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Overview

• The need for a refinement limit: diffeomorphism symmetry?                                        

• Perfect discretizations  

• Consistent boundary formalism and coarse graining algo’s  

• Renormalization flow in diff-invariant theories

• Continuum limit for spin foams: perturbative results                                                           

Papers starting  2008/2009:  w/ Seth Asante, Benjamin Bahr,  Johanna Borissova, Clement 
Delcamp, Hal Haggard, Philipp Hoehn, Marc Geiller, Mercedes Martin-Benito, Jose Padua-
Arguelles, Sebastian Steinhaus and others.

Recent review:  Asante, BD, Steinhaus 2022, Handbook of Quantum Gravity



Diffeomorphism symmetry: 
a guiding principle for quantization

• Ensures correct number of propagating degrees of freedom / correct dynamics

• Ensures constraint implementation

• Diffeomorphism symmetry in the discrete ensure discretization independence  

• Diffeomorphism symmetry in the discrete resolve discretization ambiguities and artifacts



But:

• Discretizations used as regulator for quantization, or arises as consequence of 
discretization

• Discretizations typically break diffeomorphism symmetry

• Exceptions:  TQFT’s, (0+1)D systems (with appropriate discretization)
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Any subdivision of continuum 
solution into segments gives a 

discrete solution.

Perfect discretization/ action 

Sperf =
N−1

∑
n=0

SHJ(qn, qn+1 ; tn, tn+1)

Reparametrization invariance is 
restored.

Hessian has a null direction. 

Reproduces/ mirrors perfectly 
continuum dynamics
at arbitrary scales. 

Continuum limit becomes trivial. 
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 0.001: {1659.28,  562.471,  -383.002,  -0.0000287768}  Any triangulation of flat space gives 

solution. Can move 
vertices around.

[Bahr, BD 09]
3D Regge,  Λ = 0

Vertex translations 
= 

Diffeomorphism symmetry

Allow to probe solution
at any (inhomogeneous) scales.

4D Regge,  Λ = 0

Curv.

Lowest eigenvalue
of Hessian

Diffeomorphism symmetry is broken.

Expect that only solutions with small edge lengths
approximate well continuum.

Issue: integrate over configurations with 
arbitrarily large edge lengths in path integral.



Construct discretizations 
with diffeomorphism symmetry?



How to construct perfect discretizations?

SHJ(q0, q2 ; t0, t2) = extrq1 (SHJ(q0, q1 ; t0, t1) + SHJ(q1, q2 ; t1, t2))

q
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Perfect actions are invariant under changes of the discretization.
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SHJ(q0, q2 ; t0, t2) = extrq1 (SHJ(q0, q1 ; t0, t1) + SHJ(q1, q2 ; t1, t2))

The Hamilton-Jacobi function is a fixed point of the renormalization flow:

S′￼(q0, q2 ; t0, t2) = extrq1,t1 (S(q0, q1 ; t0, t1) + S(q1, q2 ; t1, t2))

Can be applied in practice, perturbatively, in quantum theory. [ Bahr, BD 2009,
BD, Steinhaus 2011, 
…
Asante, BD 2021]

Amounts to solving the theory.
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Applications

• (0+1)D systems - anharmonic oscillator: path integral solution via fixed point equations.

• Regge gravity: homogeneously curved simplices as fixed point solutions.

• Regge path integral (3D): Unique, triangulation invariant (one-loop) measure, including  
phase shift. 

• Regge path integral (4D):  Measure, invariant under 5-1 moves, has to be non-local.

• Free lattice field theories (w/ gauge symmetries): construction of perfect discretizations: 
non-local 

• 4D linearized gravity: construction of perfect non-local discretization and one-loop measure

• Restricted spin foams: fixing face weights.

π/4

[Bahr, BD, Steinhaus 2011]

[Bahr, BD 2009]

[BD, Steinhaus 2011, Borissova, BD 2023]

[BD, Kaminski, Steinhaus 2014]

[Bahr, BD, He 2010]

[Asante, BD 2021]

[Bahr, Steinhaus 2016]



Why do non-topological diffeomorphism symmetric 
discretizations have to be non-local?

Should give the 
same evolution.
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Why do non-topological diffeomorphism symmetric 
discretizations have to be non-local?

Should give the 
same evolution.

Tt0t1

Tt1t2

Initial data

Final data

Less data

Tt0t1

Tt1t2

Non-local action: data of 
more than one slice are 
necessary to determine 

next time slice.  
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How to avoid non-local amplitudes?

The consistent boundary formalism.⇒

Gluing simplest building blocks 
(carrying minimal boundary data)

Partially ordered set of building blocks
 (with respect to amount of bdry data) 

Shift of perspective:

Need consistency relations between 
amplitudes for these building blocks:

Renormalization flow.

[ BD 2012, BD 2014]
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into finer boundary data

Amplitude for 
coarse data.

Amplitude for 
very fine data.



Cylindrically consistent dynamics [ BD 2012]

embedding coarse
boundary data
into finer boundary data

Pull back amplitude to coarse data, 
using embedding maps.

Find same amplitude again.

Amplitude for 
coarse data.

Amplitude for 
very fine data.



1. Start with amplitude for
      simplest building block.

2. Defines amplitude for more  
   complicated boundary via

      gluing principle.

Constructing a cylindrically consistent dynamics



1. Start with amplitude for
      simplest building block.

2. Defines amplitude for more  
   complicated boundary via

      gluing principle.

Improved amplitude

3. Iterative coarse graining  via
   tensor network algorithm,

      determines effective amplitude
      and dynamically preferred  
      embedding maps.

Constructing a cylindrically consistent dynamics



Improved amplitudeImproved amplitude

4. Take more and more
   complicated boundaries

      into account.

Constructing a cylindrically consistent dynamics



Seed: Initial (inconsistent) amplitudes

Improved amplitude Improved amplitude Improved amplitude

Amplitude changes across all scales!

Determine consistent amplitudes with more and more complicated boundaries.

Constructing a cylindrically consistent dynamics

The renormalization trajectory is encoded in the consistent family of amplitudes.

Constructing the continuum limit is a small part of this construction.



Tensor network renormalization methods

bare/initial amplitude 
depending on four variables
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data.
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Find a truncation (embedding map) that would 
minimize the error as compared to full summation 
(dotted lines). Use singular value decomposition, 
keeping only the largest singular values.
Leads to field redefinition, and ordering of fields into 
more and less relevant.
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Use embedding maps to define coarse grained 
amplitude with the initial number of boundary 
variables.

Iterate. Find fixed point.
Repeat with more boundary data.



• (q-deformed)  spin net / intertwiner models, analogues to spin foams in 2D

               [BD, Eckert, Martin-Benito 2011, BD, Martin-Benito, Schnetter 2013,  BD, Martin-Benito, Steinhaus 2013, BD, Schnetter, Seth, Steinhaus 2016]

• Decorated tensor networks: first working algorithm for 3D gauge theories

         [BD, Mizera, Steinhaus 2014]

• 3D spin foams (with analogue simplicity constraints): new algorithm and phase diagram 

         [Delcamp, BD 2016]

• Tensor network algorithms with fusion basis for (q-deformed) gauge models: captures torsion

- still the leading algorithm

         [Cunningham, BD, Steinhaus 2020]

• Coupling matter to intertwiner models

         [Steinhaus 2015]

Applications



• define model at scale a
• compute effective action at larger scales
• in particular: find beta-functions:

couplings as functions of scale
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• need to define physics on all (inhomogeneous) length scales 
• need to know beta-functions to define consistent dynamics
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• edges can assume any length
• need to define physics on all (inhomogeneous) length scales 
• need to know beta-functions to define consistent dynamics

In lattice gauge theory

Initial  “seed” amplitudes
(Guess of a dynamics over all scales)

Improved amplitudes
(over all scales)

Iterative coarse graining
Procedure
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Lattice form factors

S ∼ f(lengths)(ϕi − ϕi+1)2 + g(lengths)(ϕi + ϕi+1)2

Need to construct (discrete) metric dependent coupling “constants”, which: 
      -take renormalization flow into account
      -are consistent for arbitrarily irregular lattices



Lattice form factors

S ∼ f(lengths)(ϕi − ϕi+1)2 + g(lengths)(ϕi + ϕi+1)2

Need to construct (discrete) metric dependent coupling “constants”, which: 
      -take renormalization flow into account
      -are consistent for arbitrarily irregular lattices

It is impossible to guess consistent amplitudes, 
rather one needs to construct them via iterative coarse graining flow.

The consistent boundary formalism allows to do so, 
and identifies a dynamically preferred truncation scheme. 



On the continuum limit 
of 4D spin foams.



On the continuum limit 
of 4D spin foams.

Assume spin foams admit a phase, which at larger scales does lead to smooth geometries.
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On the continuum limit 
of 4D spin foams.

Assume spin foams admit a phase, which at larger scales does lead to smooth geometries.
E.g. in-between Ashtekar-Lewandowski vacuum (degenerate geometry) 
     and BF vacuum (BF-flat or BF homogeneously curved geometry). [ BD, Geiller 2014,

  Bahr, BD, Geiller 2015,
  BD, Geiller 2016,
  BD 2017 ]

Construct perturbative continuum limit:  do we obtain (linearized) gravity?

Effective spin foams allow to obtain an answer (and more).
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exp ( ı
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Oscillating factor with Area Regge action

(motivated by higher gauge theory) 
Gaussian factors peaked on constraints.
Deviation proportional to 
(Determined from anomaly/ non-commutativity.)
      

ℓP γ Area

Effective spin foams [Asante, BD, Haggard  PRL 2020]

[Asante, BD, Padua-Arguelles 2021]

Captures key construction principles of spin foams.  
But much more amenable to calculations and much more transparent.



Z = ∑
discr.areas

exp ( ı
ℓ2

P
SARegge({At})) ∏

tetra

G({At})

Oscillating factor with Area Regge action

(motivated by higher gauge theory) 
Gaussian factors peaked on constraints.
Deviation proportional to 
(Determined from anomaly/ non-commutativity.)
      

ℓP γ Area

Effective spin foams [Asante, BD, Haggard  PRL 2020]

[Asante, BD, Padua-Arguelles 2021]

Action: S = SARegge − ı∑
τ

ln G

What is the lattice continuum limit for the Area Regge action?
(Open question since the 90’s. Widely assumed to not lead to GR. Original flatness problem.)

Do the constraint terms change anything?

Captures key construction principles of spin foams.  
But much more amenable to calculations and much more transparent.



Continuum limit of effective spin foams

What is the lattice continuum limit for the (linearized) Area Regge action?

• Construct (linearized) Area Regge action on infinite regular lattice. 
• Classify variables according to their scaling in the Hessian (in particular mass/ massless)
• Compute series expansion of (effective) action in lattice constant

[BD 2021,
BD, Kogios 2022]
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• Construct (linearized) Area Regge action on infinite regular lattice. 
• Classify variables according to their scaling in the Hessian (in particular mass/ massless)
• Compute series expansion of (effective) action in lattice constant

• Despite having 50 or 100 or more variables per lattice site: only length degrees of freedom are massless.
• The continuum limit is given by (linearized) general relativity.
• Next to leading order in lattice constant:  Weyl square term.
• Arises from an effective area metric (which has 20 components).

[BD 2021,
BD, Kogios 2022]

Although Area Regge calculus leads to an extension of the configuration space 
from length to area metrics, only length metric dof’s are massless. 
We thus obtain general relativity in the limit.



Continuum limit of effective spin foams

What is the lattice continuum limit for the (linearized) Area Regge action?

• Construct (linearized) Area Regge action on infinite regular lattice. 
• Classify variables according to their scaling in the Hessian (in particular mass/ massless)
• Compute series expansion of (effective) action in lattice constant

• Despite having 50 or 100 or more variables per lattice site: only length degrees of freedom are massless.
• The continuum limit is given by (linearized) general relativity.
• Next to leading order in lattice constant:  Weyl square term.
• Arises from an effective area metric (which has 20 components).

[BD 2021,
BD, Kogios 2022]

Do the constraint terms change anything?

Although Area Regge calculus leads to an extension of the configuration space 
from length to area metrics, only length metric dof’s are massless. 
We thus obtain general relativity in the limit.

• Do only affect massive degrees of freedom: turn mass parameter complex (and BI-parameter dependent).
• Universality: Form of constraint implementation (in which models differ) does not matter for continuum limit.



Effective continuum action for spin foams

Can we obtain such an action (EH+Weyl-squared) directly from the continuum?

Use modified Plebanski theory framework.       Modify further.
[Krasnov 2008+; Freidel 2008]
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1
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Ghost-free!
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Effective continuum action for spin foams

Can we obtain such an action (EH+Weyl-squared) directly from the continuum?

Use modified Plebanski theory framework.       Modify further.
[Krasnov 2008+; Freidel 2008]

• Derivation of action for area metrics from (modified) Plebanski action.

• Integrating out additional area metric dof’s (linearized):

    

Results:

Leff = LEH −
1
4

1
□ − M(γ)2

Weyl2
Ghost-free!

3 coupling constants :  as needed in  Asymptotic Safety,  CDT,  EDT.  

 is an anisotropy parameter as in CDT (appears in space-like area spectrum, but not in time-like).

G, Λ, γ

γ

[BD, Borissova 2022]



Summary

Recent review:  Asante, BD, Steinhaus 2022, In: Handbook of Quantum Gravity

• Diffeomorphism symmetry in the discrete ensures discretization independence.               
Continuum limit becomes trivial.

• Perfect actions mirror continuum dynamics, but are non-local.

• Consistent boundary formalism: allows to construct a renormalization trajectory using a 
dynamically preferred truncation scheme

• Tensor networks provide algorithms for consistent boundary formalism.



Summary

Recent review:  Asante, BD, Steinhaus 2022, In: Handbook of Quantum Gravity

• Diffeomorphism symmetry in the discrete ensures discretization independence.               
Continuum limit becomes trivial.

• Perfect actions mirror continuum dynamics, but are non-local.

• Consistent boundary formalism: allows to construct a renormalization trajectory using a 
dynamically preferred truncation scheme

• Tensor networks provide algorithms for consistent boundary formalism.

• Effective spin foams allow perturbative continuum limit.

• Surprise: Find (linearized) general relativity at leading order.  Resolves flatness problem.

• Weyl-squared term as a correction, arising from extension from length to area metrics.

Leff = LEH −
1
4

1
□ − M(γ)2

Weyl2



Diffeomorphism symmetry in (0+1)D systems

S = ∫
tf

ti

L(q, ·q) dt

Srep = ∫
sf

si

L(q,
dq/ds
dt/ds ) dt

ds
ds

(q(s), t(s)) (q( f(s)), t( f(s)))
is a solution is a solution

“Reparametrize”

1D diffeomorphism symmetry:

Add t as 
independent variable

Multitude of solutions for fixed boundary data

Sd =
N−1

∑
n=0

L(
qn + qn+1

2
,

qn+1 − qn

tn+1 − tn
)(tn+1 − tn)

 are a fixed choice of discrete points
 on the time axis:
tn

For arbitrary choices of :sn

Sd =
N−1

∑
n=0

L(
qn + qn+1

2
,

qn+1 − qn

tn+1 − tn
)(tn+1 − tn)

1D diffeomorphism symmetry?

Do we find multitude of solutions for 
fixed boundary data?

Replacing graph  by piecewise straight curve. q(t)

Work with action/ variational principle.

Here we vary also  !tn



Higher dimensional systems

x

t

x

t

Diffeomorphism symmetry for discrete 2D systems

Should give 
the same predictions.

(Locally) variable
lattice constant.11

The 3-simplices (or tetrahedra) in the initial complex Ci and final complex Cf are given by

3� 2 : Ci � {�2̄,�3̄,�4̄} , Cf � {�0̄,�1̄} ,
4� 1 : Ci � {�1̄,�2̄,�3̄,�4̄} , Cf � {�0̄} . (3.1)

The 3 � 2 move is depicted in Fig. 1. The bulk edge (01) shared by the three tetrahedra in
the initial triangulation and is removed, and a bulk triangle in the final triangulation is ’inserted’,
leading to two tetrahedra.

0

1

2
3

4

4–1

1–4

1

2
3

4

FIG. 2: 3d Pachner move 4 � 1 and its inverse 1 � 4. In the initial configuration four tetrahedra share a
bulk vertex. Integrating out the four bulk edges leads to a final configuration with one tetrahedron.

The 4 � 1 move is depicted in Fig. 2. Here the bulk vertex 0 and all adjacent simplices are
removed from the initial configuration, including the bulk edges (0k), for k � 1. This leads to the
final tetrahedron �0̄.

B. 4D

3

0

1

4

5

2

3–3

3

0

1

4

5

2

FIG. 3: 4D Pachner move 3 � 3. In the initial configuration three simplices share a triangle (012). The
Pachner move changes the initial configuration into a final configuration with three four-simplices sharing a
triangle (345). No bulk edges are involved.

In four dimensions we consider the 3� 3, the 4� 2 and the 5� 1 Pachner move. The Pachner
moves involve the vertex set {0, 1, . . . , 5} and feature the following set of 4-simplices in their initial
and final complexes

3� 3 : Ci � {�3̄,�4̄,�5̄} , Cf � {�0̄,�1̄,�2̄} ,
4� 2 : Ci � {�2̄,�3̄,�4̄,�5̄} , Cf � {�0̄,�1̄} ,
5� 1 : Ci � {�1̄,�2̄,�3̄,�4̄,�5̄} , Cf � {�0̄} . (3.2)
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bulk (d� 2)- simplices, in the initial Pachner move configuration Ci and in the final Pachner move
configuration Cf = �

(d+1)
/Ci. Firstly, not that Ci and �

(d+1)
/Ci, seen as d-dimensional triangulation

with boundary, have by construction, the same boundary complex. Thus, the set of boundary
hinges in the initial configuration agrees with the set of boundary hinges in the final configuration.

Also by construction, we have that the set of bulk hinges in the initial configuration Ci is disjoint
from the set of bulk hinges in the final configuration Cf = �

(d+1)
/Ci.

In this work we will deal with initial and final Pachner move configurations, which can be embedded
into flat (Minkowski) space. The reason is that we will consider a perturbative evaluation of the
path integral, and use the flatly embeddable configurations as backgrounds around which we allow
quantum fluctuations (which can include curvature fluctuations).

Such flatly embeddable Pachner moves can be constructed as follows: Start with a set of (d +
2) vertices 0, 1, . . . , d+ 1 embedded into d-dimensional Minkowski space, such that they form a
degenerate (d+1)-simplex. Assume that all the (d+1) d-simplices, which are sub-simplices of the
degenerate (d+1)-simplex, are non-degenerate. For an ni�nf Pachner move one identifies ni of the
(d+ 1) d-simplices as initial configuration and nf of the (d+ 1) d-simplices as final configuration.4

In the following we denote with �
i
the d-simplex obtained by removing the vertex i, and all

adjacent simplices, from the complex. We will assume, without loss of generality, that the ini-
tial complex includes the d-simplices �nf , . . . ,�d+1 and the final complex includes the d-simplices
�0, . . . ,�nf�1.

Below we will give a short description of Pachner moves in three and four dimensions.

A. 3D

0

1

2
3

4
3–2

2–3

0

1

2
3

4

FIG. 1: 3D Pachner move 3 � 2 and its inverse 2 � 3. In the initial configuration three tetrahedra share a
bulk edge. Integrating out the bulk edge leads to a final configuration with two tetrahedra.

In three dimensions we can construct the flatly embedded Pachner moves from a set of vertices
{0, 1, 2, 3, 4} embedded into flat space.

4 To lighten notation we will however assume that all d-simplices in the initial and final configuration have positive
orientation. (See [21] for how to allow positive and negative orientation.) Given a configuration of (d+2) vertices
this requirement constrains which d-simplices one can choose as initial and which as final.

Satisfied by 3D Regge calculus: a discretization of gravity.
[BD, Steinhaus 2011,
Borissova, BD 2023]

Discretization independence: (eg variables on edges)


