertices

-action for massless free field

S4(φ1, . . . ,φ4)

S8(φ1, . . . ,φ4,φ12, . . . ,φ41)

piecewise linear embedding
ι : C4 → C8 defined by
φ12 = 1

2 (φ1 + φ2), . . .
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iterate
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flow in parameter α:

fixed point: α∗ = 2
3

After N iteration find an approximation to Hamilton’s function for square with 2N basic squares
and ‘edge wise’ linear boundary fields.

Fixed point: approximation to continuum Hamilton’s function evaluated on ‘edge wise’ linear
boundary data.

For free massless scalar
field actually exact!

The same procedure for squares with refined boundary data will in general give a correction to
this approximation.
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Find new Hamilton’s function, evaluate on 
same type of boundary data

Fixed point action:

We can find Hamilton’s function for more and more refined boundary data.

Special for massless case: this part does not change.

Start with Hamilton’s function for  
refined boundary data.

Glue 4 such squares.

free boundary fields

eom’s have been solved for these fields

approximated fields in first iteration

approximated fields in second iteration

approximated fields in second iteration

S′
4(φ1, . . . ,φ4) =

S8(φ1, . . . ,
1
2(φ1 + φ2), . . .) (0.150)

iterate

diagonal couplings

flow in parameter α:

fixed point: α∗ = 2
3

After N iteration find an approximation to Hamilton’s function for square with 2N basic squares
and ‘edge wise’ linear boundary fields.

Fixed point: approximation to continuum Hamilton’s function evaluated on ‘edge wise’ linear
boundary data.

For free massless scalar
field actually exact!

The same procedure for squares with refined boundary data will in general give a correction to
this approximation.

set γ233, . . . = 0

21

ι : (φ1,φ2, . . .) !→ (φ1,
3
4φ1 + 1

4φ2,
1
2 (φ1 + φ2),

1
4φ1 + 3

4φ2,φ2, . . .) (0.130)

S′
4 = (φ1 + φ2)

2 + (φ2 + φ3)
2 + (φ3 + φ4)

2 + (φ4 + φ1)
2 − α(φ1 − φ2 + φ3 − φ4)

2 (0.131)

S4 = (φ1 + φ2)
2 + (φ2 + φ3)

2 + (φ3 + φ4)
2 + (φ4 + φ1)

2 (0.132)

α =
2

3
(0.133)

S∗
8 = S∗

4(φi) +

φ1γ12 + . . . − φ1γ23 + . . . +

2.28γ2
12 + . . . − 1.20γ12γ23 + . . . − 0.34γ12γ34 + . . . (0.134)

S∗
!16 = S∗

!(φi) +

φ1γ12 + . . . − φ1γ23 + . . . +

2.20γ2
12 + . . . − 1.18γ12γ23 + . . . − 0.36γ12γ34 + . . . +

φ · κ + γ · κ + κ · κ –terms (0.135)

S = . . . λa2(φ4
1 + φ4

2 + φ4
3 + φ4

4)

S∗ = . . . − 0.0045λ2a4φ6
1 + . . .

S∗ = . . . − 0.0051λ2a4φ6
1 + . . .

cb ∼ cb′

A family of functions {Sb}b∈B is cylindrically consistent on the inductive family defined by
(Cb, ιb), if

Sb = ι∗bb′Sb′ , i.e. Sb(c) = Sb′(ιbb′(c)) ∀c ∈ Cb (0.136)

where ι∗bb′ is the pullback of ιbb′ . This just implements that the value of the function F should
not depend on the representative on which one chooses to evaluate.

Pb : Hb !→ C . (0.137)

ιbb′ : ψb !→ ψb′ where ψb′(φ1, γ12,φ2, . . .) = ψb(φ1,φ2, . . .) . (0.138)
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Even more refined boundary data
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amplitude function

effective amplitude
includes sum over
finer field variables

Localize truncations,
diagonalize only subparts
of transfer operator

iteration procedure

determine embedding maps

embedding map after 3 iterations
Plateau (scale free dynamics) of almost constant embedding maps around phase transition

iteration step

approximation

embedding maps
needed to compare results
for different bond dimensions

convergence defines continuum limit

Comparing the fixed points found for different truncations
allows to judge the convergence to the continuum result.
To compare the fixed points we need to use the embedding maps.
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Nonlinear potential
1.3333333333315365` f12 - 0.6666666666684854` f1 f2 +

1.3333333333314925` f22 - 1.3333333333342485` f1 f3 - 0.6666666666685183` f2 f3 +

1.3333333333314699` f32 - 0.666666666668474` f1 f4 - 1.3333333333342474` f2 f4 -

0.6666666666685073` f3 f4 + 1.3333333333315154` f42 + 0.9999999999981569` f1 g12 +
0.9999999999981566` f2 g12 - 1.0000000000006235` f3 g12 - 1.000000000000623` f4 g12 +
2.275571229481218` g122 + 0.9999999999981743` f1 g14 - 1.000000000000623` f2 g14 -
1.0000000000006235` f3 g14 + 0.9999999999981741` f4 g14 - 1.2003244371886126` g12 g14 +
2.275571229481229` g142 - 1.0000000000006235` f1 g23 + 0.9999999999981071` f2 g23 +
0.9999999999981073` f3 g23 - 1.000000000000623` f4 g23 - 1.2003244371886133` g12 g23 -
0.34274078767937144` g14 g23 + 2.275571229481184` g232 - 1.0000000000006237` f1 g34 -
1.000000000000623` f2 g34 + 0.9999999999981246` f3 g34 + 0.9999999999981241` f4 g34 -
0.34274078767937133` g12 g34 - 1.2003244371886135` g14 g34 -
1.2003244371886128` g23 g34 + 2.2755712294811956` g342 + 0.16000050862673076` A2 f14 l +

0.15999999999980186` A2 f13 f2 l + 0.16000025431313264` A2 f12 f22 l +

0.15999999999980186` A2 f1 f23 l + 0.16000050862673076` A2 f24 l +

0.03999987284364215` A2 f13 f3 l + 0.07999987284355044` A2 f12 f2 f3 l +

0.11999961853091433` A2 f1 f22 f3 l + 0.1599999999998019` A2 f23 f3 l +

0.026666666666676175` A2 f12 f32 l + 0.07999987284355045` A2 f1 f2 f32 l +

0.1600002543131327` A2 f22 f32 l + 0.03999987284364215` A2 f1 f33 l +

0.15999999999980194` A2 f2 f33 l + 0.16000050862673076` A2 f34 l +

0.1599999999998019` A2 f13 f4 l + 0.11999961853091431` A2 f12 f2 f4 l +

0.07999987284355041` A2 f1 f22 f4 l + 0.03999987284364212` A2 f23 f4 l +

0.07999987284355048` A2 f12 f3 f4 l + 0.10666666666670467` A2 f1 f2 f3 f4 l +

0.07999987284355041` A2 f22 f3 f4 l + 0.07999987284355042` A2 f1 f32 f4 l +

0.11999961853091436` A2 f2 f32 f4 l + 0.15999999999980186` A2 f33 f4 l +

0.16000025431313267` A2 f12 f42 l + 0.07999987284355042` A2 f1 f2 f42 l +

0.02666666666667615` A2 f22 f42 l + 0.11999961853091436` A2 f1 f3 f42 l +

0.07999987284355041` A2 f2 f3 f42 l + 0.16000025431313267` A2 f32 f42 l +

0.1599999999998019` A2 f1 f43 l + 0.03999987284364212` A2 f2 f43 l +

0.15999999999980188` A2 f3 f43 l + 0.16000050862673076` A2 f44 l +

0.23404611294318675` A2 f13 g12 l + 0.38019491748597123` A2 f12 f2 g12 l +

0.3801949174859712` A2 f1 f22 g12 l + 0.23404611294318672` A2 f23 g12 l +

0.07060152907909614` A2 f12 f3 g12 l + 0.14120305815818512` A2 f1 f2 f3 g12 l +

0.13371304570645157` A2 f22 f3 g12 l + 0.03576923209637391` A2 f1 f32 g12 l +

0.06878200606574425` A2 f2 f32 g12 l + 0.02756813187199903` A2 f33 g12 l +

0.13371304570645154` A2 f12 f4 g12 l + 0.141203058158185` A2 f1 f2 f4 g12 l +

0.0706015290790961` A2 f22 f4 g12 l + 0.07153846419274867` A2 f1 f3 f4 g12 l +

0.0715384641927487` A2 f2 f3 f4 g12 l + 0.042736438946686967` A2 f32 f4 g12 l +

0.06878200606574421` A2 f1 f42 g12 l + 0.03576923209637387` A2 f2 f42 g12 l +

0.04273643894668695` A2 f3 f42 g12 l + 0.02756813187199901` A2 f43 g12 l +

0.26898001573908337` A2 f12 g122 l + 0.43249761240805384` A2 f1 f2 g122 l +

0.26898001573908326` A2 f22 g122 l + 0.06064067843449934` A2 f1 f3 g122 l +

0.0770262228913406` A2 f2 f3 g122 l + 0.014802224472345759` A2 f32 g122 l +

0.07702622289134058` A2 f1 f4 g122 l + 0.060640678434499315` A2 f2 f4 g122 l +

0.022935581617311747` A2 f3 f4 g122 l + 0.014802224472345747` A2 f42 g122 l +

0.19877467155568482` A2 f1 g123 l + 0.1987746715556848` A2 f2 g123 l +

0.021982795409024473` A2 f3 g123 l + 0.021982795409024466` A2 f4 g123 l +

0.06725445472274261` A2 g124 l + 0.2340461129431868` A2 f13 g14 l +

0.13371304570645154` A2 f12 f2 g14 l + 0.06878200606574422` A2 f1 f22 g14 l +

0.027568131871999014` A2 f23 g14 l + 0.07060152907909616` A2 f12 f3 g14 l +

0.0715384641927487` A2 f1 f2 f3 g14 l + 0.04273643894668697` A2 f22 f3 g14 l +

0.03576923209637391` A2 f1 f32 g14 l + 0.042736438946686994` A2 f2 f32 g14 l +

0.02756813187199903` A2 f33 g14 l + 0.38019491748597134` A2 f12 f4 g14 l +

0.14120305815818504` A2 f1 f2 f4 g14 l + 0.03576923209637388` A2 f22 f4 g14 l +

0.14120305815818504` A2 f1 f3 f4 g14 l + 0.07153846419274867` A2 f2 f3 f4 g14 l +

+ +

Hamilton’s function: page 1 of 20 ...

Only flow in second order in lambda. 

• in 4 to 1 square coarse graining 
scheme:

↵ =
2
3

(0.131)

S⇤
⇤4 = S⇤

⇤(�i) +
�

1

�
12

+ . . .� �
1

�
23

+ . . . +
2.28�2

12

+ . . .� 1.20�
12

�
23

+ . . .� 0.34�
12

�
34

+ . . . (0.132)

S⇤
⇤16 = S⇤

⇤(�i) +
�

1

�
12

+ . . .� �
1

�
23

+ . . . +
2.20�2

12

+ . . .� 1.18�
12

�
23

+ . . .� 0.36�
12

�
34

+ . . . +
� ·  + � ·  +  ·  –terms (0.133)

S = . . . �a2(�4

1

+ �4

2

+ �4

3

+ �4

4

)

S⇤ = . . .� 0.0039�2a4�6

1

+ . . .

S⇤ = . . .� 0.0050�2a4�6

1

+ . . .
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•in 16 to 1 square coarse graining 
scheme:

include gamma fields

include gamma fields

include gamma fields

ι : (φ1,φ2, . . .) !→ (φ1,
3
4φ1 + 1

4φ2,
1
2 (φ1 + φ2),

1
4φ1 + 3

4φ2,φ2, . . .) (0.130)

S′
4 = (φ1 + φ2)

2 + (φ2 + φ3)
2 + (φ3 + φ4)

2 + (φ4 + φ1)
2 − α(φ1 − φ2 + φ3 − φ4)

2 (0.131)

S4 = (φ1 + φ2)
2 + (φ2 + φ3)

2 + (φ3 + φ4)
2 + (φ4 + φ1)

2 (0.132)

α =
2

3
(0.133)

S∗
8 = S∗

4(φi) +

φ1γ12 + . . . − φ1γ23 + . . . +

2.28γ2
12 + . . . − 1.20γ12γ23 + . . . − 0.34γ12γ34 + . . . (0.134)

S∗
16 = S∗

4(φi) +

φ1γ12 + . . . − φ1γ23 + . . . +

2.20γ2
12 + . . . − 1.18γ12γ23 + . . . 0.36γ12γ34 + . . . +

φ · κ + γ · κ + κ · κ –terms (0.135)

S = . . . λa2(φ4
1 + φ4

2 + φ4
3 + φ4

4)

S∗
4 = . . . − 0.0045λ2a4φ6

1 + . . .

S∗
8 = . . . − 0.0051λ2a4φ6

1 + . . .

cb ∼ cb′

A family of functions {Sb}b∈B is cylindrically consistent on the inductive family defined by
(Cb, ιb), if

Sb = ι∗bb′Sb′ , i.e. Sb(c) = Sb′(ιbb′(c)) ∀c ∈ Cb (0.136)

where ι∗bb′ is the pullback of ιbb′ . This just implements that the value of the function F should
not depend on the representative on which one chooses to evaluate.

Pb : Hb !→ C . (0.137)

ιbb′ : ψb !→ ψb′ where ψb′(φ1, γ12,φ2, . . .) = ψb(φ1,φ2, . . .) . (0.138)
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Applications

‣ the set-up can be understood as introducing complex building blocks with local couplings between 
building blocks instead of simple building blocks with complicated non-local couplings

‣ this can be used to define an (renormalization) improved discretization/numerical scheme

‣ leads to higher order difference equations, but in a controlled way

‣can be used to find perfect discretizations and to define continuum limit

 [more discussion in BD New J. Phys. 12]
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Formalize: cylindrical consistency

Embedding of configuration spaces into each other:

graphs. There is a natural (partial) ordering of graphs into coarser or finer graphs. Cylindrical
consistency implements the idea that a computation (of expectation values, transition ampli-
tudes etc.) for a given state should not depend on whether this computation is performed in a
Hilbert space associated to a coarser or finer graph, as long as both graphs are fine enough to
describe the given state.

Following this idea we introduce a partially ordered set structure on the set B of boundaries
b, where b � b0, if b0 is a refinement of b. To every boundary we associate a configuration space
C

b

, which typically is a direct product of some basic configuration space C.
The notion of coarse boundary data will be encoded in the choice of a family of embedding

maps. For every pair b � b0 we define an injection

◆
bb

0 : C
b

! C
b

0 . (6.1) {01b}

where the image of ◆
bb

0 determines the ‘coarse boundary data’ in the configuration space C
b

0 .
This family of injections needs to be consistent in the sense that for b � b0 � b00 we should have

◆
bb

00 = ◆
b

0
b

00 � ◆
bb

0 . (6.2) {02b}

Such a consistent family allows the construction of an inductive limit

C
ind

= [
b

C
b

/ ⇠ , (6.3) {02bb}

which consists of equivalence classes of elements in a disjoint union of configuration spaces C
b

over all boundaries b 2 B. Two elements c
b

and c
b

0 are equivalent if there exist a b00 with b � b00

and b0 � b00 and ◆
bb

00(c
b

) = ◆
b

0
b

00(c
b

0) holds. In other words two configurations defined on two
di↵erent boundaries are equivalent if there is a finer boundary onto which the two configurations
can be embedded and if these embeddings happen to agree.

A family of functions {F
b

}
b2B is cylindrically consistent on the inductive family defined by

(C
b

, ◆
b

), if

F
b

= ◆⇤
bb

0F
b

0 , i.e. F
b

(c) = F
b

0(◆
bb

0(c)) 8c 2 C
b

(6.4) {03b}

where ◆⇤
bb

0 is the pullback of ◆
bb

0 . This just implements that the value of the function F should
not depend on the representative on which one chooses to evaluate.

The procedure proposed in this work attempts to construct Hamilton’s principal function as a
cylindrically consistent object. We do that iteratively starting from an action S

b

(identified with
Hamilton’s principal function) on some given boundary b. This is used to compute Hamilton’s
principal function on some finer boundary b0, we will denote the result by Sb

b

0 . For the fixed
point action S⇤

b

we demand that

◆⇤
bb

0Sb

b

0 = S⇤
b

. (6.5) {03b}

If the fixed point action S⇤
b

in (6.5) does not depend on the choice of finer boundary b0, then
it is the b–component of the cylindrically consistent family of Hamilton’s principal functions
we are looking for. We have seen that in the case of the massless free scalar field and for the
zeroth order coe�cient such an independence holds, but that in general one can only hope for
approximate (or a convergence) of results.

We should remark that (6.5) is to be understood for systems without an explicit scale, such
as the massless scalar field. Note that gravity, where the metric is a dynamic variable, is in
this sense also without a scale (if one does not expand on a background). This also holds for
parametrized systems, where embedding coordinates are added as dynamical variables [?]. In
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the case of scale dependent actions, which we denote by S
b,a

, for example the scalar field with
potential, we have to replace (6.5) by

◆⇤
bb

0S
b,a

b

0
,La

= S⇤
b,La

(6.6) {04b}

where the lattice constant in b0 is La and Sb,a

b

0
,La

is Hamilton’s principal function computed from
the action S

b,a

. Even more generally the embeddings ◆⇤
bb

0 could also depend on the two scales
involved.

In the previous scalar field examples, based on piecewise linear fields, the basic configuration
space is associated to a vertex and given by R. The configuration space for a boundary with
N vertices is given by RN . We considered the set of boundaries of a square with a given
number of repeated subdivisions of the edges into two halves. b0 is a refinement of b if b0 can be
obtained from b by such a subdivision. Let us consider the case that b0 is obtained from b by
one subdivision. We label the vertices in b by indices i (cyclically ordered) and the additional
vertices in b0, which are between i and i + 1 (mod the number of vertices in b) by (i, i + 1). The
injection map is then given by defining the fields on the additional vertices as average of the
neighbouring vertices, i.e.

◆
bb

0(�
1

, �
2

, �
3

, . . .) = (�
1

, 1

2

(�
1

+ �
2

), �
2

, 1

2

(�
2

+ �
3

), �
3

, . . .) . (6.7) {02}

7 Towards quantum theory

As mentioned in the previous section the notion of cylindrical consistency is crucial in the
loop quantization of gravity. We therefore remark that the notion of cylindrical consistency for
Hamilton’s principal function translates into the notion of a cylindrical consistent (path integral)
measure in the quantum theory [?, ?].

Hamilton’s principal function associated to a region with a boundary is the classical analogue
to the path integral over this region [?]. The result of this path integral as a function of the
boundary data is the (generalized) boundary wave function [?]. Note that – given a prescription
for the path integral this boundary wave function is the unique physical state associated to this
region.3

For the following it is useful if we take a dual point on the path integral and rather see it as
an (anti–linear) functional on the (kinematical) boundary Hilbert space. That is we assume that
we can associate to every boundary of a region a kinematical boundary Hilbert space H

bound

,
that encodes all states that can in principle occur kinematically. A well defined quantum theory
should then associated an amplitude map to every region, that is it defines a map on every
boundary Hilbert space:

P
bound

: H
bound

7! C . (7.1) {q1}

As we map to C the co–kernel of this map is one–dimensional, defining the physical wave func-
tion, which we mentioned before. The maps P for unions of regions have to satisfy consistency
conditions which are generalizations of the usual composition rule for the path integral [?]. Clas-
sically these consistency conditions correspond to the additivity of the action (or the composition
rule for Hamilton’s principal function).

These considerations also hold for the case that we replace space time with a lattice or
more general discretization. In this case the boundaries are discrete boundaries b to which we

3Usually one would think of the path integral to propagate states from one boundary to a second one. Here we
have only one boundary and the wave function corresponds to the Hartle–Hawking ‘no boundary’ wave function.
This is fully consistent with the classical phase space one would associate to such a boundary, as such a classical
phase space is totally constrained [?].)
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We are asking for a cylindrically 
consistent Hamilton’s function:
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cb ⇠ cb0

A family of functions {Sb}b2B is cylindrically consistent on the inductive family defined by
(Cb, ◆b), if

Sb = ◆⇤bb0Sb0 , i.e. Sb(c) = Sb0(◆bb0(c)) 8c 2 Cb (0.134)

where ◆⇤bb0 is the pullback of ◆bb0 . This just implements that the value of the function F should
not depend on the representative on which one chooses to evaluate.
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Formalization: cylindrical consistency

We approximate these as fixed point 
actions involving two boundaries:

Hamilton’s function for (finer) b’ computed from 
(fixed point) action for (coarser) b

If        does not depend on choice of (finer) boundary b’ is coincides with continuum result.

graphs. There is a natural (partial) ordering of graphs into coarser or finer graphs. Cylindrical
consistency implements the idea that a computation (of expectation values, transition ampli-
tudes etc.) for a given state should not depend on whether this computation is performed in a
Hilbert space associated to a coarser or finer graph, as long as both graphs are fine enough to
describe the given state.

Following this idea we introduce a partially ordered set structure on the set B of boundaries
b, where b � b0, if b0 is a refinement of b. To every boundary we associate a configuration space
C

b

, which typically is a direct product of some basic configuration space C.
The notion of coarse boundary data will be encoded in the choice of a family of embedding

maps. For every pair b � b0 we define an injection

◆
bb

0 : C
b

! C
b

0 . (6.1) {01b}

where the image of ◆
bb

0 determines the ‘coarse boundary data’ in the configuration space C
b

0 .
This family of injections needs to be consistent in the sense that for b � b0 � b00 we should have

◆
bb

00 = ◆
b

0
b

00 � ◆
bb

0 . (6.2) {02b}

Such a consistent family allows the construction of an inductive limit

C
ind

= [
b

C
b

/ ⇠ , (6.3) {02bb}

which consists of equivalence classes of elements in a disjoint union of configuration spaces C
b

over all boundaries b 2 B. Two elements c
b

and c
b

0 are equivalent if there exist a b00 with b � b00

and b0 � b00 and ◆
bb

00(c
b

) = ◆
b

0
b

00(c
b

0) holds. In other words two configurations defined on two
di↵erent boundaries are equivalent if there is a finer boundary onto which the two configurations
can be embedded and if these embeddings happen to agree.

A family of functions {F
b

}
b2B is cylindrically consistent on the inductive family defined by

(C
b

, ◆
b

), if

F
b

= ◆⇤
bb

0F
b

0 , i.e. F
b

(c) = F
b

0(◆
bb

0(c)) 8c 2 C
b

(6.4) {03b}

where ◆⇤
bb

0 is the pullback of ◆
bb

0 . This just implements that the value of the function F should
not depend on the representative on which one chooses to evaluate.

The procedure proposed in this work attempts to construct Hamilton’s principal function as a
cylindrically consistent object. We do that iteratively starting from an action S

b

(identified with
Hamilton’s principal function) on some given boundary b. This is used to compute Hamilton’s
principal function on some finer boundary b0, we will denote the result by Sb

b

0 . For the fixed
point action S⇤

b

we demand that

◆⇤
bb

0Sb

b

0 = S⇤
b

. (6.5) {03b}

If the fixed point action S⇤
b

in (6.5) does not depend on the choice of finer boundary b0, then
it is the b–component of the cylindrically consistent family of Hamilton’s principal functions
we are looking for. We have seen that in the case of the massless free scalar field and for the
zeroth order coe�cient such an independence holds, but that in general one can only hope for
approximate (or a convergence) of results.

We should remark that (6.5) is to be understood for systems without an explicit scale, such
as the massless scalar field. Note that gravity, where the metric is a dynamic variable, is in
this sense also without a scale (if one does not expand on a background). This also holds for
parametrized systems, where embedding coordinates are added as dynamical variables [?]. In
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Cylindrically consistent dynamics: cylindrically consistent Hamilton’s function.
Gives continuum result for discrete bdry data (which represent continuum bdry data).
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∏

(ev)
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(ef)
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v
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′
v′) (0.153)

simplicity constraints

Holonomy formulation

This parametrization covers BC, EPRL and FK models.

Integrating out gv, g′v gives a tensor network model.

generalizes correspondence between
4D lattice gauge theories and

2D Ising like models

T = K · W · K (0.154)

blocking of finer field
variables

B(ψ) = Ψ (0.155)

Z =
∑

ψ

a(ψ) =
∑

Ψ

∑

ψ: B(ψ)=Ψ

a(ψ) =
∑

Ψ

a′(Ψ) (0.156)

ι"bb′S
b
b′ = S∗

b (0.157)

coarse field variables

amplitude function

effective amplitude
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Towards quantum theory

•Configuration spaces are replaced by Hilbert spaces:

associate Hilbert spaces H
b

. As for the classical case we have to choose injection maps ◆
bb

0 that
embed the Hilbert space H

b

into H
bb

0 . Such injections can be naturally constructed if we have
projections ⇡

b

0
b

: C
b

0 ! C
b

on the configuration spaces at our disposal: assuming a polarization
in which the quantum states are functions on the configuration space we can use the pullback
of the projections to define injections:

◆
bb

0 : H
b

! H
b

0

 
b

7!  
b

0 where  
b

0(c
b

0) =  
b

(⇡
b

0
b

(c
b

0)) . (7.2) {q2}

The reader will note that in the classical case we also used injections instead of projections.
In the case we discussed here we can however obtain projections by ‘forgetting’ the fluctuation
variables. I.e. in the case that coarse graining was based on piecewise linear fields and for
a refinement which doubled the number of fields, {�

i

} to {�
i

,�
i,i+1

}, we perform a variable
transformation �

ij

= �
ij

� 1

2

(�
i

+ �
j

) and define the projection as

⇡
b

0
b

(�
1

, �
12

,�
2

, . . .) = (�
1

,�
2

, . . .) . (7.3) {q3}

Such a projection satisfies ⇡
b

0
b

� ◆class

bb

0 = Id
b

where here the ◆class

b

is the classical embedding map
for the configuration spaces.

A measure (which here will be just understood as linear functional) on a family of inductive
Hilbert spaces can be defined by providing a representation on each of the Hilbert spaces H

b

.
Such a family of measures {µ}

b

is cylindrically consistent if

µ
b

( 
b

) = µ
b

0(◆
bb

0( 
b

)) . (7.4) {q4}

The Ashtekar–Lewandowki measure [?, ?] for the kinematical Hilbert spaces in loop quantum
gravity satisfies such consistency relations. One way to define the dynamics (and the physical
inner product) would be via the path integrals acting as functionals (rigging maps []) on these
kinematical Hilbert spaces (technically on some dense subspace of these Hilbert spaces) as in
(7.1). Cylindrical consistent dynamics would then mean to have a cylindrical consistent family
of (anti–linear) maps

P
b

: H
b

! C . (7.5) {q5}

As an example we can again consider the massless free scalar field. The kinematical Hilbert
space associated to the boundary with N vertices will be L2(RN ), here we will have the case
N = 4 and N = 8. We define the path integral map for the boundary b of the basic square as4

P
b

( 
b

) =
1

N
b

Z Y

i=1,...,4

d�
i

eiSb(�i)  
b

(�
i

) (7.6) {q6}

where N
b

is a normalization factor. The path integral map for a refinement b0 that subdivides
a squares into four would be given by

P
b

0( 
b

0) =
1

N
b

0

Z
d�

0

Y

i=1,...,4

d�
i

d�
i,i+1

eiSb0 (�i,�i,i+1,�0)  
b

0(�
i

, �
i,i+1

) (7.7) {q7}

where �
0

is the scalar field on the inner vertex and �
i,i+1

the variables introduced in (7.3) and
S

b

0 is here the action for four squares obtained by summing the basic action S
b

over the four
4The complex conjugation of the kinematical wave function can be interpreted as the kinematical wave function

being associated with the other orientation of the boundary [?].
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•Hamilton’s function is replaced by amplitude map      
acting on boundary Hilbert space:

associates an amplitude (physical vacuum wave function) to region with boundary b

•Cylindrical consistency:

i.e. result  does not depend on which boundary b we perform computation.

ι : (φ1,φ2, . . .) !→ (φ1,
3
4φ1 + 1

4φ2,
1
2 (φ1 + φ2),

1
4φ1 + 3

4φ2,φ2, . . .) (0.130)

S′
4 = (φ1 + φ2)

2 + (φ2 + φ3)
2 + (φ3 + φ4)

2 + (φ4 + φ1)
2 − α(φ1 − φ2 + φ3 − φ4)

2 (0.131)

S4 = (φ1 + φ2)
2 + (φ2 + φ3)

2 + (φ3 + φ4)
2 + (φ4 + φ1)

2 (0.132)

α =
2

3
(0.133)

S∗
8 = S∗

4(φi) +

φ1γ12 + . . . − φ1γ23 + . . . +

2.28γ2
12 + . . . − 1.20γ12γ23 + . . . − 0.34γ12γ34 + . . . (0.134)

S∗
16 = S∗

4(φi) +

φ1γ12 + . . . − φ1γ23 + . . . +

2.20γ2
12 + . . . − 1.18γ12γ23 + . . . 0.36γ12γ34 + . . . +

φ · κ + γ · κ + κ · κ –terms (0.135)

S = . . . λa2(φ4
1 + φ4

2 + φ4
3 + φ4

4)

S∗
4 = . . . − 0.0039λ2a4φ6

1 + . . .

S∗
8 = . . . − 0.0050λ2a4φ6

1 + . . .

cb ∼ cb′

A family of functions {Sb}b∈B is cylindrically consistent on the inductive family defined by
(Cb, ιb), if

Sb = ι∗bb′Sb′ , i.e. Sb(c) = Sb′(ιbb′(c)) ∀c ∈ Cb (0.136)

where ι∗bb′ is the pullback of ιbb′ . This just implements that the value of the function F should
not depend on the representative on which one chooses to evaluate.

Ab : Hb !→ C . (0.137)

ιbb′ : ψb !→ ψb′ where ψb′(φ1, γ12,φ2, . . .) = ψb(φ1,φ2, . . .) . (0.138)

15
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(Cb, ιb), if

Sb = ι∗bb′Sb′ , i.e. Sb(c) = Sb′(ιbb′(c)) ∀c ∈ Cb (0.136)

where ι∗bb′ is the pullback of ιbb′ . This just implements that the value of the function F should
not depend on the representative on which one chooses to evaluate.

Ab : Hb !→ C . (0.137)

(ιbb′)
!Ab′(ψb) = Ab′(ιbb′(ψb)) (0.138)

ιbb′ : ψb !→ ψb′ where ψb′(φ1, γ12,φ2, . . .) = ψb(φ1,φ2, . . .) . (0.139)

15Cylindrically consistent dynamics: cylindrically consistent amplitude map.
Gives continuum result for discrete bdry data (which represent continuum bdry data).
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Choice of embeddings
•determines quality of approximation

•should be adjusted to the dynamics of the system:
  Ideal case: embedding reproduces behaviour of solution (along inner boundaries)
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Choice of embeddings becomes even more crucial in quantum theory.
Implemented into algorithms based on tensor networks.

Solution with edgewise linear 
bdry data leads also to edgewise 
linear data for smaller squares.
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Quantum theory: tensor network algorithms

 [Levin & Nave, Gu & Wen, Vidal ...’00’s+]

[BD, Martin-Benito, v. Massenbach w.i.p.]
[BD, Eckert, Martin-Benito,  New. J. Phys. ’11]
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Motivation: transfer operator technique
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free boundary fields

eom’s have been solved for these fields

approximated fields in first iteration

approximated fields in second iteration

approximated fields in second iteration

S′
4(φ1, . . . ,φ4) =

S8(φ1, . . . ,
1
2(φ1 + φ2), . . .) (0.150)

iterate

diagonal couplings

flow in parameter α:

fixed point: α∗ = 2
3

After N iteration find an approximation to Hamilton’s function for square with 2N basic squares
and ‘edge wise’ linear boundary fields.

Fixed point: approximation to continuum Hamilton’s function evaluated on ‘edge wise’ linear
boundary data.

For free massless scalar
field actually exact!

The same procedure for squares with refined boundary data will in general give a correction to
this approximation.

set γ233, . . . = 0

Transition amplitude between
two states 〈ψ|A|ψ2〉

insert id =
∑

ONB |ψ〉〈ψ|
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χ largest (in mod) eigenvalues.

Expect good approximation if ψ1,ψ2

are in span of these eigenvectors.

But: explicit diagonalization of T difficult.

Determined by (generalized)
EV-decomposition.

blocking

embedding

group elements ±1
at vertices,

edge weights ω

23

A = TN

Truncate by restricting
∑

ONB
to the eigenvectors of T with the
χ largest (in mod) eigenvalues.

Expect good approximation if ψ1,ψ2

are in span of these eigenvectors.

But: explicit diagonalization of T difficult.

Determined by (generalized)
EV-decomposition.

blocking

embedding

group elements ±1
at vertices,

edge weights ω

Fourier trafo

23

A = TN

Truncate by restricting
∑

ONB
to the eigenvectors of T with the
χ largest (in mod) eigenvalues.

Expect good approximation if ψ1,ψ2

are in span of these eigenvectors.

But: explicit diagonalization of T difficult.

Determined by (generalized)
EV-decomposition.

blocking

embedding

group elements ±1
at vertices,

edge weights ω

Fourier trafo

rep labels k = 0, 1 at edges
edge weights ω̃(k)

Gauss constraints at vertices

23

A = TN

Truncate by restricting
∑

ONB
to the eigenvectors of T with the
χ largest (in mod) eigenvalues.

Expect good approximation if ψ1,ψ2

are in span of these eigenvectors.

But: explicit diagonalization of T difficult.

Determined by (generalized)
EV-decomposition.

blocking

embedding

group elements ±1
at vertices,

edge weights ω

Fourier trafo

rep labels k = 0, 1 at edges
edge weights ω̃(k)

Gauss constraints at vertices

A(k1, . . . , k4) =
√

ω̃1 · · ·
√

ω̃4

δ(k1 + k2 − k3 − k4) (0.151)

23

25



 
 

 
 

 
 

 
 

 
 

a

b
c

d

e
f

A

AA

A

A

A A

AAA A

AAA

AA

AAAAAAA

AAAA

AAAA

AAAA

AAAA

AAAA

∑

ONB

T

T

T

T

A′A′A′

= id

C2
C2

C2

C2
C2

C2

H
H

H

g1 g2

ω(g1g
−1
2 )

k

ω̃(k)Gauss

22

 
 

 
 

 
 

 
 

 
 

a

b
c

d

e
f

A

AA

A

A

A A

AAA A

AAA

AA

AAAAAAA

AAAA

AAAA

AAAA

AAAA

AAAA

∑

ONB

T

T

T

T

A′A′A′

= id

C2
C2

C2

C2
C2

C2

H
H

H

g1 g2

ω(g1g
−1
2 )

k

ω̃(k)Gauss

22

 
 

 
 

 
 

 
 

 
 

a

b
c

d

e
f

A

AA

A

A

A A

AAA A

AAA

AA

AAAAAAA

AAAA

AAAA

AAAA

AAAA

AAAA

∑

ONB

T

T

T

T

A′A′A′

= id

C2
C2

C2

C2
C2

C2

H
H

H

g1 g2

ω(g1g
−1
2 )

k

ω̃(k)Gauss

22

amplitude function

effective amplitude

Localize truncations,
diagonalize only subparts
of transfer operator

iteration procedure

condition on embedding maps

27

amplitude function

effective amplitude

Localize truncations,
diagonalize only subparts
of transfer operator

iteration procedure

condition on embedding maps

27

amplitude function

effective amplitude

Localize truncations,
diagonalize only subparts
of transfer operator

iteration procedure

determine embedding maps

27

 
 

 
 

 
 

 
 

 
 

A

AA

A

A

A A

AAA A

AAA

AA

AAAAAAA

AAAA

AAAA

AAAA

AAAA

AAAA

∑

ONB

T

T

T

T

A′A′A′

= id

C2
C2

C2

C2
C2

C2

H
H

H

g1 g2

ω(g1g
−1
2 )

k

ω̃(k)Gauss

0

0
0

1

1
0

22

 
 

 
 

 
 

 
 

 
 

A

AA

A

A

A A

AAA A

AAA

AA

AAAAAAA

AAAA

AAAA

AAAA

AAAA

AAAA

∑

ONB

T

T

T

T

A′A′A′

= id

C2
C2

C2

C2
C2

C2

H
H

H

g1 g2

ω(g1g
−1
2 )

k

ω̃(k)Gauss

0

0
0

1

1
0

22

A = TN

Truncate by restricting
∑

ONB
to the eigenvectors of T with the
χ largest (in mod) eigenvalues.

Expect good approximation if ψ1,ψ2

are in span of these eigenvectors.

But: explicit diagonalization of T difficult.

Determined by (generalized)
EV-decomposition.

blocking

embedding

group elements ±1
at vertices,

edge weights ω

Fourier trafo

rep labels k = 0, 1 at edges
edge weights ω̃(k)

Gauss constraints at vertices

A(k1, . . . , k4) =
√

ω̃1 · · ·
√

ω̃4

δ(k1 + k2 − k3 − k4) (0.151)

∑

Embedding maps parametrized by:

23

A = TN

Truncate by restricting
∑

ONB
to the eigenvectors of T with the
χ largest (in mod) eigenvalues.

Expect good approximation if ψ1,ψ2

are in span of these eigenvectors.

But: explicit diagonalization of T difficult.

Determined by (generalized)
EV-decomposition.

blocking

embedding

group elements ±1
at vertices,

edge weights ω

Fourier trafo

rep labels k = 0, 1 at edges
edge weights ω̃(k)

Gauss constraints at vertices

A(k1, . . . , k4) =
√

ω̃1 · · ·
√

ω̃4

δ(k1 + k2 − k3 − k4) (0.151)

∑

Embedding maps parametrized by:

1/
√

2 cos(α) sin(α)

23

A = TN

Truncate by restricting
∑

ONB
to the eigenvectors of T with the
χ largest (in mod) eigenvalues.

Expect good approximation if ψ1,ψ2

are in span of these eigenvectors.

But: explicit diagonalization of T difficult.

Determined by (generalized)
EV-decomposition.

blocking

embedding

group elements ±1
at vertices,

edge weights ω

Fourier trafo

rep labels k = 0, 1 at edges
edge weights ω̃(k)

Gauss constraints at vertices

A(k1, . . . , k4) =
√

ω̃1 · · ·
√

ω̃4

δ(k1 + k2 − k3 − k4) (0.151)

∑

Embedding maps parametrized by:

1/
√

2 cos(α) sin(α)

23

 
 

 
 

 
 

 
 

 
 

A

AA

A

A

A A

AAA A

AAA

AA

AAAAAAA

AAAA

AAAA

AAAA

AAAA

AAAA

∑

ONB

T

T

T

T

A′A′A′

= id

C2
C2

C2

C2
C2

C2

H
H

H

g1 g2

ω(g1g
−1
2 )

k

ω̃(k)Gauss

1

0
1

0

1
1

22

 
 

 
 

 
 

 
 

 
 

A

AA

A

A

A A

AAA A

AAA

AA

AAAAAAA

AAAA

AAAA

AAAA

AAAA

AAAA

∑

ONB

T

T

T

T

A′A′A′

= id

C2
C2

C2

C2
C2

C2

H
H

H

g1 g2

ω(g1g
−1
2 )

k

ω̃(k)Gauss

1

0
1

0

1
1

22

A = TN

Truncate by restricting
∑

ONB
to the eigenvectors of T with the
χ largest (in mod) eigenvalues.

Expect good approximation if ψ1,ψ2

are in span of these eigenvectors.

But: explicit diagonalization of T difficult.

Determined by (generalized)
EV-decomposition.

blocking

embedding

group elements ±1
at vertices,

edge weights ω

Fourier trafo

rep labels k = 0, 1 at edges
edge weights ω̃(k)

Gauss constraints at vertices

A(k1, . . . , k4) =
√

ω̃1 · · ·
√

ω̃4

δ(k1 + k2 − k3 − k4) (0.151)

∑

Embedding maps parametrized by:

1/
√

2 cos(α) sin(α)

23

A = TN

Truncate by restricting
∑

ONB
to the eigenvectors of T with the
χ largest (in mod) eigenvalues.

Expect good approximation if ψ1,ψ2

are in span of these eigenvectors.

But: explicit diagonalization of T difficult.

Determined by (generalized)
EV-decomposition.

blocking

embedding

group elements ±1
at vertices,

edge weights ω

Fourier trafo

rep labels k = 0, 1 at edges
edge weights ω̃(k)

Gauss constraints at vertices

A(k1, . . . , k4) =
√

ω̃1 · · ·
√

ω̃4

δ(k1 + k2 − k3 − k4) (0.151)

∑

Embedding maps parametrized by:

1/
√

2 cos(α) sin(α)

23

A = TN

Truncate by restricting
∑

ONB
to the eigenvectors of T with the
χ largest (in mod) eigenvalues.

Expect good approximation if ψ1,ψ2

are in span of these eigenvectors.

But: explicit diagonalization of T difficult.

Determined by (generalized)
EV-decomposition.

blocking

embedding

group elements ±1
at vertices,

edge weights ω

Fourier trafo

rep labels k = 0, 1 at edges
edge weights ω̃(k)

Gauss constraints at vertices

A(k1, . . . , k4) =
√

ω̃1 · · ·
√

ω̃4

δ(k1 + k2 − k3 − k4) (0.151)

∑

Embedding maps parametrized by:

1/
√

2 cos(α) sin(α)

high temperature: cosα = 1, α = 0
(symmetric phase)

23

A = TN

Truncate by restricting
∑

ONB
to the eigenvectors of T with the
χ largest (in mod) eigenvalues.

Expect good approximation if ψ1,ψ2

are in span of these eigenvectors.

But: explicit diagonalization of T difficult.

Determined by (generalized)
EV-decomposition.

blocking

embedding

group elements ±1
at vertices,

edge weights ω

Fourier trafo

rep labels k = 0, 1 at edges
edge weights ω̃(k)

Gauss constraints at vertices

A(k1, . . . , k4) =
√

ω̃1 · · ·
√

ω̃4

δ(k1 + k2 − k3 − k4) (0.151)

∑

Embedding maps parametrized by:

1/
√

2 cos(α) sin(α)

high temperature: cosα = 1, α = 0
(symmetric phase)

low temperature: cosα = sinα = 1√
2
, α = π

4

(symmetry broken phase)

23

ω̃(1) = 1 ω̃(1) = 0 α = 0 α = π
4

24

ω̃(1) = 1 ω̃(1) = 0 α = 0 α = π
4

24

ω̃(1) = 1 ω̃(1) = 0 α = 0 α = π
4

24

ω̃(1) = 1 ω̃(1) = 0 α = 0 α = π
4

24

Example: Ising model

26



Example: Ising model

A

A

A

A A

AAA A

AAA

AA

AAAAAAA

AAAA

AAAA

AAAA

AAAA

AAAA

A

∑

ONB

T

T

T

T

A′A′A′

= id

22

 
 

 
 

 
 

 
 

 
 

A

AA

A

A

A A

AAA A

AAA

AA

AAAAAAA

AAAA

AAAA

AAAA

AAAA

AAAA

∑

ONB

T

T

T

T

A′A′A′

= id

C2
C2

C2

C2
C2

C2

H
H

H

g1 g2

ω(g1g
−1
2 )

k

ω̃(k)Gauss

0

0
0

1

1
0

22

 
 

 
 

 
 

 
 

 
 

A

AA

A

A

A A

AAA A

AAA

AA

AAAAAAA

AAAA

AAAA

AAAA

AAAA

AAAA

∑

ONB

T

T

T

T

A′A′A′

= id

C2
C2

C2

C2
C2

C2

H
H

H

g1 g2

ω(g1g
−1
2 )

k

ω̃(k)Gauss

0

0
0

1

1
0

22

A = TN

Truncate by restricting
∑

ONB
to the eigenvectors of T with the
χ largest (in mod) eigenvalues.

Expect good approximation if ψ1,ψ2

are in span of these eigenvectors.

But: explicit diagonalization of T difficult.

Determined by (generalized)
EV-decomposition.

blocking

embedding

group elements ±1
at vertices,

edge weights ω

Fourier trafo

rep labels k = 0, 1 at edges
edge weights ω̃(k)

Gauss constraints at vertices

A(k1, . . . , k4) =
√

ω̃1 · · ·
√

ω̃4

δ(k1 + k2 − k3 − k4) (0.151)

∑

Embedding maps parametrized by:

1/
√

2 cos(α) sin(α)

23

A = TN

Truncate by restricting
∑

ONB
to the eigenvectors of T with the
χ largest (in mod) eigenvalues.

Expect good approximation if ψ1,ψ2

are in span of these eigenvectors.

But: explicit diagonalization of T difficult.

Determined by (generalized)
EV-decomposition.

blocking

embedding

group elements ±1
at vertices,

edge weights ω

Fourier trafo

rep labels k = 0, 1 at edges
edge weights ω̃(k)

Gauss constraints at vertices

A(k1, . . . , k4) =
√

ω̃1 · · ·
√

ω̃4

δ(k1 + k2 − k3 − k4) (0.151)

∑

Embedding maps parametrized by:

1/
√

2 cos(α) sin(α)

23

ω̃(1) = 1 ω̃(1) = 0 α = 0 α = π
4

Iteration 3
Iteration 2
Iteration 1

24

2 4 6 8 10

0.2

0.4

0.6

0.8

0 5 10 15 20 25 30

0.2

0.4

0.6

0.8

ω̃(1) = 1 ω̃(1) = 0 α = 0 α = π
4

Iteration 3
Iteration 2
Iteration 1

24

2 4 6 8 10

0.2

0.4

0.6

0.8

0 5 10 15 20 25 30

0.2

0.4

0.6

0.8

ω̃(1) = 1 ω̃(1) = 0 α = 0 α = π
4

Iteration 3
Iteration 2
Iteration 1

24

2 4 6 8 10

0.2

0.4

0.6

0.8

0 5 10 15 20 25 30

0.2

0.4

0.6

0.8

ω̃(1) = 1 ω̃(1) = 0 α = 0 α = π
4

Iteration 3
Iteration 2
Iteration 1

number of iterations

24

2 4 6 8 10

0.2

0.4

0.6

0.8

0 5 10 15 20 25 30

0.2

0.4

0.6

0.8

ω̃(1) = 1 ω̃(1) = 0 α = 0 α = π
4

Iteration 3
Iteration 2
Iteration 1

number of iterations

24

2 4 6 8 10

0.2

0.4

0.6

0.8

0 5 10 15 20 25 30

0.2

0.4

0.6

0.8

ω̃(1) = 1 ω̃(1) = 0 α = 0 α = π
4

Iteration 3
Iteration 2
Iteration 1

number of iterations

α

24

2 4 6 8 10

0.2

0.4

0.6

0.8

0 5 10 15 20 25 30

0.2

0.4

0.6

0.8

ω̃(1) = 1 ω̃(1) = 0 α = 0 α = π
4

Iteration 3
Iteration 2
Iteration 1

number of iterations

α

24

A = TN

Truncate by restricting
∑

ONB
to the eigenvectors of T with the
χ largest (in mod) eigenvalues.

Expect good approximation if ψ1,ψ2

are in span of these eigenvectors.

But: explicit diagonalization of T difficult.

Determined by (generalized)
EV-decomposition.

blocking

embedding

group elements ±1
at vertices,

edge weights ω

Fourier trafo

rep labels k = 0, 1 at edges
edge weights ω̃(k)

Gauss constraints at vertices

A(k1, . . . , k4) =
√

ω̃1 · · ·
√

ω̃4

δ(k1 + k2 − k3 − k4) (0.151)
∑

Embedding maps parametrized by:

1/
√

2 cos(α) sin(α)

high temperature: cosα = 1, α = 0
(symmetric phase)

low temperature: cosα = sinα = 1√
2
, α = π

4

(symmetry broken phase)

23

A = TN

Truncate by restricting
∑

ONB
to the eigenvectors of T with the
χ largest (in mod) eigenvalues.

Expect good approximation if ψ1,ψ2

are in span of these eigenvectors.

But: explicit diagonalization of T difficult.

Determined by (generalized)
EV-decomposition.

blocking

embedding

group elements ±1
at vertices,

edge weights ω

Fourier trafo

rep labels k = 0, 1 at edges
edge weights ω̃(k)

Gauss constraints at vertices

A(k1, . . . , k4) =
√

ω̃1 · · ·
√

ω̃4

δ(k1 + k2 − k3 − k4) (0.151)
∑

Embedding maps parametrized by:

1/
√

2 cos(α) sin(α)

high temperature: cosα = 1, α = 0
(symmetric phase)

low temperature: cosα = sinα = 1√
2
, α = π

4

(symmetry broken phase)

23

2 4 6 8 10

0.2

0.4

0.6

0.8

0 5 10 15 20 25 30

0.2

0.4

0.6

0.8

ω̃(1) = 1 ω̃(1) = 0 α = 0 α = π
4

Iteration 3
Iteration 2
Iteration 1

number of iterations

α

√

ω(1)initial = 0.3, 0.4, . . . , 0.9

24

2 4 6 8 10

0.2

0.4

0.6

0.8

0 5 10 15 20 25 30

0.2

0.4

0.6

0.8

ω̃(1) = 1 ω̃(1) = 0 α = 0 α = π
4

Iteration 3
Iteration 2
Iteration 1

number of iterations

α

√

ω(1)initial = 0.3, 0.4, . . . , 0.9

√

ω(1)initial = 0.5915, . . . , 0.5918

24

amplitude function

effective amplitude

Localize truncations,
diagonalize only subparts
of transfer operator

iteration procedure

determine embedding maps

embedding map after 3 iterations
Plateau (scale free dynamics) of almost constant embedding maps around phase transition
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amplitude function
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Application to spin foams / spin nets
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This parametrization covers BC, EPRL and FK models.
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 [Bahr, BD, Hellmann, Kaminski  1208.3388]
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 [BD, Eckert,   
Martin-Benito  ’11]
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Application to spin nets

• spin nets allow interesting models in 2D (whereas spin foams need higher dimensions)

• experience from lattice gauge theory:                                                                                  
statistical properties between corresponding foams and nets might be similar

• we can probe the behaviour of simplicity constraints under coarse graining

• in particular by studying embedding maps for transfer operator

• transfer operator incorporates simplicity constraints 
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T = K · W · K (0.154)
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project onto subspace 
determined by simplicity constrains

 [BD, Hellmann, Kaminski  1209.4539]

• as blocking is determined by the dynamics: 

➡Is this blocking geometrically meaningful? 

➡Are the simplicity constraints relaxed under coarse graining?
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Application to spin nets

• [BD, Eckert, Martin-Benito  ’11] study of Abelian spin net models without non-trivial simplicity constraints 

• [BD, Martin-Benito, v. Massenbach wip] study of models based on permutation group S3 with simplicity 
constraints: simulations are running!

• near future prospect: numerical study of SU2 quantum group models

• use the interplay between embedding maps and truncation for analytical investigations

Stay tuned!
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•How to block finer variables into coarser ones?

•What is the [finite dimensional] space of models, renormalization flow takes place in?

•How to truncate the flow back to this space?

•How to deal with non-local couplings?

•How to coarse grain the boundary? 
 Should we require triangulation independence for the boundary? 

 

Answers
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Thanks!
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