SU(2) graph invariants,

Regge actions and polytopes

Pietro Dona’

Based on arXiv:1708.01727 P.D. M. Fanizza, G. Sarno and S. Speziale ILQG Seminar $10^{\text {th }}$ October 2017

PennState Eberly College of Science

PennState

 Eberly College of SciencePietro Dona'

Simone Speziale*

Giorgio Sarno and Marco Fanizza

SCUOLA
NORMALE SUPERIORE

Motivations

SU(2) invariants are commonly used in a variety of physical problems: quantum optics, nuclear physics or quantum gravity.
$\begin{aligned} & \text { 3D quantum gravity for large spins } \\ & \text { and euclidean tetrahedron } \\ & \text { Ponzano, Regge - 1968] }\end{aligned}$$\left\{\begin{array}{lll}j_{1} & j_{2} & j_{3} \\ j_{4} & j_{5} & j_{6}\end{array}\right\} \approx \frac{1}{\sqrt{12 \pi V}} \cos \left(\sum_{i}\left(j_{i}+\frac{1}{2}\right) \theta_{i}+\frac{\pi}{4}\right)$
Many generalizations: $\{9 \mathrm{j}\}$ symbol [Haggard and Littlejohn - 2010], $\{6 \mathrm{j}\}$ for non-compact groups $\operatorname{SU}(1,1)$ [Davids - 2000], quantum group $\mathrm{SU}_{\mathrm{q}}(2)$ [Taylor and Woodward - 2006]

Motivated by the efforts of the LQG community to find dynamical transition amplitudes in the spin foam formalism the asymptotic of invariants associated with the graph of a 4simplex has been studied.

SU(2) vertex amplitude [Barrett, Fairbairn and Hellmann - 2010]
SO(4) vertex amplitude [Barrett,Dowdall,Fairbairn,Gomes and Hellmann - 2009]
EPRL vertex amplitude [Barrett, Dowdall, Fairbairn, Hellmann and Pereira - 2010]
Time-like boundary [Kaminski, Kisielowski and Sahlmann - 2017]
Quantum group SL $_{q}(2, C)$ [Haggard, Han, Kaminski and Riello - 2016]

The generalization of the Regge action to the 4D Lorentzian geometry is the major achievement of the EPRL model.

Motivations

$\mathrm{SU}(2)$ invariants are commonly used in a variety of physical problems: quantum optics, nuclear physics or quantum gravity.
$\begin{aligned} & \text { 3D quantum gravity for large spins } \\ & \text { and euclidean tetrahedron } \\ & \text { [Ponzano, Regge - 1968] }\end{aligned}$$\left\{\begin{array}{lll}j_{1} & j_{2} & j_{3} \\ j_{4} & j_{5} & j_{6}\end{array}\right\} \approx \frac{1}{\sqrt{12 \pi V}} \cos \left(\sum_{i}\left(j_{i}+\frac{1}{2}\right) \theta_{i}+\frac{\pi}{4}\right)$
Many generalizations: $\{9 \mathrm{j}\}$ symbol [Haggard and Littlejohn - 2010], \{6j\} for non-compact groups SU(1,1) [Davids - 2000], quantum group $\mathrm{SU}_{\mathrm{q}}(2)$ [Taylor and Woodward - 2006]

Motivated by the efforts of the LQG community to find dynamical transition amplitudes in the spin foam formalism the asymptotic of invariants associated with the graph of a 4simplex has been studied.

> | SU(2) vertex amplitude [Barrett, Fairbairn and Hellmann - 2010] |
| :--- |
| SO(4) vertex amplitude [Barrett,Dowdall,Fairbairn,Gomes and Hellmann - 2009]]. |
| EPRL vertex amplitude [Barrett, Dowdall, Fairbairn, Hellmann and Pereira - 2010] |
| Time-like boundary [Kaminski, Kisielowski and Sahlmann - 2017] |
| Quantum group SL $_{\mathrm{q}}(2, \mathrm{C})$ [Haggard, Han, Kaminski and Riello - 2016] |

Simpler analysis but same saddle point geometry of the Lorentzian models. Optimal playground to start doing numerics.

Outline

Overview of the $\mathrm{SU}(2)$ amplitude asymptotic
with less math but more geometry
clear interpretation in terms of shape matching constraint

Numerical results

challenges and applications
first numerical confirmation of the formula

Extension to arbitrary valence
dynamics to arbitrary spin networks
what is the semi-classical limit in this case?
Chapter 3
areas are not enough to characterize polytopes (4C-10)
not all the volume simplicity constraints are imposed [Belov - 2017]

Definition of the amplitude

The amplitude is a linear combination of $\{15 \mathrm{j}\}$ symbols with coefficients constructed from coherent states of the intertwiner space.

Definition of the amplitude

What are the variables?

- 10 spins $j_{a b}$ with $a<b$

$$
a, b=1, \ldots, 5
$$

- 20 unitary vectors $\vec{n}_{a b}$

geometrical data of 5 tetrahedra*!

$j_{a b}$ area of the face "shared" between tet a and b $\vec{n}_{a b}$ normal to the face b of the tet a

Quantum tetrahedron

- Livine-Speziale coherent states

$$
\begin{aligned}
& \left.\|\left\{j_{a b}, \vec{n}_{a b}\right\}\right\rangle:=\int d g \bigotimes_{(a b)} g \triangleright\left|j_{a b}, \vec{n}_{a b}\right\rangle \\
& \text { [Livine and Speziale - 2007] } \\
& \text { [Bianchi, D., Speziale - 2011] }
\end{aligned}
$$

Definition of the amplitude

What are the variables? geometrical data of 5 tetrahedra!
10 spins $j_{a b}$ (areas) and 20 unitary vectors $\vec{n}_{a b}$
(5×4 normals to the faces)
Quantum tetrahedron
(LS coherent state)
$\left\langle\left\{j_{a b}\right\}, i \|\left\{j_{a b}, \vec{n}_{a b}\right\}\right\rangle$
$i_{i_{1}} \dot{f}$

Definition of the amplitude

What are the variables? geometrical data of 5 tetrahedra!

10 spins $j_{a b}$ (areas) and 20 unitary vectors $\vec{n}_{a b}$
(5×4 normals to the faces)
Quantum tetrahedron
(LS coherent state)
$\left\langle\left\{j_{a b}\right\}, i \|\left\{j_{a b}, \vec{n}_{a b}\right\}\right\rangle$

For our purpose is more convenient to use
$A_{v}\left(j_{a b}, \vec{n}_{a b}\right)=$
$\sum_{\left\{i_{0}\right\}} \prod_{a} d_{i_{0} o z_{j}}^{i_{2}}$ an integral form

$$
A_{v}\left(j_{a b}, \vec{n}_{a b}\right)=\int \prod_{a} d g_{a} \prod_{(a b)}\left\langle\frac{1}{2},-\vec{n}_{a b}\right| g_{a}^{-1} g_{b}\left|\frac{1}{2}, \vec{n}_{b a}\right\rangle^{2 j_{a b}}
$$

The saddle point approximation

Asymptotic behavior $j_{a b} \rightarrow \lambda j_{a b}$! By saddle point approximation.

$$
S\left(g_{a} ; j_{a b}, \vec{n}_{a b}\right)=\sum_{1 \leq a<b \leq 5} 2 j_{a b} \log \left\langle-\vec{n}_{a b}\right| g_{a}^{\dagger} g_{b}\left|\vec{n}_{b a}\right\rangle
$$

Critical Points (CP) equations:
[Barrett, Fairbairn and Hellmann - 2010]

$$
\begin{aligned}
& R_{b} \vec{n}_{b a}=-R_{a} \vec{n}_{a b} \\
& \sum_{b \neq a} j_{a b} \vec{n}_{a b}=0 \quad \forall a .
\end{aligned}
$$

- the first equation comes from extremizing $\operatorname{Re}[S]$
- the second equation comes from requiring stationary phase
- R_{a} is the $\mathrm{SU}(2)$ matrix g_{a} in the adjoint representation

The saddle point approximation

Asymptotic behavior $j_{a b} \rightarrow \lambda j_{a b}$! By saddle point approximation.
Critical points (CP) equations: $R_{b} \vec{n}_{b a}=-R_{a} \vec{n}_{a b} \quad \sum_{b \neq a} j_{a b} \vec{n}_{a b}=0 \quad \forall a$. Is there a convenient gauge? Introducing the Twisted spike $\vec{n}_{b a}=-\vec{n}_{a b}$

the normals of the boundary tetrahedra

A 3D picture of an Euclidean 4Simplex

If the five tetrahedra are the boundary of an Euclidean 4Simplex the twist angle coincide with the 4D dihedral angle*. Ask if interested/look at the end.

The saddle point approximation

Asymptotic behavior $j_{a b} \rightarrow \lambda j_{a b}$! By saddle point approximation.
Critical points (CP) equations: $R_{b} \vec{n}_{b a}=-R_{a} \vec{n}_{a b} \quad \sum_{b \neq a} j_{a b} \vec{n}_{a b}=0 \quad \forall a$.
Is there a convenient gauge? Introducing the Twisted spike $\vec{n}_{b a}=-\vec{n}_{a b}$
If this gauge does not exists there are no solutions of the CP equations

The saddle point approximation

Asymptotic behavior $j_{a b} \rightarrow \lambda j_{a b}$! By saddle point approximation.
Critical points (CP) equations: $R_{b} \vec{n}_{b a}=-R_{a} \vec{n}_{a b} \quad \sum_{b \neq a} j_{a b} \vec{n}_{a b}=0 \quad \forall a$. Is there a convenient gauge? Introducing the Twisted spike $\vec{n}_{b a}=-\vec{n}_{a b}$

If this gauge does not exists there are no solutions of the CP equations
One immediate solution

$$
R_{a}=\mathbb{1}
$$

Vector Geometry
a characterization of the vector geometries space is easy in this gauge. Ask if interested/look at the end

The saddle point approximation

Asymptotic behavior $j_{a b} \rightarrow \lambda j_{a b}$! By saddle point approximation.
Critical points (CP) equations: $R_{b} \vec{n}_{b a}=-R_{a} \vec{n}_{a b} \quad \sum_{b \neq a} j_{a b} \vec{n}_{a b}=0 \quad \forall a$. Is there a convenient gauge? Introducing the Twisted spike $\vec{n}_{b a}=-\vec{n}_{a b}$

If this gauge does not exists there are no solutions of the CP equations
One immediate solution

$$
R_{a}=\mathbb{1}
$$

Vector Geometry
a characterization of the vector geometries space is easy in this gauge. Ask if interested/look at the end

Non trivial solutions

$$
\begin{aligned}
& R_{1}=\mathbb{1} \\
& R_{b}=e^{i 2 \theta_{1 b} \vec{n}_{b 1} \cdot \vec{J}}
\end{aligned}
$$

Regge Geometry
$\cos \theta_{a b}=\cos \theta_{a b}^{(c)}(\varphi)=\frac{\cos \varphi_{a b}^{(c)}+\cos \varphi_{a c}^{(b)} \cos \varphi_{b c}^{(a)}}{\sin \varphi_{a c}^{(b)} \sin \varphi_{b c}^{(a)}}$
$\cos \varphi_{b c}^{(a)}:=\vec{n}_{a b} \cdot \vec{n}_{a c}$
edge independence $=$ angle matching $=$ shape matching
[Dittrich and Speziale - 2008]

Asymptotic formula

dofs Geometry type
20

Saddle
points
0

Behavior
Exponentially decreasing

Asymptotic formula

dofs Geometry type 20

$$
\begin{aligned}
& \text { twisted } \\
& \text { vector } \\
& \text { (anti-parallel) } \\
& A_{v}\left(j_{a b}, \vec{n}_{a b}\right)=\left(\frac{2 \pi}{\lambda}\right)^{6} \frac{2^{4}}{(4 \pi)^{8}} \frac{1}{\sqrt{\operatorname{det}-H^{(0)}}}+O\left(\lambda^{-7}\right) .
\end{aligned}
$$

Saddle points

Behavior

Exponentially decreasing
Power law decreasing without oscillations

Asymptotic formula

dofs Geometry type 20 twisted vector
15 $10 \begin{gathered}\text { Regge } \\ \text { (shape-matching) }\end{gathered}$

Behavior

Exponentially decreasing
Power law decreasing without oscillations

Power law decreasing Regge oscillations

$$
S_{\mathrm{R}}:=\sum_{(a b)} j_{a b} \theta_{a b}(\varphi)
$$

$$
A_{v}\left(j_{a b}, \vec{n}_{a b}\right)=\left(\frac{2 \pi}{\lambda}\right)^{6} \frac{2^{4}}{(4 \pi)^{8}} \frac{e^{i \lambda S_{R}}}{\sqrt{\left|\operatorname{det}-H^{(0)}\right|}} \cos \left(\lambda S_{R}-\frac{1}{2} \arg \operatorname{det}-H^{(0)}\right)+O\left(^{-7}\right)
$$

Numerical results

Two available paths:

Numerical integration, MonteCarlo techniques

- Oscillatory integrals requires adaptive methods with slow convergence
- Warm-up exercise for Lorentzian EPRL

Explicit summation of the $\{15 \mathrm{j}\}$ symbols
[Johansson and Forssen - 2016]

- Efficient way to compute invariants is a problem solved by mathematicians
- Strategy: consider reducible $\{15 \mathrm{j}\}$

Equilateral 4-Simplex

- Numerical Data ○Analytic Asymptotic

Isosceles 4-Simplex

Next to leading order

Expected by the saddle point approximation
Unknown amplitude and phase make it difficult - different kind of analysis
Correction to semi-classical regime are numerically accessible
Careful interpretation - NO higher curvature terms

Higher valence and polytopes

The action is "local", leads to the same critical points equations.

$$
A_{v}\left(j_{a b}, \vec{n}_{a b}\right)=\int \prod_{a} d g_{a} \prod_{(a b)}\left\langle\frac{1}{2},-\vec{n}_{a b}\right| g_{a}^{-1} g_{b}\left|\frac{1}{2}, \vec{n}_{b a}\right\rangle^{2 j_{a b}}
$$

The main difference is in the treatment of nodes not first-neighbours, but our procedure, which does not rely on Bivector reconstruction theorem, extends naturally.

Higher valence and polytopes

The action is "local", leads to the same critical points equations.

Dofs Geometry type Saddle points
 Behavior

5L-6N	twisted	0	Exponentially decreasin 3L-3N
vector			
(anti-parallel)			

Higher valence and polytopes

The action is "local", leads to the same critical points equations.

Dofs Geometry type | Saddle |
| :---: |
| points |

Behavior

5L-6N	twisted	0
3L-3N	vector	1
	(anti-parallel)	1

Exponentially decreasing
Power law decreasing without oscillations

Looking for a second equation: (same conditions before)

$$
\cos \theta_{a b}=\cos \theta_{a b}^{(c)}(\varphi)=\frac{\cos \varphi_{a b}^{(c)}+\cos \varphi_{a c}^{(b)} \cos \varphi_{b c}^{(a)}}{\sin \varphi_{a c}^{(b)} \sin \varphi_{b c}^{(a)}}
$$

edge independence is equivalent to angle matching but not shape matching!

Higher valence and polytopes

The action is "local", leads to the same critical points equations.

Dofs Geometry type | Saddle |
| :---: |
| points |\quad Behavior

5L-6N	twisted	0	Exponentially decreasing
3L-3N	vector (anti-parallel)	1	Power law decreasing without oscillations
	Conformal twisted (angle-matching)	2	Power law decreasing generalized Regge oscillations
$\begin{array}{ll} S_{\Gamma}\left[j_{a b}, \varphi_{b c}^{(a)}, \lambda_{a, b}, \mu_{a b, c d}\right] & =\sum_{\text {uniquely defined }} j_{a b} \sqrt{\theta_{a b}(\varphi)}+ \\ \text { Easy to glue! } & \sum_{\text {closure }} \lambda_{a, b} C_{a, b}(j, \varphi)+ \\ \text { clate matching } \end{array}$			

Not enough constraints to write lenghts in terms of Areas and Angles
Does it have a well-defined continuum limit?

Higher valence and polytopes

The action is "local", leads to the same critical points equations.

Dofs Geometry type | Saddle |
| :---: |
| points |\quad Behavior

5L-6N	twisted	0	Exponentially decreasing
3L-3N	vector (anti-parallel)	1	Power law decreasing without oscillations
	Conformal twisted (angle-matching)	2	Power law decreasing
generalized Regge oscillations			

We can restrict to full shape matched subspace. In general not flatly embeddable. Curved bulk is allowed. Classical limit to be studied.

Higher valence and polytopes

The action is "local", leads to the same critical points equations.

Dofs Geometry type Saddle points

Dofs	Geometry type	Sadd poin
5L-6N	twisted	0
3L-3N	vector (anti-parallel)	1
	Conformal twisted (angle-matching)	2
2L-2N	Regge (shape-matching)	2
4N-10	polytope (flat embedding)	2

Conclusion and Outlook

Numerical results

High accuracy already at low spins, and insights on highe̊i order corrections
Gathered expertise to attack the EPRL problem
Extension to arbitrary valence
The analytic results of the asymptotic analysis extend to more general graphs
Two distinct saddle points appears for angle matched configurations

Extensions to EPRL model (work in progress)
Our results apply to $\operatorname{SU}(2)$ graph invariants and BF theory but they are relevant also for constrained BF models

Generalized vertices (KKL) and extended 4D triangulations
Computation of divergences for any Spin Foam diagram

Thanks for your attention!

A glance at EPRL \& Booster Functions

$$
A_{v}\left(j_{f}, i_{e}\right)=
$$

Decompose the EPRL vertex amplitude into a superposition of $\operatorname{SU}(2)$ ones weighted by the Boosters (one per half-edge)

Vector Geometry

A collection of tetrahedra (polyhedra) with anti-parallel normals (up to a SO (3) rotation per polyhedron) $\vec{n}_{b a}=-\vec{n}_{a b}$

We want to find a parametrization of the 15 dof (3L-3N)
Visualization in the Kapovich-Millson dual space as a three dimensional polygon (2 d.o.f.)

Anti-parallel normals means you can glue two polygons together by superimposing normals

Iterating you obtain the following picture

fully characterized by 15 numbers
10 areas $j_{a b}$
4 gauge invariant angles (3D dihedral)
1 non gauge invariant angle

Twisted Spike from a 4 simplex

(how to build boundary data from four dimensional geometry)
Denote with N_{a} the four dimensional normals to the tetrahedra
Pick a tetrahedron (e.g. tet 1) as reference, and rotate in \mathbb{R}^{4} the remaining tetrahedra as to align their normals to N_{1}.

These transformations leaves invariant the shared faces with the reference tetrahedron.

