Causal Structure in

Spin-foams

Eugenio Bianchi \& Pierre Martin-Dussaud
arXiv: 2109.00986

ILQGS, 22 Feb. 2022

QISS

Causal Structure in

Spin-foams

Is causality a fundamental or an emergent property of space-time?

Causal Structure in

Spin-foams

Is causality a fundamental or an emergent property of space-time?
Plan:

kinematics of

manifold + lorentzian metric g general relativity
\mathcal{M}

kinematics of

 general relativitymanifold + lorentzian metric g
signature $(\eta,-\eta,-\eta,-\eta) \quad \eta= \pm 1$

kinematics of general relativity

$$
\text { manifold }+ \text { lorentzian metric } g
$$

$$
\text { signature }(\eta,-\eta,-\eta,-\eta) \quad \eta= \pm 1
$$

causal structure $=$ light-cone structure

kinematics of general relativity

\mathcal{M}
manifold + lorentzian metric g

$$
\text { signature }(\eta,-\eta,-\eta,-\eta) \quad \eta= \pm 1
$$

$$
\begin{aligned}
\text { causal structure } & =\text { light-cone structure } \\
& =\text { equivalence classes on } \mathrm{T}_{x} \mathrm{M}
\end{aligned}
$$

$\operatorname{sign} g(u, u)=\left\{\begin{array}{cl}\eta & \text { Time-like } \\ 0 & \text { Null } \\ -\eta & \text { Space-like }\end{array}\right.$

kinematics of general relativity

\mathcal{M}
manifold + lorentzian metric g

$$
\text { signature }(\eta,-\eta,-\eta,-\eta) \quad \eta= \pm 1
$$

$$
\begin{aligned}
\text { causal structure } & =\text { light-cone structure } \\
& =\text { equivalence classes on } \mathrm{T}_{x} \mathrm{M}
\end{aligned}
$$

$\operatorname{sign} g(u, u)=\left\{\begin{array}{cl}\eta & \text { Time-like } \\ 0 & \text { Null } \\ -\eta & \text { Space-like }\end{array}\right.$

kinematics of general relativity

manifold + lorentzian metric g
signature $(\eta,-\eta,-\eta,-\eta) \quad \eta= \pm 1$
causal structure $=$ light-cone structure

$$
=\text { equivalence classes on } \mathrm{T}_{\mathrm{x}} \mathrm{M}
$$

$\operatorname{sign} g(u, u)=\left\{\begin{array}{cl}\eta & \text { Time-like } \\ 0 & \text { Null } \\ -\eta & \text { Space-like }\end{array}\right.$
No time arrow!

Malament's theorem (1977):
Metric $=$ Causal structure + Conformal factor $\Omega(x)$

+discrete

2-dimensional
differentiable manifold

+discrete

2-dimensional differentiable manifold

+discrete

2-dimensional differentiable manifold complex of triangles

Triangle
Segment
Point

+discrete

2-dimensional differentiable manifold

complex of triangles

dual skeleton

Triangle
Segment
Point

Vertex
Link
Face

+discrete

\mathcal{M}

4-dimensional
differentiable manifold with lorentzian metric
+discrete

4-dimensional
differentiable manifold with lorentzian metric

complex of 4-simplices
(with space-like tetrahedra)

+discrete

4-dimensional differentiable manifold with lorentzian metric
complex of 4-simplices
(with space-like tetrahedra)

4-simplex
Tetrahedron
Triangle
Segment
Point

+discrete

4-dimensional differentiable manifold with lorentzian metric
complex of 4-simplices
(with space-like tetrahedra)

4-simplex
Tetrahedron
Triangle
Segment
Point

Vertex
Link
Face
...
...

+ discrete

4-dimensional differentiable manifold with lorentzian metric complex of 4 -simplices (with space-like tetrahedra)

4-simplex
Tetrahedron
Triangle
Segment
Point

Vertex
Link
Face
...
...

$$
\varepsilon_{v}(e)=\left\{\begin{array}{cl}
-1 & \text { incoming (past) } \\
1 & \text { outgoing (future) }
\end{array}\right.
$$

dual 2-skeleton

+surface d.o.f.

$$
\varepsilon_{v}(e)=\left\{\begin{array}{cl}
-1 & \text { incoming (past) } \\
1 & \text { outgoing (future) }
\end{array}\right.
$$

dual 2-skeleton

+surface d.o.f.

5 half-edges

$$
\varepsilon_{v_{1}}(e)=-\varepsilon_{v_{2}}(e)
$$

Causal constraint

$$
\varepsilon_{v}(f)=\left\{\begin{array}{cl}
\eta & \text { co-chronal (time) } \\
-\eta & \text { anti-chronal (space) }
\end{array}\right.
$$

$$
\varepsilon_{v}(e)=\left\{\begin{array}{cl}
-1 & \text { incoming (past) } \\
1 & \text { outgoing (future) }
\end{array}\right.
$$

dual 2-skeleton

+ surface d.o.f.

e edge
5 half-edges

$$
\varepsilon_{v_{1}}(e)=-\varepsilon_{v_{2}}(e)
$$

Causal constraint

$$
\varepsilon_{v}(f)=\eta \varepsilon_{v}\left(e_{1}\right) \varepsilon_{v}\left(e_{2}\right)
$$

$$
\varepsilon_{v}(f)=\left\{\begin{array}{cl}
\eta & \text { co-chronal (time) } \\
-\eta & \text { anti-chronal (space) }
\end{array}\right.
$$

dual 2-skeleton

+ surface d.o.f.

10 wedges

$$
\prod_{f \in \text { cycle }} \varepsilon_{v}(f)=\eta^{\# \text { cycle }}
$$

5 half-edges

$$
\varepsilon_{v_{1}}(e)=-\varepsilon_{v_{2}}(e)
$$

Causal constraint
Causal constraint
$\varepsilon_{v}(f)=\eta \varepsilon_{v}\left(e_{1}\right) \varepsilon_{v}\left(e_{2}\right)$
$\varepsilon_{v}(f)=\left\{\begin{array}{cl}\eta & \text { co-chronal (time) } \\ -\eta & \text { anti-chronal (space) }\end{array} \quad \varepsilon_{v}(e)=\left\{\begin{array}{cl}-1 & \text { incoming (past) } \\ 1 & \text { outgoing (future) }\end{array}\right.\right.$

dual 2-skeleton

+ surface d.o.f.

The causal structure of a 2-complex can be encoded by assigning an orientation (a sign) either to the edges, or to the wedges, satisfying some "causal constraints".

e edge
$\prod \varepsilon_{v}(f)=\eta^{\# \mathrm{cycle}}$
$f \in$ cycle
Causal constraint

5 half-edges

$$
\varepsilon_{v_{1}}(e)=-\varepsilon_{v_{2}}(e)
$$

Causal constraint

$$
\varepsilon_{v}(f)=\eta \varepsilon_{v}\left(e_{1}\right) \varepsilon_{v}\left(e_{2}\right)
$$

$$
\varepsilon_{v}(f)=\left\{\begin{array}{cl}
\eta & \text { co-chronal (time) } \\
-\eta & \text { anti-chronal (space) }
\end{array} \quad \varepsilon_{v}(e)=\left\{\begin{array}{cl}
-1 & \text { incoming (past) } \\
1 & \text { outgoing (future) }
\end{array}\right.\right.
$$

+dynamics

Palatini action

$S\left(g_{\mu \nu}, \Gamma\right)=\int d^{4} x \sqrt{-g} g^{\mu \nu} R_{\mu \nu}(\Gamma)$
$1^{\text {st }}$ order Regge action
+dynamics

$$
S\left[l_{s}, \theta_{t \sigma}, \mu_{\sigma}\right]=\sum_{\sigma} \sum_{t \mid t \in \sigma} A_{t}\left(l_{s}\right) \theta_{t \sigma}+\sum_{\sigma} \mu_{\sigma} \operatorname{det} \gamma_{\sigma}
$$

Palatini action

$S\left(g_{\mu \nu}, \Gamma\right)=\int d^{4} x \sqrt{-g} g^{\mu \nu} R_{\mu \nu}(\Gamma)$

+dynamics

$$
\begin{aligned}
S\left[l_{s}, \theta_{t \sigma}, \mu_{\sigma}\right]=\sum_{\sigma} \sum_{t \mid t \in \sigma} A_{t}\left(l_{s}\right) \theta_{t \sigma}+\sum_{\sigma} \mu_{\sigma} \text { det } \gamma_{\sigma} \\
\text { sum over wedges }
\end{aligned}
$$

Palatini action

+dynamics

$$
S\left[l_{s}, \theta_{t \sigma,} \mu_{\sigma}\right]=\sum_{\sigma} \sum_{t \mid t \in \sigma} A_{t}\left(l_{s}\right) \theta_{t \sigma}+\sum_{\sigma} \sum_{\sigma} \mu_{\sigma} \text { det } \gamma_{\sigma}
$$

Palatini action

+dynamics

$1^{\text {st }}$ order Regge action
 tetrahedra

$$
\operatorname{sign} \theta_{t \sigma}=\varepsilon_{t \sigma}
$$

Orientation

 structure
+dynamics

$1^{\text {st }}$ order Regge action

Orientation structure

Palatini action

Causal structure

+quantum: path integral

$$
\mathcal{A}\left(l_{\Sigma}, \theta_{\Sigma}\right)=\int\left[d l_{s}\right]\left[d \theta_{t \sigma}\right] \prod_{\sigma} \delta\left(\operatorname{det} \gamma_{\sigma}\right) e^{\frac{i}{\hbar} \sum_{t \in \sigma} A_{t} \theta_{t \sigma}}
$$

+quantum: path integral

$$
\begin{gathered}
\varepsilon= \pm 1 \quad \rho>0 \\
\mathcal{A}\left(l_{\Sigma}, \theta_{\Sigma}\right)=\int\left[d l_{s}\right]\left[d \theta_{t \sigma}\right] \prod_{\sigma} \delta\left(\operatorname{det} \gamma_{\sigma}\right) e^{\frac{i}{\hbar} \sum_{t \in \sigma} A_{t} \theta_{t \sigma}}
\end{gathered}
$$

$$
\begin{aligned}
& + \text { quantum: path integral } \\
& \quad \varepsilon= \pm 1 \quad \rho>0 \\
& \varepsilon \rho \\
& \begin{aligned}
& \mathcal{A}\left(l_{\Sigma}, \theta_{\Sigma}\right)=\int\left[d l_{s}\right]\left[d \theta_{t \sigma}\right] \\
&=\prod_{\sigma} \delta\left(\operatorname{det} \gamma_{\sigma}\right) e^{\frac{i}{\hbar} \sum_{t \in \sigma} A_{t} \theta_{t \sigma}}\left[\left[d l_{s}\right]\left[d \rho_{t \sigma}\right]\right. \\
& {\left[\varepsilon_{t \sigma}\right] }
\end{aligned} \prod_{\sigma} \delta\left(\operatorname{det} \gamma_{\sigma}\right) e^{\frac{i}{\hbar} \sum_{t \mid t \in \sigma} A_{t} \varepsilon_{t \sigma} \rho_{t \sigma}}
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon= \pm 1{ }_{\varepsilon \rho} \rho>0 \\
& \mathcal{A}\left(l_{\Sigma}, \theta_{\Sigma}\right)=\int\left[d l_{s}\right]\left[d \theta_{t \sigma}\right] \quad \prod \delta\left(\operatorname{det} \gamma_{\sigma}\right) e^{\frac{i}{\hbar} \sum_{t \in \sigma} A_{t} \theta_{t \sigma}} \\
& =\sum_{\left[\varepsilon_{t \sigma}\right]} \int\left[d l_{s}\right]\left[d \rho_{t \sigma}^{\sigma}\right] \prod_{\sigma} \delta\left(\operatorname{det} \gamma_{\sigma}\right) e^{\frac{i}{\hbar} \sum_{t \mid t \in \sigma} A_{t} \varepsilon_{t \sigma} \rho_{t \sigma}}
\end{aligned}
$$

1. This sum is made over all possible configurations of ε assigned to wedges, including both causal and non-causal (spurious) configurations.

$$
\begin{gathered}
\text { +quantum: path integral } \\
\varepsilon= \pm 1 \quad \rho>0 \\
4 \\
4
\end{gathered}
$$

1. This sum is made over all possible configurations of ε assigned to wedges, including both causal and non-causal (spurious) configurations.

2. The presence of non-causal histories contributing to the amplitude depends on a certain choice of variables.
Example: compare with standard Regge calculus.

+quantum: path integral

$$
\begin{aligned}
& \varepsilon= \pm 1 \varepsilon \rho>0 \\
& \mathcal{A}\left(l_{\Sigma}, \theta_{\Sigma}\right)= \int\left[d l_{s}\right]\left[d \theta_{t \sigma}\right] \prod_{\sigma} \delta\left(\operatorname{det} \gamma_{\sigma}\right) e^{\frac{i}{\hbar} \sum_{t \in \sigma} A_{t} \theta_{t \sigma}} \\
&= \sum_{\left[\varepsilon_{t \sigma}\right]} \int\left[d l_{s}\right]\left[d \rho_{t \sigma}\right] \prod_{\sigma} \delta\left(\operatorname{det} \gamma_{\sigma}\right) e^{\frac{i}{\hbar} \sum_{t \mid t \in \sigma} A_{t} \varepsilon_{t \sigma} \rho_{t \sigma}}
\end{aligned}
$$

1. This sum is made over all possible configurations of ε assigned to wedges, including both causal and non-causal (spurious) configurations.

2. The presence of non-causal histories contributing to the amplitude depends on a certain choice of variables. Example: compare with standard Regge calculus.
3. The non-causal configurations are suppressed in the semi-classical limit. One could also suppress them at the quantum level by restricting the range of integration.

+quantum: path integral

$$
\begin{aligned}
\varepsilon= \pm 1 & \varepsilon \rho>0 \\
\mathcal{A}\left(l_{\Sigma}, \theta_{\Sigma}\right)= & \int\left[d l_{s}\right]\left[d \theta_{t \sigma}\right] \prod_{\sigma} \delta\left(\operatorname{det} \gamma_{\sigma}\right) e^{\frac{i}{\hbar} \sum_{t \in \sigma} A_{t} \theta_{t \sigma}} \\
= & \sum_{\left[\varepsilon_{t \sigma}\right]} \int\left[d l_{s}\right]\left[d \rho_{t \sigma}\right] \prod_{\sigma} \delta\left(\operatorname{det} \gamma_{\sigma}\right) e^{\frac{i}{\hbar} \sum_{t \mid t \in \sigma} A_{t} \varepsilon_{t \sigma} \rho_{t \sigma}}
\end{aligned}
$$

1. This sum is made over all possible configurations of ε assigned to wedges, including both causal and non-causal (spurious) configurations.

2. The presence of non-causal histories contributing to the amplitude depends on a certain choice of variables. Example: compare with standard Regge calculus.
3. The non-causal configurations are suppressed in the semi-classical limit. One could also suppress them at the quantum level by restricting the range of integration.
4. The choice of including the spurious terms or not depends on what we want to compute: a projector on the physical Hilbert space or a causal propagator?

Feynman propagator: $\left(\square+\mathrm{m}^{2}\right) \mathrm{W}=\delta$
Hadamard function: $\left(\square+m^{2}\right) \mathrm{W}=0$

Spinfoams

(EPRL)

Spin-network:
quantum geometry of space

Spinfoams

(EPRL)

Spin-network:
quantum geometry of space

Spinfoams

(EPRL)

Spin-network:
quantum geometry of space

Transition amplitude

$$
W\left(s_{i}, s_{f}\right)=\sum_{\mathcal{C}} W_{\mathcal{C}}\left(s_{i}, s_{f}\right)
$$

Spinfoams
 (EPRL)

Transition amplitude

$$
W\left(s_{i}, s_{f}\right)=\sum_{\mathcal{C}} W_{\mathcal{C}}\left(s_{i}, s_{f}\right)
$$

Spin-foam amplitude

$$
W_{\mathcal{C}}\left(s_{i}, s_{f}\right)=\int_{S U(2)}\left[d h_{w}\right] \prod_{f{ }_{\text {wedge variable } \in S U(2)}} \delta\left(\prod_{w \in f} h_{w}\right) \prod_{v} A_{v}\left(h_{w}\right)
$$

Spin-network:

quantum geometry of space

Spinfoams
 (EPRL)

Transition amplitude

$$
W\left(s_{i}, s_{f}\right)=\sum_{\mathcal{C}} W_{\mathcal{C}}\left(s_{i}, s_{f}\right)
$$

Spin-foam amplitude

$$
W_{\mathcal{C}}\left(s_{i}, s_{f}\right)=\int_{S U(2)}\left[d h_{w}\right] \prod_{f}^{\text {wedge variable } \in S U(2)}<\prod_{\text {face }} \delta\left(\prod_{w \in f} h_{w}\right) \prod_{v} A_{v}\left(h_{w}\right)
$$

Vertex amplitude

$$
A_{v}\left(h_{w}\right)=\int_{S L_{2}(\mathbb{C})}\left[d g_{e}\right] \prod_{w \in v} K\left(h_{w}, g_{s_{w}} g_{t_{w}}^{-1}\right)
$$

Spin-network:

quantum geometry of space

Spinfoams
 (EPRL)

Spin-network:

quantum geometry of space

Transition amplitude

$$
W\left(s_{i}, s_{f}\right)=\sum_{\mathcal{C}} W_{\mathcal{C}}\left(s_{i}, s_{f}\right)
$$

Spin-foam amplitude

$$
W_{\mathcal{C}}\left(s_{i}, s_{f}\right)=\int_{\text {wedge variable } \in \operatorname{SU}(2)}\left[d h_{w}\right] \prod_{\underbrace{}_{\text {face }}} \delta\left(\prod_{w \in f} h_{w}\right) \prod_{v} A_{v}\left(h_{w}\right)
$$

Vertex amplitude

$$
A_{v}\left(h_{w}\right)=\int_{S L_{2}(\mathbb{C})}\left[d g_{e}\right] \prod_{w \in v} K\left(h_{w}, g_{s_{w}} g_{t_{w}}^{-1}\right)
$$

Wedge amplitude

$$
K(h, g)=\sum_{j} \frac{(2 j+1)^{4}}{\pi^{3}} \int[d \zeta]\left[d z^{\prime}\right]\left[d z^{\prime \prime}\right]\left\langle z^{\prime}\right| h^{\dagger}\left|z^{\prime \prime}\right\rangle^{2 j} \mathcal{B} e^{i S_{\gamma}} .
$$

Causal spinfoams

(EPRL)
Wedge amplitude

$$
K(h, g)=\sum_{\substack{ \\ }} \frac{(2 j+1)^{4}}{\pi^{3}} \int_{\text {integrations over CP}}[d \zeta]\left[d z^{\prime}\right]\left[d z^{\prime \prime}\right]\left\langle z^{\prime}\right| h^{\dagger}\left|z^{\prime \prime}\right\rangle^{2 j} \mathcal{B} e^{i S_{\gamma}} .
$$

sum over spins

Causal spinfoams

(EPRL)
Wedge amplitude

$$
\begin{aligned}
& \text { Wedge amplitude } \\
& K(h, g)=\sum_{j} \frac{(2 j+1)^{4}}{\pi^{3}} \int_{\text {integrations over CP}}[d \zeta]\left[d z^{\prime}\right]\left[d z^{\prime \prime}\right]\left\langle z^{\prime}\right| h^{\dagger}\left|z^{\prime \prime}\right\rangle^{2 j} \mathcal{B} e^{i S_{\gamma}}
\end{aligned}
$$

sum over spins

Causal spinfoams

(EPRL)
Wedge amplitude
$S_{\gamma}=\gamma j \log \frac{\left\|g^{T} \zeta\right\|^{2}}{\|\zeta\|^{2}}$
semi-classical limit
θ_{w}

$$
\begin{aligned}
& K(h, g)= \sum_{\varepsilon \in\{-1,1\}} K^{\varepsilon}(h, g) \\
& K^{\varepsilon}(h, g)=\sum_{j} \frac{(2 j+1)^{4}}{\pi^{3}} \int[d \zeta]\left[d z^{\prime}\right]\left[d z^{\prime \prime}\right]\left\langle z^{\prime}\right| h^{\dagger}\left|z^{\prime \prime}\right\rangle^{2 j} \mathcal{B} \Theta\left(\varepsilon S_{\gamma}\right) e^{i S_{\gamma}}
\end{aligned}
$$

Causal spinfoams

(EPRL)
Wedge amplitude
$\int_{\text {"wedge action" }} \quad S_{\gamma}=\gamma j \log \frac{\left\|g^{T} \zeta^{2}\right\|^{2}}{\|\zeta\|^{2}}$
$K(h, g)=\sum_{\varepsilon \in\{-1,1\}} K^{\varepsilon}(h, g)$

$$
\begin{aligned}
& \varepsilon \in\{-1,1\} \\
& \text { itude }
\end{aligned} K^{\varepsilon}(h, g)=\sum_{j} \frac{(2 j+1)^{4}}{\pi^{3}} \int[d \zeta]\left[d z^{\prime}\right]\left[d z^{\prime \prime}\right]\left\langle z^{\prime}\right| h^{\dagger}\left|z^{\prime \prime}\right\rangle^{2 j} \mathcal{B} \Theta\left(\varepsilon S_{\gamma}\right) e^{i S_{\gamma}}
$$

Vertex amplitude

$$
A_{v}=\sum_{\substack{\left[\varepsilon_{w}\right] \\ \text { causal } \eta=1}} A_{v}^{\varepsilon}+\sum_{\substack{\left[\varepsilon_{w}\right] \\ \text { causal } \eta=-1}} A_{v}^{\varepsilon}+\sum_{\substack{\left[\varepsilon_{w}\right]}} A_{v}^{\varepsilon}
$$

"wedge action"
$\mathcal{B} e^{i S_{\gamma}}$.
$S_{\gamma}=\gamma j \log \frac{\left\|g^{T}\right\|^{2}}{\| \|^{2}}$
semi-classical limit
θ_{w}
$K(h, g)=\sum_{j} \frac{(2 j+1)^{4}}{\pi^{3}} \int_{\text {integrations over } C P^{1}}[d \zeta]\left[d z^{\prime}\right]\left[d z^{\prime \prime}\right]\left\langle z^{\prime}\right| h^{\dagger}\left|z^{\prime \prime}\right\rangle^{2 j} \mathcal{B} e^{i S_{\gamma}}$

Causal spinfoams

(EARL)
Wedge amplitude
"wedge action"
$\mathcal{B} e^{i S_{\gamma}}$
$S_{\gamma}=\gamma j \log \frac{\left\|g^{T} \zeta\right\|^{2}}{\|\zeta\|^{2}}$
semi-classical limit
θ_{w}
$K(h, g)=\sum_{\varepsilon \in\{-1,1\}} K^{\varepsilon}(h, g)$

$$
\begin{aligned}
& \varepsilon \in\{-1,1\} \\
& \text { itude }
\end{aligned} K^{\varepsilon}(h, g)=\sum_{j} \frac{(2 j+1)^{4}}{\pi^{3}} \int[d \zeta]\left[d z^{\prime}\right]\left[d z^{\prime \prime}\right]\left\langle z^{\prime}\right| h^{\dagger}\left|z^{\prime \prime}\right\rangle^{2 j} \mathcal{\mathcal { B } \Theta (\varepsilon S _ { \gamma })} e^{i S_{\gamma}}
$$

Vertex amplitude

$$
\prod_{f \in \text { cycle }} \varepsilon_{v}(f)=\eta^{\# \text { cycle }}
$$

$$
A_{v}=\sum_{\substack{\left[\varepsilon_{w}\right]}} A_{v}^{\varepsilon}+\sum_{\substack{\left[\varepsilon_{w}\right]}} A_{v}^{\varepsilon}+\sum_{\substack{\left[\varepsilon_{w}\right]}} A_{v}^{\varepsilon}
$$

$$
(\eta,-\eta,-\eta,-\eta)
$$

Causal spinfoams

(EARL)
Wedge amplitude
"wedge action"
$\mathcal{B} e^{i S_{\gamma}}$
$S_{\gamma}=\gamma j \log \frac{\left\|g^{T} \zeta\right\|^{2}}{\|\zeta\|^{2}}$
semi-classical limit
θ_{w}
$K(h, g)=\sum_{\varepsilon \in\{-1,1\}} K^{\varepsilon}(h, g)$

$$
\varepsilon \in\{-1,1\}
$$

$$
K^{\varepsilon}(h, g)=\sum_{j} \frac{(2 j+1)^{4}}{\pi^{3}} \int[d \zeta]\left[d z^{\prime}\right]\left[d z^{\prime \prime}\right]\left\langle z^{\prime}\right| h^{\dagger}\left|z^{\prime \prime}\right\rangle^{2 j} \mathcal{B} \Theta\left(\varepsilon S_{\gamma}\right) e^{i S_{\gamma}}
$$

$$
A_{v}=\sum_{\left[\varepsilon_{w}\right]} A_{v}^{\varepsilon}+\sum_{\left[\varepsilon_{w}\right]} A_{v}^{\varepsilon}+\sum_{\left[\varepsilon_{w}\right]} A_{v}^{\varepsilon}
$$

$$
\prod_{f \in \text { cycle }} \varepsilon_{v}(f)=\eta^{\# \text { cycle }}
$$

causal constraint

spurious
semi-classical limit

$$
e^{i S_{R}}
$$

signature

$$
(\eta,-\eta,-\eta,-\eta)
$$

$$
e^{-i S_{R}}
$$

0

Causal spinfoams

(EPRL)
Spin-foam amplitude

$$
W_{\mathcal{C}}=\sum_{\substack{\left[\varepsilon_{w}\right] \\ \operatorname{causal} \eta=1}} W_{\mathcal{C}}^{\varepsilon}+\sum_{\substack{\left[\varepsilon_{w}\right]}} W_{\mathcal{C}}^{\varepsilon}+\sum_{\substack{\left[\varepsilon_{w}\right]}} W_{\mathcal{C}}^{\varepsilon}
$$

Causal spinfoams

(EPRL)
Spin-foam amplitude

Causal spinfoam: propagator of spin-networks (time-evolution)
Full EPRL spinfoam: projector on the physical states (Hamiltonian constraint)

Causal spinfoams

(EPRL)
Spin-foam amplitude

Causal spinfoam: propagator of spin-networks (time-evolution)
Full EPRL spinfoam: projector on the physical states (Hamiltonian constraint)
[Livine, Oriti 03']
[Engle 13']

Causal spinfoams

> (EPRL)

Spin-foam amplitude

$W_{\mathcal{C}}=\sum_{$| $\left[\varepsilon_{w}\right]$ |
| :---: |
| causal $\eta=1$ |$} W_{\mathcal{C}}^{\mathcal{E}}+\sum_{$| $\left[\varepsilon_{w}\right]$ |
| :---: |
| causal $\eta=-1$ |$} W_{\mathcal{C}}^{\varepsilon}+\sum_{$| $\left[\varepsilon_{w}\right]$ |
| :---: |
| spurious |$} W_{\mathcal{C}}^{\varepsilon}$

Causal spinfoam: propagator of spin-networks (time-evolution)
Full EPRL spinfoam: projector on the physical states (Hamiltonian constraint)
[Livine, Oriti 03']
[Engle 13']

Causal spinfoams

(EPRL)

Spin-foam amplitude

$W_{\mathcal{C}}=\sum_{$| $\left[\varepsilon_{w}\right]$ |
| :---: |
| causal $\eta=1$ |$} W_{\mathcal{C}}^{\mathcal{E}}+\sum_{$| $\left[\varepsilon_{w}\right]$ |
| :---: |
| causal $\eta=-1$ |$} W_{\mathcal{C}}^{\varepsilon}+\sum_{$| $\left[\varepsilon_{w}\right]$ |
| :---: |
| spurious |$} W_{\mathcal{C}}^{\varepsilon}$

Causal spinfoam: propagator of spin-networks (time-evolution)
Full EPRL spinfoam: projector on the physical states (Hamiltonian constraint)
[Livine, Oriti 03'] For the Barret-Crane model:

$$
K^{p}\left(x_{1}, x_{2}\right)=\frac{2 \sin \left(\beta\left(x_{1}, x_{2}\right) p / 2\right)}{p \sinh \beta\left(x_{1}, x_{2}\right)}=\frac{1}{p \sinh \beta\left(x_{1}, x_{2}\right)} \sum_{\varepsilon= \pm 1} \varepsilon e^{i \varepsilon \beta\left(x_{1}, x_{2}\right) p / 2}
$$

[Engle 13']

Causal spinfoams

(EPRL)

Spin-foam amplitude

$W_{\mathcal{C}}=\sum_{$| $\left[\varepsilon_{w}\right]$ |
| :---: |
| causal $\eta=1$ |$} W_{\mathcal{C}}^{\mathcal{E}}+\sum_{$| $\left[\varepsilon_{w}\right]$ |
| :---: |
| causal $\eta=-1$ |$} W_{\mathcal{C}}^{\mathcal{E}}+\sum_{$| $\left[\varepsilon_{w}\right]$ |
| :---: |
| spurious |$} W_{\mathcal{C}}^{\mathcal{E}}$

Causal spinfoam: propagator of spin-networks (time-evolution)
Full EPRL spinfoam: projector on the physical states (Hamiltonian constraint)
[Livine, Oriti 03'] For the Barret-Crane model:

$$
K^{p}\left(x_{1}, x_{2}\right)=\frac{2 \sin \left(\beta\left(x_{1}, x_{2}\right) p / 2\right)}{p \sinh \beta\left(x_{1}, x_{2}\right)}=\frac{1}{p \sinh \beta\left(x_{1}, x_{2}\right)} \sum_{\varepsilon= \pm 1} \varepsilon e^{i \varepsilon \beta\left(x_{1}, x_{2}\right) p / 2}
$$

[Engle 13'] "Proper vertex amplitude"

$$
A_{v}^{(+)}\left(\left\{k_{a b}, \psi_{a b}\right\}\right):=(-1)^{\Xi} \int_{\mathrm{SL}(2, \mathbb{C})^{5}} \delta\left(X_{4}\right) \prod_{a} \mathrm{~d} X_{a} \prod_{a<b} \alpha\left(X_{a} \mathcal{I} \psi_{a b}, X_{b} \mathcal{I} \Pi_{b a}\left(\left\{X_{a b}\right\}\right) \psi_{b a}\right)
$$

Conclusion

- Causality exhausts almost all of the information content of the gravitational field (Malament's theorem).
- Causality can be represented by arrows on the edges of the dual skeleton.
- Causality can also be encoded on the wedges (more variables) provided a new "causal constraint" is satisfied.
- This causal constraint can be derived from the equations of motion.
- In the path-integral, one can restrict or not to causal histories only, depending on what one wants to compute, a projector or a propagator.
- Same thing with spinfoams.

