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The bad (7) The anomaly IS responsible for the “flatness problem”. [Bonzom 08, ... Conrady, Hellmann-Kaminski, Han,

Engle-Kaminski-Han, ..., Gozzini 21]

[Asante, BD, Haggard 2020] Applies to all models where
a) areas are independent variables
b) have approx. equidistant spectrum

Numerical proof that this problem occurs in EPRL in “standard classical limit”. [Gozzini 21]

One can thus consider this issue in a model, which captures the above key ingredients of spin foams.

Effective spin foams models: Seconds on a laptop instead of weeks on HPC.
. . . . . [Asante, BD, Haggard 2020,
Transparent encoding of the dynamics, in particular the constraints. Asante, BD, Padua-Arguelles 20217
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In the continuum:

Leveraging that non-perturbative results show good approximation by saddle point analysis near flat space:

Perturbative analysis. i Continuum limit resolves
Study of linearized Area Regge action (+ — constraints®2) on hypercubical lattice: flatness problem

y
. . . Y . . . even without explicit
- leads to linearized Einstein Hilbert action (zeroth order in the lattice constant) . - &XP
implementation

- a correction, which is of fourth order in the lattice constant, of six order in derivatives and , ,
. L of gluing constraints.
quadratic in (derivative of) curvature
Even for Barrett-Crane.

[BD 2]



Concentrate on universal features

Asance, 1IN the discrete: Consistent with semi-classical
BD’ o . o . o
Haggard 20] First proof.that Regge equations of motlon e.ute reprod.uced for examplgs with inner edge. results by Han 2013, Han, Huang, Liu,Qu 2021
By computing the full non-perturbative partition function and expectation values of observables. -bound on y
Requires y ~ < 0.1, but this allows for large deficit angles, consistent with Regge dynamics. -complex saddle points with curvature
in EPRL

(as in effective spin foams)

In the continuum:

Leveraging that non-perturbative results show good approximation by saddle point analysis near flat space:

Perturbative analysis. i Continuum limit resolves
Study of linearized Area Regge action (+ — constraints®2) on hypercubical lattice: flatness problem

y
. . . Y . . . even without explicit
- leads to linearized Einstein Hilbert action (zeroth order in the lattice constant) . - &XP
implementation

- a correction, which is of fourth order in the lattice constant, of six order in derivatives and , ,
. L of gluing constraints.
quadratic in (derivative of) curvature
Even for Barrett-Crane.

[BD 2]

* Non-metric degrees of freedom are getting very massive in the continuum limit: likely to extend to higher order perturbations
* Different SF models differ in whether and how the non-metric degrees of freedom are suppressed.

* But are suppressed by dynamics in continuum limit anyway — even without constraints.

* Emergence of universality in continuum limit.

Needed: “Effective” continuum action for spin foams (Area Regge action).
Corrections to gravitational dynamics due to anomaly/ extended configuration space.
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Spin foams: one of the few approaches based on Lorentzian path integral.
However, due to high numerical demands of EPRL/FK hardly explored issues important for Lorentzian path integrals.
Using effective spin foams: Encountered issue of how to deal with integrations over infinite domains.
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Euclidean conﬁgu rations? [BD, Gielen, Schander: Causally irregular configurations appear even in the simplest cosmological example.]
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* What happens with the conformal factor problem of Euclidean quantum gravity (which killed almost all lattice approaches)?
* Key to understand non-perturbative continuum limit.

* What configurations to sum over: Allow causally irregular configurations? Allow topology change in time! Appearance of

Euclidean conﬁgu rations? [BD, Gielen, Schander: Causally irregular configurations appear even in the simplest cosmological example.]
[Han, Liu]

[Feldbrugge, Lehners Turok;
Han, Huang, Liu, Qu, Wan;

e Picard Lefshetz methods Asante, BD, Jia, Padua-Arguelles: to appear]
P[aA;::_t:’r g&l{i:s’: * In simplest examples: make integrals (quickly) convergent. Conformal factor rotated to suppressing Euclidean branch.
to appear] * Can allow for causally irregular configurations: With Picard-Lefshetz methods - indications that these will be always
suppressed.

* Convergence with Causal Dynamical Triangulations: causally irregular configurations suppressed
* Convergence with results from quantum cosmology with PL-integration

There is a lot to explore for Lorentzian path integrals.

Need effective numerical models and methods. [Asante, BD, Padua-Arguelles 2021]



Universal Summary

* Concentrate on universal features of spin foams.
Areas as fundamental degrees of freedom.

* Amplitudes of any model will change under coarse graining flow: universal features will survive. [Asante, Bahr, BD, Steinhaus, ...]

* Concentrate on universal features of quantum gravity. Consider issues which are also of interest to other approaches.
E.g. the Lorentzian path integral.

Need effective numerical models and methods.



Thank you!



Effective Spin Foam Models

Effective Spin Foam models: [Asante, BD, Haggard PRL 2020]

* much much more amenable to numerical investigations: seconds on laptop compared to weeks on HPC
* 3D angles are already integrated out.

The number of angle variables is 5 x #(4-simplices). Integrating them out beforehand saves a lot of computational resources.
* much more transparent encoding of the dynamics, in particular with regard to gluing constraints
* form can be motivated from higher gauge theory (as opposed to gauge theory)

7 = Z exp %SRegge({At}) G({At})\

discr.areas / P

Oscillating factor with Area Regge action Gaurssijan factor pe.aked on constraints.
(motivated by higher gauge theory) Deviation proportional to £p4/7 Area

(Determined from anomaly/ non-commutativity.)
Oscillating factor and Gaussia

for two different 7/

Naive £ — 0 limit: Oscillations win over Gaussian. Constraints are not ‘visible’.
/\ /\ Leading to flatness problem for spin foams.
| |

- T To avoid washing out of Gaussians we need (via naive estimation):
| | A proper semi-classical regime
. f ? Area does also require a small

‘ j \/7_/ curv, < O(1) Barbero-Immirzi parameter.

1 £p (It indeed is an anomaly

v v v | \/ v \/ parameter.)
10 [Han, Asante-BD-Haggard]



Tria

Explicit tests

Explicit computation of partition functions and expectation values for small triangulations

ngulations with inner edge:

[ Asante, BD, Haggarrd CQG 20]

Computed via an exact evaluation of the path integral with observable insertions expectation values

of v

arious geometric observables.

We showed that we do have a regime of scale, y and curvature, for which the correct equations of motions

are

implemented.

First explicit proof that spin foams can implement the correct equations of motions.

(Wi

th finite, non-vanishing curvature angles, finite but small 7.)

For curvature angle € ~ — 1 and areas ~ yflg/l, A = 100,200,400
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Discrete dynamics: the Barbero-Immirzi parameter is not a free parameter.

Found that semi-classical
regime can be even larger
than suggested by naive bound,
in particular if curvature (per
triangle) is small.

Instabilities in expectation values:
non-perturbative effects, resulting from
interplay of discrete spectra and constraint
implementation.

For all tested curvatures:
y ~ 0.1 defines semi-calssical regime.



Scaling of the Hessian

* /1 and A both give the lattice constant, but originate

. . * Correction from integrating out the zeta-variables.
from different sources. A counts derivatives.

(a1)|(az2)|(b1)]|(b2)
o @) A0 A% 0 Loy @) = = Hay®) - Hipy) - Hoyo)
Hapyan) ~ 3 X% |(az)| 0 | A% | AT A
(b1) A" A AT O . H(b)(b) is invertible (perturbatively without inverse derivatives)!
(b2)| O [ A" ] O [A (This is where we might have needed the G-matrix: but it is not necessary here!)

* With this scaling we already know that:

T 6 4 e That is the correction for metric sector scales with af.
(@@ ~ 3z X [(a)[ A” | A . | . . .
)\ * Integrating out the spurious (a2) variables leads to even higher order corrections.




