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Motivations
SU(2) invariants are commonly used in a variety of physical problems: quantum optics, 
nuclear physics or quantum gravity.
3D quantum gravity for large spins
and euclidean tetrahedron
[Ponzano, Regge - 1968]

Many generalizations: {9j} symbol [Haggard and Littlejohn - 2010], {6j} for non-compact groups SU(1,1) 
[Davids - 2000], quantum group SUq(2)  [Taylor and Woodward - 2006]
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Motivated by the efforts of the LQG community to find dynamical transition amplitudes 
in the spin foam formalism the asymptotic of invariants associated with the graph of a 4-
simplex has been studied.

SU(2) vertex amplitude [Barrett, Fairbairn and Hellmann - 2010]
SO(4) vertex amplitude [Barrett,Dowdall,Fairbairn,Gomes and Hellmann - 2009]
EPRL vertex amplitude [Barrett, Dowdall, Fairbairn, Hellmann and Pereira - 2010]
Time-like boundary [Kaminski, Kisielowski and Sahlmann - 2017]
Quantum group SLq(2,C) [Haggard, Han, Kaminski and Riello - 2016]

The generalization of the Regge action to the 4D Lorentzian 
geometry is the major achievement of the EPRL model.
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Simpler analysis but same saddle point geometry of the Lorentzian models.
Optimal playground to start doing numerics. 2/13



Outline

Numerical results

first numerical confirmation of the formula

challenges and applications Chapter 2

Extension to arbitrary valence
dynamics to arbitrary spin networks

Overview of the SU(2) amplitude asymptotic 

clear interpretation in terms of shape matching constraint

with less math but more geometry Chapter 1
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what is the semi-classical limit in this case?
areas are not enough to characterize polytopes (4C-10)
not all the volume simplicity constraints are imposed [Belov - 2017]

Chapter 3

Chapter 1



The amplitude is a linear combination of {15j} symbols with coefficients 
constructed from coherent states of the intertwiner space.

Definition of the amplitude
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What are the variables?

20 unitary vectors       

* if closure constraint is satisfied.

geometrical data of  5 tetrahedra*!
jab area of the face “shared” between tet a and b

normal to the face b of the tet a

Definition of the amplitude
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Quantum tetrahedron
Livine-Speziale coherent states
 

[Livine and Speziale – 2007]
[Bianchi, D., Speziale – 2011]



What are the variables? geometrical data of  5 tetrahedra!
10 spins  jab (areas) and 20 unitary vectors     

(5 x 4 normals to the faces)

Definition of the amplitude
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Quantum tetrahedron 
(LS coherent state)

 



What are the variables? geometrical data of  5 tetrahedra!
10 spins  jab (areas) and 20 unitary vectors     

(5 x 4 normals to the faces)

Definition of the amplitude
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Quantum tetrahedron 
(LS coherent state)

 

For our purpose is more convenient to use 
an integral form  

 



Asymptotic behavior                    ! By saddle point approximation.

Critical Points (CP) equations: 

the second equation comes from requiring stationary phase
the first equation comes from extremizing Re[S]

is the SU(2) matrix      in the adjoint representation

The saddle point approximation
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[Barrett, Fairbairn and Hellmann - 2010]



Asymptotic behavior                    ! By saddle point approximation.

Is there a convenient gauge? Introducing the Twisted spike

Critical points (CP) equations: 

The saddle point approximation
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A 3D picture of an Euclidean 4Simplexthe normals of the boundary tetrahedra

If the five tetrahedra are the boundary of an Euclidean 4Simplex the twist angle 
coincide with the 4D dihedral angle*. Ask if interested/look at the end.

* analogy with how is encoded extrinsic curvature in Twisted Geometries.
[Freidel and Speziale – 2010]
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Asymptotic behavior                    ! By saddle point approximation.

Critical points (CP) equations: 

Is there a convenient gauge? Introducing the Twisted spike

If this gauge does not exists there are no solutions of the CP equations

One immediate solution Vector Geometry
a characterization of the vector geometries space is easy in this gauge. Ask if interested/look at the end

Non trivial solutions Regge Geometry

edge independence = angle matching = shape matching

The saddle point approximation

5/13 [Dittrich and Speziale - 2008]



Asymptotic formula

dofs Geometry type Saddle
points Behavior

20 twisted 0 Exponentially decreasing
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Asymptotic formula

dofs Geometry type Saddle
points Behavior

20 twisted 0 Exponentially decreasing

15
vector

(anti-parallel)
1

Power law decreasing 
without oscillations
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Asymptotic formula

dofs Geometry type Saddle
points Behavior

20 twisted 0 Exponentially decreasing

15 vector
(anti-parallel)

1 Power law decreasing 
without oscillations

10 Regge
(shape-matching)

2 Power law decreasing 
Regge oscillations
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Numerical results
Two available paths: 

Numerical integration, 
MonteCarlo techniques

Explicit summation of
the {15j} symbols

Warm-up exercise for Lorentzian EPRL

Oscillatory integrals requires adaptive 
methods with slow convergence

Efficient way to compute invariants is a 
problem solved by mathematicians
Strategy: consider reducible {15j}
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 [Johansson and Forssen - 2016]



Twisted geometry

Vector geometry
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Equilateral 4-Simplex

Isosceles 4-Simplex

Semi-classical region for relatively 
small spins
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Next to leading order

Correction to semi-classical regime are numerically accessible
Unknown amplitude and phase make it difficult – different kind of analysis
Expected by the saddle point approximation 

Careful interpretation – NO higher curvature terms
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Higher valence and polytopes
The action is “local”, leads to the same critical points equations.
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The main difference is in the treatment of nodes not first-neighbours, but our procedure, which 
does not rely on Bivector reconstruction theorem, extends naturally.



Higher valence and polytopes
The action is “local”, leads to the 

same critical points equations.

Dofs Geometry type Saddle
points Behavior

5L-6N twisted 0 Exponentially decreasing

3L-3N vector
(anti-parallel)

1 Power law decreasing 
without oscillations
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Higher valence and polytopes
The action is “local”, leads to the 

same critical points equations.

Looking for a second equation: (same conditions before)

edge independence is equivalent to
angle matching but not shape matching!

Dofs Geometry type Saddle
points Behavior

5L-6N twisted 0 Exponentially decreasing

3L-3N vector
(anti-parallel)

1 Power law decreasing 
without oscillations

12/13generalizes what observed in minisuperspace symmetric models [Bahr et collaborators – 2015/2017]



Higher valence and polytopes
The action is “local”, leads to the 

same critical points equations.

Dofs Geometry type Saddle
points Behavior

5L-6N twisted 0 Exponentially decreasing

3L-3N
vector

(anti-parallel)
1 Power law decreasing 

without oscillations
Conformal twisted
(angle-matching)

2 Power law decreasing 
generalized Regge oscillations

closure angle matchinguniquely definedEasy to glue!
Not enough constraints to write lenghts in terms of Areas and Angles
Does it have a well-defined continuum limit? 12/13



Higher valence and polytopes
The action is “local”, leads to the 

same critical points equations.

Dofs Geometry type Saddle
points Behavior

5L-6N twisted 0 Exponentially decreasing

3L-3N vector
(anti-parallel)

1 Power law decreasing 
without oscillations

Conformal twisted
(angle-matching)

2 Power law decreasing 
generalized Regge oscillations

2L-2N Regge
(shape-matching)

2 Power law decreasing 
generalized Regge oscillations

We can restrict to full shape matched subspace. In general not flatly embeddable.
Curved bulk is allowed. Classical limit to be studied.
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Higher valence and polytopes
The action is “local”, leads to the 

same critical points equations.

Dofs Geometry type Saddle
points Behavior

5L-6N twisted 0 Exponentially decreasing

3L-3N vector
(anti-parallel)

1 Power law decreasing 
without oscillations

Conformal twisted
(angle-matching)

2 Power law decreasing 
generalized Regge oscillations

2L-2N Regge
(shape-matching)

2 Power law decreasing 
generalized Regge oscillations

4N-10
polytope

(flat embedding)
2 Power law decreasing 

Regge oscillations
12/13
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Conclusion and Outlook
Numerical results

Gathered expertise to attack the EPRL problem

High accuracy already at low spins, and insights on higher order corrections

Two distinct saddle points appears for angle matched configurations

Extension to arbitrary valence
The analytic results of the asymptotic analysis extend to more general graphs

Generalized vertices (KKL) and extended 4D triangulations

Extensions to EPRL model  (work in progress)

Our results apply to SU(2) graph invariants and BF theory 
but they are relevant also for constrained BF models

Computation of divergences for any Spin Foam diagram
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Thanks for your 
attention!



A glance at EPRL & Booster Functions

Decompose the EPRL vertex amplitude into a superposition 
of SU(2) ones weighted by the Boosters (one per half-edge)

EPRL Y map Booster functions



Vector Geometry

 

Visualization in the Kapovich-Millson dual space as
a three dimensional polygon (2 d.o.f.) Tetrahedron 1

Tet 1
Tet 3

Anti-parallel normals means you can glue 
two polygons together by superimposing normals

Iterating you obtain the following picture

Tet 1

Tet 4

Tet 3

Tet 2

Tet 5

fully characterized by 15 numbers

A collection of tetrahedra (polyhedra) with anti-parallel normals
(up to a SO(3) rotation per polyhedron) 

We want to find a parametrization of the 15 dof (3L - 3N)   

10 areas jab

4 gauge invariant angles (3D dihedral)
1 non gauge invariant angle



Twisted Spike from a 4 simplex 
(how to build boundary data from four dimensional geometry)

Denote with        the four dimensional normals to the tetrahedra

Pick a tetrahedron (e.g. tet 1) as reference, and rotate in  
the remaining tetrahedra as to align their normals to      .

These transformations leaves invariant the shared faces with the 
reference tetrahedron.

Rotate each tetrahedron in R3 around the normal
of the face shared with the reference tetrahedron 
       of an angle equal to the 4D dihedral angle
                           to obtain the twisted spike 
configuration
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