Coarse graining: towards a cylindrically consistent dynamics

Bianca Dittrich
(Perimeter Institute and Albert Einstein Institute)

[BD, I205.6/27, to appear in New J. Phys.]
[BD, Martin-Benito, v. Massenbach, w.i.p.]

PI

Perimeter Institute for

Theoretical Physics

Max Planck Research Group Canonical and Covariant Dynamics of Quantum Gravity

Max Planck Institute for Gravitational Physics (Albert Einstein Institute)

International Loop Quantum Gravity Seminar, Nov 2012

QWeMWieM

A. Motivation and summary
B. Coarse graining and continuum limit for classical system: the 2D scalar field
C. Formalization: cylindrical consistency
D. Coarse graining for quantum systems: tensor network algorithms
E. Applications to spinfoams / spinnets
thanks to collaborations and discussions with:
Benjamin Bahr, Valentin Bonzom, Frank Eckert, Frank Hellmann, Wojchiech Kaminski, Etera Livine, Mercedes Martin-Benito, Felix v. Massenbach, Erik Schnetter, Sebastian Steinhaus, Guifre Vidal, ...

Why coarse graining spin foams?

- Extract effective dynamics of the regime with many building blocks ('large scale' regime)
-Do the models lead to a phase describing 4D smooth manifolds on macroscopic scales?
[Spin foams are generalized lattice gauge theories. Standard non-Abelian lattice gauge theory in 4D is believed to be confining, which correspond to a phase where degenerate geometries dominate.]
- Metric degrees of freedoms at all scales?
-Restoration of diff or triangulation/lattice independence? [Bahr, BD et al 09-II, Rovelli' 'II]
-Large scale limit not equal `large j limit/few building blocks’ for spin foams?
[Hellmann, Kaminski I2, Perini I2]
-applications to cosmology (effective dynamics for homogeneous modes), ...

Coarse graining state sums: splitting the sum

-How to block finer variables into coarser ones?
-What is the [finite dimensional] space of models, renormalization flow takes place in?
-How to truncate the flow back to this space?
-How to deal with non-local couplings?
-How to coarse grain the boundary?
Should we require triangulation independence for the boundary?

Questions for coarse graining

-How to block finer variables into coarser ones?
-What is the [finite dimensional] space of models, renormalization flow takes place in?
-How to truncate the flow back to this space?
-How to deal with non-local couplings?
-How to coarse grain the boundary?
Should we require triangulation independence for the boundary?
\Rightarrow tensor network renormalization provides answers
-THIS TALK:
-procedure for classical systems: blocking and truncation chosen by hand [BD 12]
-procedure for quantum systems: blocking and truncation chosen dynamically
[methods developed in condensed matter/ q-information: Levin-Nave,Wen-Gu,Vidal,Verstraete, ...00's+]

Summary of the method

State sums with (generalized) boundaries

State sum models associate amplitudes to space time regions with boundary (data)
[Oeckl 03]

$$
\begin{aligned}
& A\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= \\
& \sum_{x_{\text {bulk }}} a\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{\text {bulk }}\right)
\end{aligned}
$$

where x are boundary data

$$
\psi\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
$$

is a boundary wave function
A is an (anti-)linear functional on bdry Hilbert space \mathcal{H}_{1},

$$
A(\psi)=\sum_{x_{i}} A\left(x_{i}\right) \bar{\psi}\left(x_{i}\right)
$$

defines (transition) amplitudes

Coarse graining space time regions

Amplitude for a 'larger' region glued from amplitudes of smaller regions, acts on 'refined' bdry Hilbert space \mathcal{H}_{2}

We want to define an effective amplitude acting on coarser boundary Hilbert space \mathcal{H}_{1}

Take (rescaled) effective amplitude as new amplitude for original region
(no rescaling necessary for gravity or reparametrization invariant systems)

Need to relate coarser and finer bdry Hilbert spaces by embedding maps

Embedding boundaries

Via the embedding map we can find the effective amplitude functional
A^{\prime} on \mathcal{H}_{1}.

Take A^{\prime} as new amplitude functional. Iterate and find fixed point.

Classical procedure: 2D scalar field

Classical procedure: 2D scalar field

quantum

Amplitude functional \longrightarrow Hamilton's (principal) function
||
action evaluated on solution
depending on boundary data

Discrete action (for field theories):
first guess of Hamilton's principal function
for basic building blocks
depending on discretization of boundary data

-basic building block: square -scalar field ϕ associated to vertices -action for massless free field

$$
S_{4}=\left(\phi_{1}+\phi_{2}\right)^{2}+\left(\phi_{2}+\phi_{3}\right)^{2}+\left(\phi_{3}+\phi_{4}\right)^{2}+\left(\phi_{4}+\phi_{1}\right)^{2}
$$

Iteration procedure

flow in parameter α :

$$
\begin{gathered}
S_{4}^{\prime}=\left(\phi_{1}+\phi_{2}\right)^{2}+\left(\phi_{2}+\phi_{3}\right)^{2}+\left(\phi_{3}+\phi_{4}\right)^{2}+\left(\phi_{4}+\phi_{1}\right)^{2}-\alpha\left(\phi_{1}-\phi_{2}+\phi_{3}-\phi_{4}\right)^{2} \\
\text { fixed point: } \alpha^{*}=\frac{2}{3}
\end{gathered}
$$

Understanding the approximation

After N iteration find an approximation to Hamilton's function for square with 2^{N} basic squares and 'edge wise' linear boundary fields.

- free boundary fields
eom's have been solved for these fields
approximated fields in first iteration
- approximated fields in second iteration
- approximated fields in second iteration

Fixed point: approximation to continuum Hamilton's function evaluated on 'edge wise' linear boundary data.

For free massless scalar field actually exact!

The same procedure for squares with refined boundary data will in general give a correction to this approximation.

For more refined boundary data

Start with Hamilton's function for Glue 4 such squares. Find new Hamilton's function, evaluate on refined boundary data. same type of boundary data

Fixed point action: $\quad S_{8}^{*}=S_{4}^{*}\left(\phi_{i}\right)+\longleftarrow$ pecial for massless case: this part does not change. $\phi_{1} \gamma_{12}+\ldots-\phi_{1} \gamma_{23}+\ldots+$ $2.28 \gamma_{12}^{2}+\ldots-1.20 \gamma_{12} \gamma_{23}+\ldots-0.34 \gamma_{12} \gamma_{34}+\ldots$

We can find Hamilton's function for more and more refined boundary data.

Even more refined boundary data

$$
\begin{aligned}
S_{8}^{*}= & S_{4}^{*}\left(\phi_{i}\right)+ \\
& \phi_{1} \gamma_{12}+\ldots-\phi_{1} \gamma_{23}+\ldots+ \\
& 2.28 \gamma_{12}^{2}+\ldots-1.20 \gamma_{12} \gamma_{23}+\ldots-0.34 \gamma_{12} \gamma_{34}+\ldots
\end{aligned}
$$

$$
\begin{aligned}
S_{16}^{*}= & S_{4}^{*}\left(\phi_{i}\right)+ \\
& \phi_{1} \gamma_{12}+\ldots-\phi_{1} \gamma_{23}+\ldots+ \\
& 2.20 \gamma_{12}^{2}+\ldots-1.18 \gamma_{12} \gamma_{23}+\ldots 0.36 \gamma_{12} \gamma_{34}+\ldots+ \\
& \phi \cdot \kappa+\gamma \cdot \kappa+\kappa \cdot \kappa \text {-terms }
\end{aligned}
$$

Comparing the fixed points found for different truncations allows to judge the convergence to the continuum result. To compare the fixed points we need to use the embedding maps.

Nonlinear potential

$S=\ldots \lambda a^{2}\left(\phi_{1}^{4}+\phi_{2}^{4}+\phi_{3}^{4}+\phi_{4}^{4}\right)$

Only flow in second order in lambda.

- in 4 to 1 square coarse graining scheme:

$$
S_{4}^{*}=\ldots-0.0039 \lambda^{2} a^{4} \phi_{1}^{6}+\ldots
$$

include gamma fields

$$
S_{8}^{*}=\ldots-0.0050 \lambda^{2} a^{4} \phi_{1}^{6}+\ldots
$$

-in I6 to I square coarse graining

 scheme:$$
S_{4}^{*}=\ldots-0.0045 \lambda^{2} a^{4} \phi_{1}^{6}+\ldots
$$

include gamma fields

$$
S_{8}^{*}=\ldots-0.0051 \lambda^{2} a^{4} \phi_{1}^{6}+\ldots
$$

1.3333333333315365 ' f1 $^{2}-0.6666666666684854$ - f1 f2 +
 $1.3333333333314699^{`} \mathrm{f3}^{2}-0.666666666668474^{`} \mathrm{f} 1 \mathrm{f} 4-1.3333333333342474^{`} \mathrm{f} 2 \mathrm{f4}-$

 $2.275571229481229^{`} \mathrm{~g} 14^{2}-1.0000000000006235^{\prime} \mathrm{f} 1 \mathrm{~g} 23+0.9999999999981071^{\prime} \mathrm{f} 2 \mathrm{~g}:$ $0.9999999999981073^{\prime} \mathrm{f} 3 \mathrm{~g} 23-1.000000000000623^{\prime} \mathrm{f4}$ g23-1.2003244371886133-g1:
 $0.34274078767937133^{\prime} \mathrm{g} 12 \mathrm{~g} 34-1.2003244371886135^{\circ} \mathrm{g} 14 \mathrm{~g} 34-$
$1.2003244371886128^{`} \mathrm{~g} 23 \mathrm{~g} 34+2.2755712294811956^{\prime} \mathrm{g} 34^{2}+0.16000050862673076$ A A $0.15999999999980186^{-} \mathrm{A}^{2} \mathrm{f}^{3} \mathrm{f} \mathbf{2} \lambda+0.16000025431313264^{-} \mathrm{A}^{2} \mathrm{ff}^{2} \mathrm{ff}^{2} \lambda+$ $0.15999999999980186^{-} \mathrm{A}^{2} f 1 \mathrm{f}^{2} 2^{3} \lambda+0.16000050862673076^{-} \mathrm{A}^{2} \mathrm{f}^{2} \mathrm{f}^{4} \lambda+$ 0.03999987284364215 A $^{2} \mathrm{ff}^{3} \mathrm{f} 3 \lambda+0.07999987284355044^{-\mathrm{A}^{2} \mathrm{fl}^{2} \mathrm{f} 2 f 3 \lambda+}$ $0.11999961853091433^{-} \mathrm{A}^{2} f 1 \mathrm{f}^{2} \mathrm{f}^{2} \mathbf{f 3} \lambda+0.1599999999998019^{-} \mathrm{A}^{2} \mathrm{f}^{3} \mathbf{2}^{3} \mathrm{f} 3 \lambda+$ $0.026666666666676175^{-} \mathrm{A}^{2} \mathrm{fl}^{2} \mathrm{f}^{2} \lambda+0.079999872843550455^{-} \mathrm{A}^{2} \mathrm{f} 1 \mathrm{f} 2 \mathrm{ff}^{2} \lambda$ $0.1600002543131327^{-} \mathrm{A}^{2} \mathrm{ff}^{2} \mathrm{f3}^{2} \lambda+0.039999872843642155^{-} \mathrm{A}^{2} f 1 \mathrm{ff}^{3} \lambda$ $0.15999999999980194 A^{2} f 2 f 3^{3} \lambda+0.16000050862673076^{`} \mathrm{~A}^{2} f 3^{4} \lambda+$ $0.1599999999998019^{-} A^{2} f 1^{1} £ 4 \lambda+0.11999961853091431-A^{2} f 1^{2} f 2 f 4 \lambda+$ $0.07999987284355048^{-} A^{2} f 1^{2} f 3 f 4 \lambda+0,56666666670467 \lambda^{2} A^{2} f 1 f 2 f 3 f 4 \lambda+$ $079998728455041-A^{2} f 2^{2} f 3 f 4 \lambda+0.07999987294355042 \lambda^{2} f 1 f 3^{2} f 4 \lambda+$ $0.0199{ }^{2}$
 $0266666666667615^{-A^{2}} \mathrm{ff}^{2} f 4^{2} \lambda+0.11999961853091436 \mathrm{~A}^{2} \mathrm{f1} f 3 f 4^{2} \lambda+$ $0299987284355041^{-} \mathbb{A}^{2} f 2 f 3^{2} 4^{2} \lambda+0.16000025431313267^{-} \mathrm{A}^{2} f 3^{2} f 4^{2} \lambda+$ $0.1599999999998019^{-} \mathrm{A}^{2} f 1 f 4^{3} \lambda+0.03999987284364212^{-} \mathrm{A}^{2} f 2 f 4^{3} \lambda+$ $0.15999999999980188^{\wedge} A^{2} f 3 f 4^{3} \lambda+0.16000050862673076^{-} A^{2} f 4^{4} \lambda+$
 $0.3801949174859712^{-} \mathrm{A}^{2} \mathrm{f} 1 \mathrm{ff}^{2} \mathrm{~g} 12 \lambda+0.23404611294318672^{\wedge} \mathrm{A}^{2} \mathrm{f} 2^{3} \mathrm{~g} 12 \lambda+$ $0.07060152907909614^{`} A^{2} f 1^{2} f\left(\mathrm{~g} 12 \lambda+0.14120305815818512^{\wedge} A^{2} f 1 \mathrm{f} 2 \mathrm{f} 3 \mathrm{~g} 12 \lambda+\right.$
 0.06878200606574425 A 2 f2 $\mathrm{fl}^{2} \mathrm{~g} 12 \lambda+0.02756813187199903^{`} \mathrm{~A}^{2} \mathrm{f} 3^{3} \mathrm{~g} 12 \lambda+$ $0.13371304570645154^{-} A^{2} \mathrm{f}^{2} \mathrm{f} 4 \mathrm{~g} 12 \lambda+0.141203058158185^{\prime} \mathrm{A}^{2} \mathrm{f} 1 \mathrm{f} 2 \mathrm{f} 4 \mathrm{~g} 12 \lambda+$
 $0.0715384641927487-A^{2} f 2 f 3 \mathrm{f} 4 \mathrm{~g} 12 \lambda+0.042736438946686967^{-} \mathrm{A}^{2} \mathrm{f} \mathbf{3}^{2} \mathrm{f} 4 \mathrm{~g} 12 \lambda+$ $0.06878200606574421^{\wedge} \mathrm{A}^{2} \mathrm{f} 1 \mathrm{ff}^{2} \mathrm{~g} 12 \lambda+0.03576923209637387-\mathrm{A}^{2} \mathrm{f} 2 \mathrm{f} 4^{2} \mathrm{~g} 12 \lambda+$
 $0.26898001573908337^{\prime} \mathrm{A}^{2} \mathrm{fl}^{2} \mathbf{g 1 2}^{2} \lambda+0.43249761240805384^{\text {` }} \mathrm{A}^{2} \mathbf{f 1} \mathbf{f 2} \mathbf{g 1 2 ^ { 2 }} \lambda+$ 0.26898001573908326 A $^{2} \mathrm{f2}^{2} \mathrm{gl12}^{2} \lambda+0.06064067843449934^{\wedge} \mathrm{A}^{2} \mathrm{f} 1 \mathrm{f} \mathbf{f} \mathbf{g 1 2 ^ { 2 }} \lambda+$

 $0.19877467155568482^{\wedge} \mathrm{A}^{2} \mathrm{ff} \mathrm{gl}^{2} 2^{3} \lambda+0.1987746715556848^{\wedge} \mathrm{A}^{2} \mathrm{f} \mathbf{f} \mathrm{g} 12^{3} \lambda+$ $0.021982795409024473^{-} \mathrm{A}^{2} \mathrm{f} \mathrm{gl}^{3} \lambda+0.021982795409024466^{-} \mathrm{A}^{2} \mathrm{f} 4 \mathrm{~g} 12^{3} \lambda+$ $0.06725445472274261 \mathrm{~A}^{2} \mathrm{~g} 12 \mathrm{C} \lambda+0.234046129431868 \mathrm{~A}^{2} \mathrm{fl}^{3} \mathrm{~g} 14 \lambda+$.
 $0.015386192787{ }^{2}{ }^{2} 142$ $0.02756813187199903^{-A^{2}} \mathrm{f}^{3} \mathrm{G} 14 \lambda+0.38019491748597134^{-} \mathrm{A}^{2} \mathrm{fl}^{2} \mathrm{f} 4 \mathrm{~g} 14 \lambda+$ $.14120305815818504 \lambda^{2} f 1 f 2 f 4914 \lambda+0.03576923209637381 \lambda^{2} \mathrm{~A}^{2}$

Hamilton's function: page I of 20 ...

Applications

- the set-up can be understood as introducing complex building blocks with local couplings between building blocks instead of simple building blocks with complicated non-local couplings
this can be used to define an (renormalization) improved discretization/numerical scheme
- leads to higher order difference equations, but in a controlled way
- can be used to find perfect discretizations and to define continuum limit

Formalize: cylindrical consistency

Embedding of configuration spaces into each other: $\quad \iota_{b b^{\prime}}: \mathcal{C}_{b} \rightarrow \mathcal{C}_{b^{\prime}}$
example: $\quad \iota_{b b^{\prime}}\left(\phi_{1}, \phi_{2}, \phi_{3}, \ldots\right)=\left(\phi_{1}, \frac{1}{2}\left(\phi_{1}+\phi_{2}\right), \phi_{2}, \frac{1}{2}\left(\phi_{2}+\phi_{3}\right), \phi_{3}, \ldots\right)$
consistency: $\quad \iota_{b b^{\prime \prime}}=\iota_{b^{\prime} b^{\prime \prime}} \circ \iota_{b b^{\prime}}$
continuum configuration space / inductive limit:

$$
\begin{aligned}
& \mathcal{C}_{\text {ind }}=\cup_{b} \mathcal{C}_{b} / \sim \\
& c_{b} \sim c_{b^{\prime}} \quad \text { if } \quad \iota_{b b^{\prime \prime}}\left(c_{b}\right)=\iota_{b^{\prime} b^{\prime \prime}}\left(c_{b^{\prime}}\right)
\end{aligned}
$$

Formalization: cylindrical consistency

We are asking for a cylindrically consistent Hamilton's function:
$\left\{S_{b}\right\}_{b \in \mathcal{B}}$ is cylindrically consistent

$$
S_{b}=\iota_{b b^{\prime}}^{\star} S_{b^{\prime}} \quad \text { i.e. } \quad S_{b}(c)=S_{b^{\prime}}\left(\iota_{b b^{\prime}}(c)\right) \quad \forall c \in \mathcal{C}_{b}
$$

We approximate these as fixed point actions involving two boundaries:

$$
\begin{gathered}
\iota_{b b^{\prime}}^{\star} S_{b^{\prime}}^{b}=S_{b}^{*} \\
\uparrow
\end{gathered}
$$

Hamilton's function for (finer) b' computed from
(fixed point) action for (coarser) b

If S_{b}^{*} does not depend on choice of (finer) boundary b' is coincides with continuum result.

Cylindrically consistent dynamics: cylindrically consistent Hamilton's function. Gives continuum result for discrete bdry data (which represent continuum bdry data).

Towards quantum theory

-Configuration spaces are replaced by Hilbert spaces:

$$
\iota_{b b^{\prime}}: \quad \mathcal{H}_{b} \rightarrow \mathcal{H}_{b^{\prime}}
$$

-Hamilton's function is replaced by amplitude map

$$
A_{b}: \mathcal{H}_{b} \mapsto \mathbb{C}
$$ acting on boundary Hilbert space:

associates an amplitude (physical vacuum wave function) to region with boundary b

- Cylindrical consistency:

$$
\left(\iota_{b b^{\prime}}\right)^{\star} A_{b^{\prime}}\left(\psi_{b}\right)=A_{b^{\prime}}\left(\iota_{b b^{\prime}}\left(\psi_{b}\right)\right)
$$

i.e. result does not depend on which boundary b we perform computation.

Cylindrically consistent dynamics: cylindrically consistent amplitude map.
Gives continuum result for discrete bdry data (which represent continuum bdry data).

Choice of embeddings

-determines quality of approximation
-should be adjusted to the dynamics of the system:
Ideal case: embedding reproduces behaviour of solution (along inner boundaries)

Solution with edgewise linear bdry data leads also to edgewise linear data for smaller squares.

Choice of embeddings becomes even more crucial in quantum theory. Implemented into algorithms based on tensor networks.

Quantum theory: tensor network algorithms

[Levin \& Nave, Gu \& Wen, Vidal ...'00's+]
[BD, Eckert, Martin-Benito, New.J. Phys.' 'II]
[BD, Martin-Benito, v. Massenbach w.i.p.]

Motivation: transfer operator technique

Expect good approximation if ψ_{1}, ψ_{2} are in span of these eigenvectors.

But: explicit diagonalization of T difficult.

Truncate by restricting $\sum_{\text {ONB }}$ to the eigenvectors of T with the χ largest (in mod) eigenvalues.

Dynamically determined embedding maps

Truncate by restricting $\sum_{\text {ONB }}$ to the eigenvectors of T with the χ largest (in mod) eigenvalues.

Localize truncations, diagonalize only subparts of transfer operator
iteration procedure

blocking

embedding map after 3 iterations

Example: Ising model

$\xrightarrow[g_{1}]{\stackrel{\omega}{g_{2}}\left(g_{1} g_{2}^{-1}\right)}$

group elements ± 1
at vertices, edge weights ω

rep labels $k=0,1$ at edges edge weights $\tilde{\omega}(k)$
Gauss constraints at vertices

$$
\begin{aligned}
A\left(k_{1}, \ldots, k_{4}\right)= & \sqrt{\tilde{\omega}_{1}} \cdots \sqrt{\tilde{\omega}_{4}} \\
& \delta\left(k_{1}+k_{2}-k_{3}-k_{4}\right)
\end{aligned}
$$

Example: Ising model

determine embedding maps

embedding maps

condition on embedding maps

Embedding maps parametrized by:

$\cos (\alpha)$	$\sin (\alpha)$	$1 / \sqrt{2}$

high temperature: $\cos \alpha=1, \alpha=0$ (symmetric phase)

$$
\begin{array}{c|c}
\tilde{\omega}(1)=0 & \alpha=0 \\
\tilde{\omega}(1)=1 & \alpha=\frac{\pi}{4}
\end{array}
$$

low temperature: $\cos \alpha=\sin \alpha=\frac{1}{\sqrt{2}}, \alpha=\frac{\pi}{4}$ (symmetry broken phase)

Example: Ising model

Iteration 3
Iteration 2
Iteration 1

Plateau (scale free dynamics) of almost constant embedding maps around phase transition

Embeddings determined by the dynamics of the system. Represent the physical vacuum for finer degrees of freedom.

The procedure for 2D state sum

approximation
iteration step

embedding maps
needed to compare results
for different bond dimensions
convergence defines continuum limit

Application to spin foams / spin nets

Holonomy formulation
[Bahr, BD, Hellmann, Kaminski I208.3388]
spin nets
[BD, Eckert, Martin-Benito '।।

associate

- to every edge e two group elements $g_{v e}, g_{e v^{\prime}}$
- to every edge-face pair ef a group element $h_{e f}$
associate
- to every vertex v two group elements g_{v}, g_{v}^{\prime}
- to every vertex-edge pair ve a group element $h_{v e}$
$Z=\int \prod_{(e f)} d h_{e f} \prod_{(e v)} d g_{e v}$

$$
\prod_{(e f) \uparrow} E\left(h_{e f}\right) \prod_{f} \delta\left(g_{v e} h_{e f} g_{e v^{\prime}} \cdots\right)
$$

simplicity constraints
$Z=\int \prod_{(v e)} d h_{v e} \prod_{v} d g_{v} d g_{v}^{\prime}$

simplicity constraints

Application to spin nets

- spin nets allow interesting models in 2D (whereas spin foams need higher dimensions)
- experience from lattice gauge theory:
statistical properties between corresponding foams and nets might be similar
- we can probe the behaviour of simplicity constraints under coarse graining
- in particular by studying embedding maps for transfer operator
- transfer operator incorporates simplicity constraints

- as blocking is determined by the dynamics:
\Rightarrow Is this blocking geometrically meaningful?
\Rightarrow Are the simplicity constraints relaxed under coarse graining?

Application to spin nets

- [BD, Eckert, Martin-Benito 'II] study of Abelian spin net models without non-trivial simplicity constraints
- [BD, Martin-Benito, v. Massenbach wip] study of models based on permutation group S3 with simplicity constraints: simulations are running!
- near future prospect: numerical study of SU2 quantum group models
- use the interplay between embedding maps and truncation for analytical investigations

Stay tuned!

Answers

-How to block finer variables into coarser ones?
-What is the [finite dimensional] space of models, renormalization flow takes place in?
-How to truncate the flow back to this space?
-How to deal with non-local couplings?
-How to coarse grain the boundary?
Should we require triangulation independence for the boundary?

Thanks!

