Gravity as Cartan geometry
Supergravity as super Cartan geometry
Supersymmetry and the SUSY constraint
The chiral theory
Applicaton: Loop quantum cosmology
Outlook: Boundary theory in LQG (WIP)
To take home

Supergravity in LQG

Konstantin Eder & Hanno Sahlmann

FAU Erlangen-Nürnberg

doi:10.1103/PhysRevD.103.046010 doi:10.1007/JHEP03(2021)064 arxiv:2010.09630 arxiv:2101.00924

March 9, 2021

Introduction
Gravity as Cartan geometry
Supergravity as super Cartan geometry
Supersymmetry and the SUSY constraint
The chiral theory
Applicaton: Loop quantum cosmology
Outlook: Boundary theory in LQG (WIP)
To take home

Section 1

Introduction

Coleman-Mandula: most general Lie algebra of symmetries of the S-matrix has form

$$\mathfrak{iso}(\mathbb{R}^{1,3}) \oplus \mathsf{internal} \mathsf{sym}.$$
 (1)

Only way around this seems to be through new form of symmetry:

Haag-Łopuszański-Sohnius theorem

Going away from (1) in an interacting QFT with mass gap requires super Lie algebras, i.e. \mathbb{Z}_2 -graded algebras $(\mathfrak{g}, [\cdot, \cdot])$ of the form

$$\mathfrak{g}=\mathfrak{g}_0\oplus\mathfrak{g}_1\quad\text{with}\quad [\cdot,\cdot]:\text{(anti) commutator on }\mathfrak{g}_0\text{ }(\mathfrak{g}_1)$$

such that $[\mathfrak{g}_i,\mathfrak{g}_j]\subseteq\mathfrak{g}_{i+j}$ (+ graded Jacobi identity)

 \Rightarrow smallest possible superalgebra containing spacetime symmetries:

super Poincaré/super anti-de Sitter $\mathfrak{osp}(1|4)$

$$\mathfrak{iso}(\mathbb{R}^{1,3|4}) = \underbrace{\mathbb{R}^{1,3} \ltimes \mathfrak{so}(1,3)}_{\mathfrak{g}_0} \oplus \underbrace{S_{\mathbb{R}}}_{\mathfrak{g}_1}$$

generators: P_I , M_{IJ} , $Q^{\alpha} = (Q^A, Q_{A'})^T$ (Majorana spinor)

$$[P_I, Q_{\alpha}]_{-} = 0 - \frac{1}{2L} Q_{\beta} (\gamma_I)^{\beta}_{\alpha}$$

$$[M_{IJ}, Q_{\alpha}]_{-} = \frac{1}{2} Q_{\beta} (\gamma_{IJ})^{\beta}_{\alpha}$$

$$[Q_{\alpha}, Q_{\beta}]_{+} = \frac{1}{2} (C\gamma_I)_{\alpha\beta} P^I + \frac{1}{4L} (C\gamma^{IJ})_{\alpha\beta} M_{IJ}$$

$$AdS_4 := \{x \in \mathbb{R}^5 | -(x^0)^2 + (x^1)^2 + \ldots + (x^3)^2 - (x^4)^2 = -L^2\}$$

Since new generators $Q^{\alpha}...$

- transform as spinors, they relate particles of integer, half-integer spin,
- are anti-commuting, they relate bosons and fermions.

Can include further fermionic generators Q^i_{α} , $i=1,\dots,\mathcal{N}$. In present talk mostly $\mathcal{N}=1$.

Application to gravity

Most ambitious use of this kind of symmetry:

local supersymmetry ⇒ **supergravity** (SUGRA)

For $\mathcal{N}=1, D=4$ contains gravitational field and a spin $\frac{3}{2}$ fermion.

Supergravity

Why interesting?

- ullet \Rightarrow leads to unified description of force and matter \rightarrow GUT
- (max.) $\mathcal{N}=8$, D=4 SUGRA may be **perturbatively finite** [Green et al '07,Berne et al '18]

Specifically for LQG

- Matter as part of gravity
- contact to boundary description in string theories and AdS/CFT conjecture [Mikhaylov + Witten '14]
- \leftrightarrow black hole entropy calculations (\rightarrow BPS states)?

LQG and supergravity

What has been done?

- SUGRA in Ashtekar variables [Jacobson '88, Tsuda '00]
- enhanced gauge symmetry $\mathfrak{osp}(1|2)$ [Fülöp '94, Gambini + Obregon + Pullin '96]
- formal quantization [Gambini + Obregon + Pullin '96, Ling + Smolin '99]
- $\mathfrak{osp}(1|2)$ spin networks, inner boundaries [Ling + Smolin '99]
- Spinfoam models in D=3 [Livine + Oeckl '03, L+Ryan '07, Baccetti+L+R '10]
- Canonical theory for higher D, quantization of RS fields, p-form fields [Bodendorfer+Thiemann+Thurn '11]

LQG and supergravity

Open questions, tasks:

- dynamics quantum theory (→ quantization SUSY constraint)
- relations/differences to standard quantization Hamilton constraint in classical LQG
- ullet symmetry reduced models o cosmological implications

Where does enlarged $\mathfrak{osp}(1|2)$ -gauge symmetry come from

- which Immirzi parameters? Reality conditions?
- ullet generalizations to ${\cal N}>1$? [Ezawa '95, Tsuda '00, KE '21 in prep.]
- boundary theory (→ BPS states, black holes)?

Quantization while keeping $\mathfrak{osp}(1|2)$ symmetry manifest:

- precise mathematical setting
- structure and properties of graded holonomies
- \bullet structure of Hilbert spaces \leftrightarrow relation to standard quantization in LQG with fermions

In this talk

Mathematically clean formulation studying enriched categories (not part of this talk!)

Classical theory:

- Supergravity via Cartan geometry
- ullet Holst-MacDowell-Mansouri SUGRA action for any eta
- special properties of self-dual theory
- boundary theory

Quantum theory:

- graded connections, -holonomies, and -group integration
- applications: LQC, black holes (WIP)

Gravity as Cartan geometry
Supergravity as super Cartan geometry
Supersymmetry and the SUSY constraint
The chiral theory
Applicaton: Loop quantum cosmology
Outlook: Boundary theory in LQG (WIP)
To take home

Section 2

Gravity as Cartan geometry

Klein geometry

F. Klein: "Classify geometry of space via group symmetries".

Example: Minkowski spacetime $\mathbb{M} = (\mathbb{R}^{1,3}, \eta)$

- isometry group $\mathrm{ISO}(\mathbb{R}^{1,3}) = \mathbb{R}^{1,3} \ltimes \mathrm{SO}_0(1,3)$
- event $p \in \mathbb{M}$: $G_p = SO_0(1,3)$ (isotropy subgroup)

$$\mathrm{ISO}(\mathbb{R}^{1,3})/\mathrm{SO}_0(1,3) \cong \mathbb{M}$$

Definition

A Klein geometry is a pair (G, H) where G is a Lie group and $H \subseteq G$ a closed subgroup such that G/H is connected.

Cartan geometry

- ullet flat spacetime \leftrightarrow Klein geometry
- ⇒ Cartan geometry as deformed Klein geometry

Definition: Cartan geometry

A **Cartan geometry** modeled on a Klein geometry (G, H) is a principal H-bundle

$$P \stackrel{r}{\longleftarrow} H$$

$$\downarrow \\ M$$

together with a **Cartan connection** $A \in \Omega^1(P, \mathfrak{g})$ s.t.

- $r_g^*A = \operatorname{Ad}(g^{-1})A \ \forall g \in H$

Gravity as Cartan geometry

Example: Cartan geometry modeled over AdS_4 (SO(2,3), SO₀(1,3))

Cartan connection

$$A = \operatorname{pr}_{\mathbb{R}^{1,3}} \circ A + \operatorname{pr}_{\mathfrak{so}(1,3)} \circ A =: e + \omega$$

• ω : Lorentz-connection, e: soldering form (co-frame)

Holst as MacDowell-Mansouri

Holst action via Mac-Dowell-Mansouri [A. Randono '06, D. Wise '09] via perturbed BF-Theory [Freidel+Starodubtsev '05]

Here: AdS_4 : can use $\mathfrak{so}(2,3) \cong \mathfrak{sp}(4) \supset \mathfrak{so}(1,3)$, basis $M_{IJ} = \frac{1}{4}[\gamma_I, \gamma_J]$

Definition

$$\mathcal{P}_{eta}:=rac{\mathbb{I}+ieta\gamma_{5}}{2eta}:\,\mathfrak{so}(1,3)
ightarrow\mathfrak{so}(1,3),\quadeta:$$
 Immirzi

 \rightarrow yields inner product on $\mathfrak{sp}(4)$:

$$\langle \cdot, \cdot \rangle_{\beta} := \operatorname{tr}(\cdot \mathbf{0} \oplus \mathcal{P}_{\beta} \cdot)$$

Holst-MacDowell-Mansouri action

$$S_{H-MM}[A] = \int_{M} \left\langle R[A] \wedge R[A]
ight
angle_{eta} = S_{ extit{Holst}}^{eta} + extit{boundary term}$$

$$R[A] = dA + \frac{1}{2}[A \wedge A]$$
: Cartan curvature

Introduction
Gravity as Cartan geometry
Supergravity as super Cartan geometry
Supersymmetry and the SUSY constraint
The chiral theory
Applicaton: Loop quantum cosmology
Outlook: Boundary theory in LQG (WIP)
To take home

Section 3

Supergravity as super Cartan geometry

Supergravity as super Cartan geometry

- starting point for geometric approach to SUGRA initiated by Ne'eman and Regge [N+R '76]
- developed further by Castellani-D'Auria-Fré [A+F '76, C+A+F '91]
- extension to higher *D* reveals higher categorial structure of max.
 D=11 SUGRA [Fiorenza+Sati+Schreiber '14, S+S '17]
- studied proper mathematical realization incorporating anticommutative nature of fermionic fields [KE '20+'21]
- → work in enriched category of supermanifolds [Schmitt '96, Deligne '99, Keßler+Jost+Tolksdorf '17, K+Sheshmani+Yau '20]
- ullet describe (AdS) SUGRA as enriched super Cartan geometry modeled over super AdS₄ (OSp(1|4), Spin⁺(1,3)) [KE '20+'21]

Supergravity as super Cartan geometry

$$\begin{array}{ccc}
\mathcal{P} & \leftarrow & \operatorname{Spin}^+(1,3) \\
\pi & & \\
\mathcal{M} & & \\
\end{array}$$

Super Cartan connection: $\mathcal{A} \in \Omega^1(\mathcal{P}, \mathfrak{osp}(1|4))_0$

$$\mathcal{A} = \underbrace{\operatorname{pr}_{\mathfrak{g}_1} \circ \mathcal{A}}_{\psi} + \underbrace{\operatorname{pr}_{\mathbb{R}^{1,3}} \circ \mathcal{A}}_{e} + \underbrace{\operatorname{pr}_{\mathfrak{spin}(1,3)} \circ \mathcal{A}}_{\omega}$$

 $\psi = \psi^{\alpha} Q_{\alpha}$ (Rarita-Schwinger field)

Super soldering form

$$E := e + \psi : T_p \mathcal{M} \xrightarrow{\sim} \mathbb{R}^{1,3} \oplus S_{\mathbb{R}}, \quad \forall p \in \mathcal{M}$$

- ightarrow locally identifies ${\cal M}$ with super ${\rm AdS}_4$
- \rightarrow metric on $\mathfrak{osp}(1|4)$ induces metric structure on $\mathcal M$ (Killing-isometries, Killing spinors \rightarrow BHs)

Supergravity and LQG

Holst action for (extended) Poincaré SUGRA [Tsuda '00, Kaul '07] via MM ($\mathcal{N}=1$, β as θ -ambiguity) [Obregon+Ortega-Cruz+Sabido '12]

Here: via Holst projection (\rightarrow extension ${\cal N}>1$ & discussion boundary theory [KE '21])

- $\bullet \ \mathfrak{osp}(1|4) \cong \mathfrak{sp}(4) \oplus \mathcal{S}_{\mathbb{R}}$
- ullet $S_{\mathbb{R}}$ Clifford module o can naturally extend \mathcal{P}_{eta}

Definition

$$\mathbf{P}_{eta} := \mathbf{0} \oplus \mathcal{P}_{eta} \oplus \mathcal{P}_{eta} : \, \mathfrak{osp}(1|4)
ightarrow \mathfrak{osp}(1|4)$$

 \rightarrow yields inner product on $\mathfrak{osp}(1|4)$:

$$\langle \cdot, \cdot \rangle_{\beta} := \operatorname{str}(\cdot \mathbf{P}_{\beta} \cdot)$$

Supergravity and LQG

super Holst-MacDowell-Mansouri action

$$S_{\mathsf{sH-MM}}[\mathcal{A}] = \int_{\mathcal{M}} \langle R[\mathcal{A}] \wedge R[\mathcal{A}] \rangle_{\beta}$$

Cartan curvature

$$R[A] = dA + \frac{1}{2}[A \wedge A]$$

- $R[A]^I = \Theta^{(\omega)I} \frac{1}{4}\bar{\psi} \wedge \gamma^I \psi$
- $R[A]^{IJ} = R[\omega]^{IJ} + \frac{1}{L^2} \Sigma^{IJ} \frac{1}{4L} \bar{\psi} \wedge \gamma^{IJ} \psi$
- $R[A]^{\alpha} = D^{(\omega)}\psi^{\alpha} \frac{1}{2L}e^{I}(\gamma_{I})^{\alpha}{}_{\beta} \wedge \psi^{\beta}$
- ullet ightarrow yields Holst action of D= 4, $\mathcal{N}=$ 1 AdS-SUGRA + bdy terms

Introduction
Gravity as Cartan geometry
Supergravity as super Cartan geometry
Supersymmetry and the SUSY constraint
The chiral theory
Applicaton: Loop quantum cosmology
Outlook: Boundary theory in LQG (WIP)
To take home

Section 4

Supersymmetry and the SUSY constraint

- D'Auria-Fré: supersymmetry as superdiffeomorphisms
- in Cartan-geometric framework:

Correspondence

Cartan connections
$$\mathcal{A}\leftrightarrow$$
 Ehresmann connections $\hat{\mathcal{A}}$ on \mathcal{P} on $\mathcal{P}\times\mathrm{OSp}(1|4)$

 \rightarrow can study **odd** local gauge transformations

Gauge transformations

$$(\delta_{\epsilon} \mathbf{e}, \delta_{\epsilon} \psi, \delta_{\epsilon} \omega) := \delta_{\epsilon} \hat{\mathcal{A}} = D^{(\hat{\mathcal{A}})} \epsilon$$

 \Rightarrow yields local symmetry $\leftrightarrow R[\hat{A}]^I = 0 \ (\leftrightarrow EOM \ of \ \omega)$ [Nieuwenhuizen '03, Castellani '10, KE '20]

The SUSY constraint

- have seen: local SUSY as field dependent gauge transformation
- in canonical theory: any local symmetry induces constraint
 → Here: SUSY constraint S
- due to $[Q, Q] \propto P_0 + P_i + Lorentz$ generally expect:

Constraint algebra

$$\{S[\eta], S[\eta']\} = H[N(\eta, \eta')] + \text{kin. constraints}$$

- H: Hamilton constraint
- $N \equiv N[E_i^a]$: (generally field dependent) lapse function
- ⇒ SUSY-constraint superior to the Hamilton constraint!

The SUSY constraint

SUSY constraint (full theory, real β)

$$S[\eta] := \int_{\Sigma} d^3x \, \bar{\eta} i \epsilon^{abc} e^i_a \gamma_i \gamma_5 D^{(A^{\beta})}_b \left(\frac{1}{\sqrt[4]{q}} e^j_c \phi_j \right) + \cdots$$

 A^{β} : Ashtekar-Barbero connection ϕ_j : half-densitized RS-field [Thiemann '98, Bodendorfer et al '11]

Quantization: [KE+HS '20]

- ullet various possibilities o aim at simplest possible form
- try to avoid 'K-terms' involving Hamilton constraint [Thiemann '98]
 (→ conistency check with quantization of Hamilton constraint)
- ullet choose Rovelli-Smolin volume operator [R+S '95](also proposed variant with Ashtekar-Lewandowski [A+L '98])
- ⇒ turns out that operator is indeed finite!

Quantum SUSY constraint

Introduction
Gravity as Cartan geometry
Supergravity as super Cartan geometry
Supersymmetry and the SUSY constraint
The chiral theory
Applicaton: Loop quantum cosmology
Outlook: Boundary theory in LQG (WIP)
To take home

Section 5

The chiral theory

Chiral Theory

- SUSY constraint relatively complicated object
- in canonical theory: underlying SUSY seems completely hidden in the formalism
- (partial) resolution o chiral theory ($eta=\mp i$)

Holst projection

$$\mathbf{P}_{-i}:\,\mathfrak{osp}(1|4)_{\mathbb{C}} o\mathfrak{osp}(1|2)_{\mathbb{C}}$$

$$M_{IJ} \rightarrow T_i^+ = \frac{1}{2}(J_i + iK_i), Q^{\alpha} \rightarrow Q^A$$

Proposition: (T_i^+, Q_A) generate subalgebra

$$\begin{aligned} [T_i^+, T_j^+] &= \epsilon_{ij}{}^k T_k^+ \\ [T_i^+, Q_A] &= Q_B (\tau_i)^B{}_A \\ [Q_A, Q_B] &= 0 + \frac{1}{I} (\epsilon \sigma^i)_{AB} T_i^+ \end{aligned}$$

generate D=2 super Poincaré algebra $\mathfrak{sl}(2,\mathbb{C})\rtimes\mathbb{C}^2$ (orthosymplectic Lie superalgebra $\mathfrak{osp}(1|2)_{\mathbb{C}}$)

Chiral Theory

Chiral Holst-MacDowell-Mansouri action

$$S_{sH-MM}[A] = \int_{M} \operatorname{str}(R[A] \wedge \mathbf{P}_{-i}R[A])$$

- \Rightarrow manifestly $\mathrm{OSp}(1|2)_{\mathbb{C}}$ -gauge invariant

Super Ashtekar connection

$$\mathcal{A}^+ := \mathbf{P}_{-i}\mathcal{A} = \mathcal{A}^{+i} T_i^+ + \psi^A Q_A$$

- ullet ightarrow defines **generalized super Cartan connection**
- ullet induces gauge field via correspondence ${f Cartan} \leftrightarrow {f Ehresmann}$

Super Ashtekar connection

What about extended SUSY?

- chiral generators still generate proper sub super Lie algebra $\to \mathfrak{osp}(\mathcal{N}|2)_{\mathbb{C}}$
- ullet o o o o can be even formulated for $\mathcal{N}>1$

What about **real** β ?

- Q^A and $Q_{A'}$ generate momentum P
- By Cartan: P encoded in dual electric field $E_i^a \Rightarrow$ no proper subalgebra

Super Ashtekar connection

- ullet $ightarrow {\cal A}^+$ natural candidate to quantize SUGRA à la LQG
- ullet contains both gravity and matter d.o.f. o unified description, more fundamental way of quantizing fermions
- substantially simplifies constraints (canonical form of Einstein equations): partial solution via gauge invariance
- \bullet natural candidate to study inner boundaries in LQG (\to BPS states, black holes)
- → boundary theories in string theories (see later)

Quantum theory: Overview

What do we need for quantum theory?

- holonomies (parallel transport map)
- Hilbert spaces
- spin network basis

Quantum theory: Overview

ullet Quantization: study \mathcal{A}^+ and associated holonomies

Super holonomies [KE '20+'21]

$$\textit{h}_e[\mathcal{A}^+] = \textit{h}_e[A^+] \cdot \mathcal{P} \mathrm{exp} \left(- \oint_e \mathrm{Ad}_{\textit{h}_e[A^+]^{-1}} \psi^{(\S)} \right) : \, \mathcal{S} \to \mathcal{G}$$

- ullet $\mathcal{A}^+ = \mathcal{A}^+ + \psi$ and $e: [0,1]
 ightarrow \mathcal{M} \subset \mathcal{M}$
- $h_e[A^+]$: bosonic holonomy associated to A^+

Proposition [KE '20+'21]

- $h_e[A^+]$ group object of a **generalized** super Lie group
- ullet natural under reparametrization $\lambda^* h_e[\mathcal{A}^+] = h_e[\lambda^* \mathcal{A}^+]$
- Wilson-loops invariant under gauge transformations

Quantum theory: Overview

- ⇒ SUSY holonomies yield 1d excitation of matter-geometry (fermions parallely transported along bosonic holonomy)
- ullet o matter-geometry flux along these lines
- Haar measure of OSp(1|2) induces Krein structure on Hilbert space (
 ⇔ standard LQG with fermions)
- Issue: work with complex variables: need to recover ordinary real SUGRA ightarrow need to solve **reality conditions**

Comparison: standard LQG with fermions

• pre-Hilbert space at a vertex

$$\mathcal{H}_{\nu} = \mathcal{O}(\mathcal{G}),\, \mathcal{G} = \mathrm{SU}(2)^{|E(\nu)|} \rtimes \mathbb{C}_{\nu}^{0|4}$$

• gauge transformation

$$SU(2) \ni g \rhd f = f(\{g \cdot h\}_e, g^{\alpha}_{\beta} \theta^{\beta}_{\nu})$$

• Haar measure:

$$\int_{\mathcal{G}} = \int_{\mathrm{SU}(2)^{|E(v)|}} \int_{B}$$

yields **Krein space** $(\mathcal{H}_{v}, \int_{G})^{Krein \ compl.}$ [Thiemann '98]

Introduction
Gravity as Cartan geometry
Supergravity as super Cartan geometry
Supersymmetry and the SUSY constraint
The chiral theory
Applicaton: Loop quantum cosmology
Outlook: Boundary theory in LOG (WIP)
To take home

Section 6

Application: Loop quantum cosmology

Symmetry reduction

- supersymmetric minisuperspace models [D'Eath + Hughes '88+'92, D'Eath + Hawking + Obregon '93]
- hybrid homogeneous isotropic ansatz for bosonic and fermionic d.o.f.
- in general: fermions not compatible with isotropy
- But: in (chiral) LQC can exploit enlarged gauge symmetry!
- $\bullet \to {\sf natural}$ interpretation in terms of homogeneous isotropic super connection [KE '20, KE+HS '20]

Symmetry reduced connection

$$\mathcal{A}^+ = c \, \mathring{e}^i \, T_i^+ + \psi_A \mathring{e}^{AA'} \, Q_{A'}$$

eⁱ: fiducial co-triad

• **Also**: can show that this is the most general ansatz consistent with reality conditions (contorsion tensor isotropic)

Canonical theory

Phase space: bosonic: (c, p), fermionic: (ψ^A, π_A)

Poisson relations

$$\{p,c\} = \frac{i\kappa}{3}$$
 $\{\pi^A, \psi_B\} = -\delta^A_B$

Constraints:

- kinematical: (residual) Gauss constraint: $G_i = \pi \tau_i \psi$
- dynamical: SUSY constraints S^L , S^R and Hamilton constraint H

Poisson relation left and right SUSY constraint

$$\{S^{LA}, S_B^R\} = \left(\kappa H + f^C S_C^R\right) \delta_B^A - f^A S_B^R$$

Reality conditions:
$$c + c^* = k\ell_0 - \frac{i}{\rho}\pi^A\psi_A$$
, $\pi^A = |\rho|^{\frac{1}{2}}\psi^A$

Quantization

- Construction of state space via super holonomies $h_e[\mathcal{A}^+]$ along straight edges of a fiducial cell
- ullet o yields graded holonomy-flux algebra ${\mathfrak A}={\mathfrak A}_0\oplus {\mathfrak A}_1$
- ullet Quantum theory: Representation of ${\mathfrak A}$ on a graded Hilbert space

Hilbert space

$$\mathcal{H} = \overline{H_{\mathrm{AP}}(\mathbb{C})}^{\|\cdot\|} \otimes \Lambda[\psi_A]$$

 $H_{\rm AP}$: bosonic vector space generated by

$$T(z) = \sum_{i} a_i e^{\mu_i z}$$
 [Wilson-Ewing '15, KE+HS '20]

 $e^{\mu z}\in\mathbb{C}^{ imes}=\mathrm{U}(1)_{\mathbb{C}}$, $\mu\in\mathbb{R}$: subclass of generalized characters of $(\mathbb{C},+)$

- ullet reality conditions: use 'half-densitized' fermionic fields $\phi_{\mathcal{A}}$
 - → can be solved exactly! [W.-E. '15, KE+HS '20]
 - → requires distributional inner product

Quantum constraints and algebra

Quantum right SUSY constraint

$$\widehat{S}_{A'}^{R} = \frac{3g^{\frac{1}{2}}}{2\lambda_{m}} |v|^{\frac{1}{4}} \left((\mathcal{N}_{-} - \mathcal{N}_{+}) - \frac{\kappa \lambda_{m}}{6g|v|} \widehat{\Theta} \right) |v|^{\frac{1}{4}} \widehat{\phi}_{A'}$$

- λ_m : quantum area gap (full theory)
- \mathcal{N}_{\pm} : connection approx. by holonomies [Martin-Benito+Marugan+Olmedo '09, W.-E. '15, KE+HS '20]
- Quantum algebra between left and right SUSY constraint closes and reproduces exactly classical Poisson relations

Quantum algebra

$$[\widehat{S}^{LA}, \widehat{S}^{R}_{B}] = \left(i\hbar\kappa\widehat{H} - \frac{\hbar\kappa}{6g^{\frac{1}{2}}|\mathbf{v}|^{\frac{1}{2}}}\widehat{\pi}^{C}_{\phi}\widehat{S}^{R}_{C}\right)\delta^{A}_{B} + \frac{\hbar\kappa}{6g^{\frac{1}{2}}|\mathbf{v}|^{\frac{1}{2}}}\widehat{\pi}^{A}_{\phi}\widehat{S}^{R}_{B}$$

 $\bullet \to {\sf fixes}$ some of the quantization ambiguities (requires symmetric ordering)

LQC: Dynamics: Semi-classical limit

Ansatz

$$\Psi = \sum_{\mathbf{v}} \psi(\mathbf{v}) \ket{\mathbf{v}} + \left(\sum_{\mathbf{v}} \psi'(\mathbf{v}) \ket{\mathbf{v}}\right) \otimes \phi^A \phi_A$$

 $\psi,\psi'\in C^1(\mathbb{R}_{>0})$ (supported in sector of positive volume)

- \bullet semi-classical limit: $\lambda_m \to 0$ i.e. corrections from quantum geometry negligible
- look for state Ψ s.t. $\widehat{S}^L \Psi = 0$ and $\widehat{S}^R \Psi = 0$ ($\Rightarrow \widehat{H} \Psi = 0$)
- ullet o Hartle-Hawking state as solution of $\widehat{S}^R\Leftrightarrow$ [D'Eath '98]

Hartle-Hawking state

$$\Psi(a) = \exp\left(\frac{3a^2}{\hbar}\right)$$

Open problems and future investigations (WIP)

Full Dynamics:

- ullet due to factor ordering in \hat{S} : singularity is resolved in the quantum dynamics
- for full treatment need to add matter fields as relational clock
- But: prominent role of SUSY constraints → need locally supersymmetric matter for consistent dynamics!
- ullet simplification as \widehat{H} generically positive definite and $\widehat{\mathcal{S}} \sim \sqrt{\widehat{H}}$

Miscellaneous:

better understanding of parity in this model

Introduction
Gravity as Cartan geometry
Supergravity as super Cartan geometry
Supersymmetry and the SUSY constraint
The chiral theory
Applicaton: Loop quantum cosmology
Outlook: Boundary theory in LQG (WIP)
To take home

Section 7

Outlook: Boundary theory in LQG (WIP)

Boundary theory in LQG (WIP)

Holst-MacDowell-Mansouri in the presence of inner boundary:

- geometric theory induces super-CS theory on inner boundary
- for $\mathcal{N} = 2$: G = OSp(2|2)
- state counting feasible?

Open strings on coincident D-brane system: interesting similarities [Mikhaylov + Witten '14]

- super-CS theory in the location of the branes in the low energy limit
- for $G = \operatorname{OSp}(m|n)$

Introduction
Gravity as Cartan geometry
Supergravity as super Cartan geometry
Supersymmetry and the SUSY constraint
The chiral theory
Applicaton: Loop quantum cosmology
Outlook: Boundary theory in LQG (WIP)
To take home

Section 8

To take home

To take home

"Classical" theory:

- SUSY: Symmetry involving bosons/fermions, internal/spacetime symmetry
- ullet (Cartan) geometric description of $\mathcal{N}=1,\ D=4$ SUGRA: SUSY as gauge symmetry
- super-Ashtekar connection: Chiral SUGRA the has structure of a super YM
- mathematical foundation: parametrized supermanifolds

To take home

Quantum theory:

- SUSY constraint operator for real β
- rigorous construction, strucutre & properties of graded holonomies
- application to symmetry reduced model (cosmology)

Difficulties:

- proper definition of inner product in self-dual theory
- solution reality conditions?
- → Resolvable in symmetry reduced model.

To take home

Outlook:

- include local supersymmetric matter as relational clock (simplification due to $S \sim \sqrt{H}$)
- (charged) supersymmetric BHs ↔ entropy calculations in string theory [Strominger+Vafa '96, Cardoso et al. '96]
- generalization to extended SUSY (→ compare enriched Cartan approach with other approaches [Castellani+Grassi et al '14])
- etc. etc.