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Overview

A. Motivation and summary

B. Coarse graining and continuum limit for classical system:
the 2D scalar field

Formalization: cylindrical consistency

D. Coarse graining for quantum systems: tensor network
algorithms

E. Applications to spinfoams / spinnets
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Why coarse graining spin foams!?

*Extract effective dynamics of the regime with many building blocks (‘large scale’ regime)

*Do the models lead to a phase describing 4D smooth manifolds on macroscopic scales?

[Spin foams are generalized lattice gauge theories. Standard non-Abelian lattice gauge theory in 4D is believed to be confining,
which correspond to a phase where degenerate geometries dominate.]

*Metric degrees of freedoms at all scales?
*Restoration of diff or triangulation/lattice independence? [Bahr, BD et al 09-11, Rovelli ’1 1]

eLarge scale limit not equal 'large j limit/few building blocks’ for spin foams!?
[Hellmann, Kaminski 12, Perini |2]

eapplications to cosmology (effective dynamics for homogeneous modes), ...



Coarse graining state sums: splitting the sum

effective amplitude
includes sum over

amplitude function finer field variables
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coarse field variables  blocking of finer field
variables

eHow to block finer variables into coarser ones!?

*What is the [finite dimensional] space of models, renormalization flow takes place in?

*How to truncate the flow back to this space!?

*How to deal with non-local couplings?

*How to coarse grain the boundary?
Should we require triangulation independence for the boundary!?



Questions for coarse graining

eHow to block finer variables into coarser ones!?

*What is the [finite dimensional] space of models, renormalization flow takes place in?

*How to truncate the flow back to this space!?

*How to deal with non-local couplings?

*How to coarse grain the boundary?
Should we require triangulation independence for the boundary!?

= tensor network renormalization provides answers
*THIS TALK:
-procedure for classical systems: blocking and truncation chosen by hand [BD 12]
-procedure for quantum systems: blocking and truncation chosen dynamically
[methods developed in condensed matter/ g-information: Levin-Nave, Wen-Gu,Vidal, Verstraete, ../00’s+]



Summary of the method



State sums with (generalized) boundaries

State sum models associate amplitudes to space time regions with boundary (data)
[Oeckl 03]
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where x are boundary data
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Coarse graining space time regions
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Embedding boundaries
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Classical procedure: 2D scalar field

[BD New J. Phys. 12]
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Classical procedure: 2D scalar field

quantum classical
Amplitude functional =~ —— Hamilton’s (principal) function

action evaluated on solution
depending on boundary data

Discrete action (for field theories): b4 P3
first guess of Hamilton’s principal function
for basic building blocks
depending on discretization of boundary data

P1 ®2

-basic building block: square
-scalar field ¢ associated to vertices

~action for massless free field

Sy = (o1 + ¢2)* + (d2 + #3)° + (¢3 + ¢a)* + (da + $1)°

11



Iteration procedure

¢34

P4 @3 D4 b3
S4<¢17...7¢4) — —> ¢41 ¢ —|solution ¢23 —> SS(¢17°"7¢47¢127°"7¢41)
¢1 ¢2 . . . .
®12 piecewise linear embedding

L : C4 — Cg defined by
d12 = 5(d1 + ¢2), . ..

|

Si(@1,..., 1) =
Ss(P1,. .., 5(01 4+ ¢2),...)

1terate

flow in parameter a:

S = (o1 + #2)* + (¢p2 + ¢3)* + (03 + ¢4)* + (¢a + ¢1)* — (P1 — P2 + B3 — P4)?

diagonal couplings

wIN

fixed point: o™ =
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Understanding the approximation

After N iteration find an approximation to Hamilton’s function for square with 2% basic squares
and ‘edge wise’ linear boundary fields.

@ {ree boundary fields
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Fixed point: approximation to continuum Hamilton’s function evaluated on ‘edge wise’ linear

boundary data.
For free massless scalar

field actually exact!

The same procedure for squares with refined boundary data will in general give a correction to
this approximation.



For more refined boundary data

P31 = 5(d3 + Pa) + V34

h3a = 5(P3 + Pa) + Y34
gb4 2 ¢3 ¢4 i i ¢3/ set v233,... =10
b =30 to) P Faldetds)tam g = 5 (04 + d1) +|yar | | d23 = 5(d2 + P3) + 723
| |
¢ — [solution 1 1 |
¢1 ¢2 ¢1 I ; I ¢2
P12 = %(¢1 + ¢2) + 712 P12 = §(¢1 + ¢2) + 712

Start with Hamilton’s function for ~ Glue 4 such >JHares- Find new Hamilton’s function, evaluate on
refined boundary data. same type of boundary data

—opecial for massless case: this part does not change.

Fixed point action: S8 = 5i(¢i) + <
P1712 + .o — P1Y23 + .. F
2.28’}/%2 + ... — 1.20v1927v23 + ... — 0.34v127v34 + . . .

We can find Hamilton’s function for more and more refined boundary data.
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Even more refined boundary data

- T 1 Ss = Si(¢i) +
| | P1y12+ ... — P13+ ..+
2.287%, + ... — 1.20712v23 + ... — 0.34y19y34 + . . .

i Sis = Si(e)+
+ i -+ P1712+ ... — P1y23 + ...+

I R 2.20%2 + ... — 1.18vy127v3 + ... 0.36v19v34 + ... +
-k + vk + K-k —terms

Comparing the fixed points found for different truncations
allows to judge the convergence to the continuum result.
To compare the fixed points we need to use the embedding maps.
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include gajnma fields

Nonlinear potential

§=... \a*(¢] + 65 + &5 + )

Only flow in second order in lambda.

* in 4 to | square coarse graining
scheme:

St =...—0.0039\2a*¢? + . ..

include gamma fields

Se=...—0.0050\%a*¢$ + ...

*in 16 to | square coarse graining
scheme:

S =...—0.0045)*a*¢% + . ..

include gamma fields

St =...—0.0051\%a*¢$ + ...

1.3333333333315365 £12-0.6666666666684854 £1 £2 +
1.3333333333314925" £22 - 1.3333333333342485" £f1 £3 - 0.6666666666685183" £2 £3
1.3333333333314699" £32-0.666666666668474" £f1 f4 - 1.3333333333342474" £2 £4 -

0.6666666666685073" £3 £4 + 1.3333333333315154" £42 + 0.9999999999981569" £1 gl:
0.9999999999981566" £2 gl2 - 1.0000000000006235" £3 g12 - 1.000000000000623" £f4

2.275571229481218" g122 + 0.9999999999981743 £1 gl4 - 1.000000000000623" £2 gl¢
1.0000000000006235~ £3 gl4 + 0.9999999999981741" £4 gl4 - 1.2003244371886126" g
2.275571229481229" g14? - 1.0000000000006235" £1 g23 + 0.9999999999981071" £2 g:
0.9999999999981073" £3 g23 - 1.000000000000623" £4 g23 - 1.2003244371886133" gl.
0.34274078767937144" gl14 g23 +2.275571229481184" g23% - 1.0000000000006237 " £1
1.000000000000623" £2 g34 + 0.9999999999981246~ £3 g34 + 0.9999999999981241" £f4
0.34274078767937133" gl2g34 - 1.2003244371886135~ gl4 g34 -

1.2003244371886128" g23 g34 + 2.2755712294811956 g342 + 0.16000050862673076" A
0.15999999999980186 A? £1% £2 X + 0.16000025431313264~ A% £12 £22 2 +
0.15999999999980186" A% £1 £23 A + 0.16000050862673076" A% £2* A +
0.03999987284364215~ A% £1% £3 A + 0.07999987284355044" A% £12 £2 £3 A +
0.11999961853091433~ A% £1 £22 £3 A + 0.1599999999998019~ A% £23 £3 A +
0.026666666666676175" A% £12 £3%2 1 + 0.07999987284355045~ A% £1 £2 £32 A +
0.1600002543131327" A2 £22 £32 X + 0.03999987284364215" A% £1 £33 A +
0.15999999999980194" A% £2 £33 A + 0.16000050862673076" A% £3 A +
0.1599999999998019" A2 £13 £4 1+ 0.11999961853091431~ A% £12 £2 f4 A +
0.07999987284355041~ A% £1 £22 £4 A + 0.03999987284364212" A% £23 £4 A +
0.07999987284355048~ A2 £1%2 £3 f4 1 + 0.10666666666670467 A% £1 £2 £3 f4 A +
0.07999987284355041~ A? £22 £3 £4 A + 0.07999987284355042" A% £f1 £32 f4 A +
0.11999961853091436~ A% £2 £32 £4 A + 0.15999999999980186" A% £33 £4 A +
0.16000025431313267" A% £12 £42 1 + 0.07999987284355042" A% £f1 £2 £42 X +
0.02666666666667615~ A% £22 £42 1 +0.11999961853091436" A% £1 £3 £42 X +
0.07999987284355041~ A% £2 £3 £42 A + 0.16000025431313267" A% £32 £42 X +
0.1599999999998019" A% £1 £43 1 + 0.03999987284364212 A? £2 £43 X +
0.15999999999980188" A% £3 £43 A + 0.16000050862673076" A% £4* A +
0.23404611294318675" A% £13g12 1+ 0.38019491748597123" A% £12 £2gl2 A +
0.3801949174859712" A% £1 £22 g12 A + 0.23404611294318672" A% £23g12 2+
0.07060152907909614" A% £1% £3 gl2 A + 0.14120305815818512~ A2 £f1 £2 £3gl2 A+
0.13371304570645157 A% £22 £3 g1l2 1+ 0.03576923209637391~ A2 £1 £32gl2 2+
0.06878200606574425" A? £2 £32 g12 X + 0.02756813187199903" A% £3° g12 A +
0.13371304570645154° A% £1% £4g1l2 A + 0.141203058158185" A? £1 £2 £4 gl2 A +
0.0706015290790961" A? £22 £4 g12 X + 0.07153846419274867" A% £1 £3 £f4gl2 A +
0.0715384641927487" A? £2 £3 £4gl2 A +0.042736438946686967" A% £3%2 £4gl2 A +
0.06878200606574421~ A% £1 £42g12 1+ 0.03576923209637387" A? £2 f42gl2 A+
0.04273643894668695" A% £3 £42 g12 A + 0.02756813187199901" A% £43 gl2 A +
0.26898001573908337" A% £12g122 X + 0.43249761240805384" A% £1 £2 gl22 2+
0.26898001573908326" A% £22 g122 X + 0.06064067843449934" A% £1 £3 g122 A +
0.0770262228913406 A% £2 £3 g122 1+ 0.014802224472345759" A% £32 g122 A +
0.07702622289134058" A% £1 £4 g122 X + 0.060640678434499315" A% £2 £4 g122 X +
0.022935581617311747" A% £3 £4 g12%2 X + 0.014802224472345747" A% £42 g122 A +
0.19877467155568482~ A% £1g123 1 +0.1987746715556848" A% £2g12% A +
0.021982795409024473~ A% £3 g12% 1 +0.021982795409024466" A% £4 g123 X +
0.06725445472274261" A2 g12* X + 0.2340461129431868" A% £13 gl4a A +
0.13371304570645154~ A% £12 £2 g1l4 A + 0.06878200606574422~ A? £1 £22gla A+
0.027568131871999014" A% £2° g14 X + 0.07060152907909616" A% £12 £3 gl4 A +
0.0715384641927487" A? £1 £2 £3gl4 A +0.04273643894668697" A? £22 £3 gla A +
0.03576923209637391" A% £1 £32 g14 A + 0.042736438946686994" A? £2 £32gla A +
0.02756813187199903" A% £3° g14 A + 0.38019491748597134> A? £12 f4 gla A +
0.14120305815818504~ A% £1 £2 f4gl4a A+ 0.03576923209637388" A2 £22 f4gla A+
0.14120305815818504" A% £1 £3 £4gl4 X + 0.07153846419274867" A% £2 £3 f4 gl4 A +

Hamilton’s function: page | of 20 ...
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Applications

[more discussion in BD New |. Phys. 2]

» the set-up can be understood as introducing complex building blocks with local couplings between
building blocks instead of simple building blocks with complicated non-local couplings

» this can be used to define an (renormalization) improved discretization/numerical scheme
» leads to higher order difference equations, but in a controlled way

» can be used to find perfect discretizations and to define continuum limit

17



Formalize: cylindrical consistency

Embedding of configuration spaces into each other: Ly - Cp — Cy

example: Lo (D1, 2, P35 . .) = (1, 3 (D1 + B2), P2, 5(d2 + P3), B3, .. .)

consistency:  Lpp = Ly/p O Lpy

continuum configuration space /

inductive limit; Cind = chb/ ~

Cp ™~ Cp if Lbb//(cb) — Lb/b//(cb/)

18



Formalization: cylindrical consistency

We are asking for a cylindrically {Sp}pen is cylindrically consistent

consistent Hamilton’s function: :
Sy = L;;b/Sb’ 1.€. Sb(c) - Sb/(bbb/(c)) Ve € Cp

We approximate these as fixed point x ob o
. . . .. Lbb/Sb/ — Sb
actions involving two boundaries: T

Hamilton’s function for (finer) b’ computed from
(fixed point) action for (coarser) b

If Sp does not depend on choice of (finer) boundary b’ is coincides with continuum result.

Cylindrically consistent dynamics: cylindrically consistent Hamilton’s function.
Gives continuum result for discrete bdry data (which represent continuum bdry data).

19



Towards quantum theory

*Configuration spaces are replaced by Hilbert spaces: Lpb! Hy — Hy

*Hamilton’s function is replaced by amplitude map Ay i Hy — C
acting on boundary Hilbert space:

associates an amplitude (physical vacuum wave function) to region with boundary b
*Cylindrical consistency: (ot )™ Aw (1) = A (torr (¥0))
i.e. result does not depend on which boundary b we perform computation.

Cylindrically consistent dynamics: cylindrically consistent amplitude map.
Gives continuum result for discrete bdry data (which represent continuum bdry data).

20



Choice of embeddings

edetermines quality of approximation

eshould be adjusted to the dynamics of the system:
|deal case: embedding reproduces behaviour of solution (along inner boundaries)

P4 @3
Solution with edgewise linear
bdry data leads also to edgewise
linear data for smaller squares.
P1 P2

Choice of embeddings becomes even more crucial in quantum theory.
Implemented into algorithms based on tensor networks.

21



Quantum theory: tensor network algorithms

[Levin & Nave, Gu & Wen,Vidal ...’OO’s+]
[BD, Eckert, Martin-Benito, New.]. Phys.’| I]

[BD, Martin-Benito, v. Massenbach w.i.p.]
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Motivation: transfer operator technique

A

A

A

A

Transition amplitude between

two states (11| Al|s)

insert id = ZONB 1) (1]

Truncate by restricting ) onp
to the eigenvectors of 1" with the
x largest (in mod) eigenvalues.

Expect good approximation if 1)1, 1
are in span of these eigenvectors.

But: explicit diagonalization of 1" difficult.
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Dynamically determined embedding maps

Truncate by restricting > np Localize truncations,
to the eigenvectors of 1" with the diagonalize only subparts
x largest (in mod) eigenvalues. of transfer operator
blocking
iteration procedure —>
H_
’_I_‘ | |+ Determined by (generalized
' H— EV-decon : it |
A Al > J AL —> i Y A ecomposition.
T | T
embedding

embedding map after 3 iterations

24



Example: Ising model

~1 Gauss| w(k) |
w(g19g
‘(_2‘ ) “a 1 A
91 g2 k I

group elements 41 rep labels k£ = 0,1 at edges Ak, .. ke) = Vi ay
at vertices, —_— edge weights w(k) O(k1 4+ ko — ks — ky)

edge weights w  Fourier trafo ~ (Gauss constraints at vertices

25



Example: Ising model

determine embedding maps embedding maps condition on embedding maps

aF e o

high temperature: cosa =1, a =0
(symmetric phase)

(1) =0] a=0

Embedding maps parametrized by:

0 1 0
O]—O 1}0 1]—1 0]—1 ~
o(l)=1 )

COS(CV) Sin(@) 1/\/5 1/\/§ low temperature: cosa = sina =
(symmetry broken phase)

_
@ =7

S
<

INE



Example: Ising model

0 1
s =
| [teration 3 0 1
|—|—| |—|—| Iteration 2

F1 1 1 1 Tteration 1 cos(a) sin(a)

08 ()5 0.8 —

ow temperature:

0.6 -
0.6 -

W(1), iy = 0.5915, /.

04

=0.3,04,...,0.9

02

\N\H‘\,\ ~ high temperature I

8 10 ) )
number of iterations number of iterations

021

Plateau (scale free dynamics) of almost constant embedding maps around phase transition

Embeddings determined by the dynamics of the system. Represent the physical vacuum for
finer degrees of freedom.
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The procedure for 2D

L

L

ju}
L

ju}
L

o

_

approximation

iteration step

Mg L
Mg L

1 — -

o
—

state sum

embedding maps
needed to compare results
for different bond dimensions

convergence defines continuum limit
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Application to spin foams / spin nets

Holonomy formulation

Spin foams [Bahr, BD, Hellmann, Kaminski 1208.3388] SP1LI nets E%Efgg;&o 1
v
"gud € hoe
R -« —> .
f :96’0 f generalizes correspondence between Ju] ,U =
v 4D lattice gauge theories and Gy
i T } 2D Ising like models
| |

assoclate
e to every edge e

two group elements gye, Geu

e to every edge—face pair ef
a group element h. ¢

z= [ Tl dhes T] dae

(ef) (ev)

HE ef ]‘_[(S gvehefgev"")
()4 f

simplicity constraints

This parametrization covers BC, EPRL and FK models.

associate
e to every vertex v

two group elements g, g,

e to every vertex—edge pair ve
a group element A,

/Hw&ﬁm%

(ve)
H E ve H 5 gv hveg:)g’u’ hv’eg;)’)
(ve) T €

simplicity constraints

Integrating out g,, g, gives a tensor network model.
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Application to spin nets

* spin nets allow interesting models in 2D (whereas spin foams need higher dimensions)

* experience from lattice gauge theory:
statistical properties between corresponding foams and nets might be similar

* we can probe the behaviour of simplicity constraints under coarse graining
* in particular by studying embedding maps for transfer operator

* transfer operator incorporates simplicity constraints

I'=K -W-K [BD, Hellmann, Kaminski 1209.4539]

t 1

project onto subspace
determined by simplicity constrains

* as blocking is determined by the dynamics:
= |s this blocking geometrically meaningful?

= Are the simplicity constraints relaxed under coarse graining?

30



Application to spin nets

* [BD, Eckert, Martin-Benito ’11] study of Abelian spin net models without non-trivial simplicity constraints

* [BD, Martin-Benito, v. Massenbach wip] study of models based on permutation group S3 with simplicity
constraints: simulations are running!

* near future prospect: numerical study of SU2 quantum group models

* use the interplay between embedding maps and truncation for analytical investigations

Stay tuned!
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Answers

eHow to block finer variables into coarser ones!?

*What is the [finite dimensional] space of models, renormalization flow takes place in?

*How to truncate the flow back to this space!?

*How to deal with non-local couplings!?

*How to coarse grain the boundary?
Should we require triangulation independence for the boundary!?
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Thanks!
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