LQC of black holes (recent progress)

Background

- Black holes: Promising observational windows to quantum gravity phenomena, in the dawn of GW astronomy.
- Long history of works for the quantization of black holes in LQG \& LQC. Satisfactory yet simple description?
[Ashtekar, Bojowald, Modesto, Cartin, Khanna, Boehmer, Vandersloot, Chiou,
Campiglia, Gambini, Pullin, Sabharwal, Brannlund, Kloster, De Benedictis, Olmedo, Dadhich, Joe, Singh, Haggard, Rovelli, Corichi, Saini, Cortez, Cuervo,

Morales-Técotl, Ruelas, Yonika, Bianchi, Christodoulo, D’Ambrosio, Alesci,
Bahrami, Pranzetti, Kelly, Santacruz, Wilson-Ewing, Zhang, Ma, Song, Bodendorfer, Mele, Münch, Mena Marugán, García-Quismondo, Perez, Speziale, Viollet, Han, Liu, Alonso-Bardaji, Brizuela, Vera, ...]

Background

- Black holes: Promising observational windows to quantum gravity phenomena, in the dawn of GW astronomy.
- Long history of works for the quantization of black holes in LQG \& LQC. Satisfactory yet simple description?
* Spherical symmetry as starting point.
* Use LQC techniques to describe the interior.

Background

- Black holes: Promising observational windows to quantum gravity phenomena, in the dawn of GW astronomy.
- Long history of works for the quantization of black holes in LQG \& LQC. Satisfactory yet simple description?
- Recent LQC approaches mostly study "effective" models.

Background

- Black holes: Promising observational windows to quantum gravity phenomena, in the dawn of GW astronomy.
- Long history of works for the quantization of black holes in LQG \& LQC. Satisfactory yet simple description?
- Recent LQC approaches mostly study "effective" models.
- Highlight: Extension of Kruskal spacetime by AOS.
[Ashtekar, Olmedo, Singh 2019]

Background

- Black holes: Promising observational windows to quantum gravity phenomena, in the dawn of GW astronomy.
- Long history of works for the quantization of black holes in LQG \& LQC. Satisfactory yet simple description?
- Recent LQC approaches mostly study "effective" models.
- Highlight: Extension of Kruskal spacetime by AOS.
* Quantization? (General properties, eff. regimes, etc.)

BH interior \& its "effective" LQC models

Interior region in GR

- Metric: Cosmology of Kantowski-Sachs type.

$$
d s^{2}=-N(t)^{2} d t^{2}+\frac{p_{b}^{2}(t)}{L_{o}^{2}\left|p_{c}(t)\right|} d x^{2}+\left|p_{c}(t)\right| d \Omega_{S^{2}}^{2} \quad x \in\left(0, L_{o}\right)
$$

- Symmetry-reduced Ashtekar-Barbero variables:

$$
\begin{aligned}
& E_{i}^{\alpha} \rightarrow\left(p_{b}, p_{c}\right) \quad A_{\alpha}^{i} \rightarrow(b, c) \\
&\left\{b, p_{b}\right\}=\gamma, \quad\left\{c, p_{c}\right\}=2 \gamma, \quad \gamma \rightarrow \text { Immirzi }
\end{aligned}
$$

Interior region in GR

- Metric: Cosmology of Kantowski-Sachs type.

$$
d s^{2}=-N(t)^{2} d t^{2}+\frac{p_{b}^{2}(t)}{L_{o}^{2}\left|p_{c}(t)\right|} d x^{2}+\left|p_{c}(t)\right| d \Omega_{S^{2}}^{2} \quad x \in\left(0, L_{o}\right)
$$

- Symmetry-reduced Ashtekar-Barbero variables:

$$
\begin{aligned}
& E_{i}^{\alpha} \rightarrow\left(p_{b}, p_{c}\right) \quad A_{\alpha}^{i} \rightarrow(b, c) \\
&\left\{b, p_{b}\right\}=\gamma, \quad\left\{c, p_{c}\right\}=2 \gamma, \quad \gamma \rightarrow \text { Immirzi }
\end{aligned}
$$

- Classical Hamiltonian:

$$
H_{K S}[N]=N L_{o} \frac{b}{\gamma \sqrt{\left|p_{c}\right|}}\left(O_{b}^{K S}-O_{c}^{K S}\right)
$$

Interior region in GR

- Metric: Cosmology of Kantowski-Sachs type.

$$
d s^{2}=-N(t)^{2} d t^{2}+\frac{p_{b}^{2}(t)}{L_{o}^{2}\left|p_{c}(t)\right|} d x^{2}+\left|p_{c}(t)\right| d \Omega_{S^{2}}^{2}, \quad x \in\left(0, L_{o}\right)
$$

- Symmetry-reduced Ashtekar-Barbero variables:

$$
\begin{aligned}
& E_{i}^{\alpha} \rightarrow\left(p_{b}, p_{c}\right) \quad A_{\alpha}^{i} \rightarrow(b, c) \\
&\left\{b, p_{b}\right\}=\gamma, \quad\left\{c, p_{c}\right\}=2 \gamma, \quad \gamma \rightarrow \text { Immirzi }
\end{aligned}
$$

- Classical Hamiltonian:

$$
H_{K S}[N]=N L_{o} \frac{b}{\gamma \sqrt{\left|p_{c}\right|}}\left(O_{b}^{K S}-O_{c}^{K S}\right) \rightarrow O_{b}^{O_{b}^{K S}=O_{c}^{K S}=m} \underset{\propto \mathrm{ADM} \text { mass }}{ }
$$

Regularization of Hamiltonian

$$
H_{K S}[N]=N L_{o} \frac{b}{\gamma \sqrt{\left|p_{c}\right|}}\left(O_{b}^{K S}-O_{c}^{K S}\right), \quad \text { in GR }: O_{b}^{K S}=O_{c}^{K S}=m
$$

- Anticipating lack of continuity in LQC: \hat{b}, \hat{c} not well-def.
- Use symmetries and rewrite the curvature of A_{α}^{i} in terms of an holonomy circuit enclosing a minimum area Δ.

Regularization of Hamiltonian

$$
H_{K S}[N]=N L_{o} \frac{b}{\gamma \sqrt{\left|p_{c}\right|}}\left(O_{b}^{K S}-O_{c}^{K S}\right), \quad \text { in GR }: O_{b}^{K S}=O_{c}^{K S}=m
$$

- Anticipating lack of continuity in LQC: \hat{b}, \hat{c} not well-def.
- Use symmetries and rewrite the curvature of A_{α}^{i} in terms of an holonomy circuit enclosing a minimum area Δ.
- Regularized Hamiltonian [ignoring $\mathcal{O}\left(\delta_{b}\right)$]:

$$
\begin{aligned}
& \left.H_{K S}^{\mathrm{reg}}\left[N_{T}\right]=L_{o} O_{b}^{K S}\left[b \rightarrow \sin \left(\delta_{b} b\right) / \delta_{b}\right)\right]-L_{o} O_{c}^{K S}\left[c \rightarrow \sin \left(\delta_{c} c\right) / \delta_{c}\right], \\
& N_{T}=\frac{\gamma \delta_{b} \sqrt{\left|p_{c}\right|}}{\sin \left(\delta_{b} b\right)}, \quad\left|\delta_{b}\right|,\left|\delta_{c}\right| \text { coord. lengths of min. area plaquettes }
\end{aligned}
$$

Regularization of Hamiltonian

$$
H_{K S}[N]=N L_{o} \frac{b}{\gamma \sqrt{\left|p_{c}\right|}}\left(O_{b}^{K S}-O_{c}^{K S}\right), \quad \text { in GR }: O_{b}^{K S}=O_{c}^{K S}=m
$$

- Anticipating lack of continuity in LQC: \hat{b}, \hat{c} not well-def.
- Use symmetries and rewrite the curvature of A_{α}^{i} in terms of an holonomy circuit enclosing a minimum area Δ.
- Regularized Hamiltonian [ignoring $\mathcal{O}\left(\delta_{b}\right)$]:

$$
\begin{aligned}
& \left.H_{K S}^{\mathrm{reg}}\left[N_{T}\right]=L_{o} O_{b}^{K S}\left[b \rightarrow \sin \left(\delta_{b} b\right) / \delta_{b}\right)\right]-L_{o} O_{c}^{K S}\left[c \rightarrow \sin \left(\delta_{c} c\right) / \delta_{c}\right] \text {, } \\
& =: O_{b} \\
& =: O_{c}
\end{aligned}
$$

"Effective" models

$$
H_{K S}^{\mathrm{reg}}[N]=N L_{o} \frac{\sin \left(\delta_{b} b\right)}{\gamma \delta_{b} \sqrt{\left|p_{c}\right|}}\left(O_{b}-O_{c}\right), \quad \text { effLQC }: O_{b}=O_{c}=m
$$

- Several studies of the evolution generated by $H_{K S}^{\mathrm{reg}}[N]$.
- Freedom in the choice of parameters δ_{b}, δ_{c}.
[Ashtekar, Bojowald, Modesto, Campiglia, Gambini, Pullin, Boehmer, Vandersloot, Chiou, Joe, Singh, Corichi, Olmedo, Saini, Bodendorfer, Mele, Münch, Mena Marugán, García-Quismondo, Han, Liu, ...]

"Effective" models

$$
H_{K S}^{\mathrm{reg}}[N]=N L_{o} \frac{\sin \left(\delta_{b} b\right)}{\gamma \delta_{b} \sqrt{\left|p_{c}\right|}}\left(O_{b}-O_{c}\right), \quad \text { effLQC }: O_{b}=O_{c}=m
$$

- Several studies of the evolution generated by $H_{K S}^{\text {reg }}[N]$.
- Freedom in the choice of parameters δ_{b}, δ_{c}.
- 2019: "Quantum Transfiguration of Kruskal BHs".

[Ashtekar, Olmedo, Singh]

"Effective" models

$$
H_{K S}^{\mathrm{reg}}[N]=N L_{o} \frac{\sin \left(\delta_{b} b\right)}{\gamma \delta_{b} \sqrt{\left|p_{c}\right|}}\left(O_{b}-O_{c}\right), \quad \text { effLQC }: O_{b}=O_{c}=m
$$

- Several studies of the evolution generated by $H_{K S}^{\mathrm{reg}}[N]$.
- Freedom in the choice of parameters δ_{b}, δ_{c}.
- 2019: "Quantum Transfiguration of Kruskal BHs" (AOS),

$$
\delta_{b} \sim\left(\frac{\sqrt{\Delta}}{\sqrt{2 \pi} \gamma^{2} m}\right)^{1 / 3}, \quad L_{o} \delta_{c} \sim \frac{1}{2}\left(\frac{\gamma \Delta^{2}}{4 \pi^{2} m}\right)^{1 / 3}, \quad \text { on solutions }
$$

AOS type of models: Hamiltonian formulation

Caveats on derivation of e.o.m

- The AOS "effective" dynamics is generated by:

$$
H_{\mathrm{AOS}}^{\mathrm{eff}}=L_{o}\left(O_{b}-O_{c}\right)\left(=H_{K S}^{\mathrm{reg}}\left[N_{T}\right]\right)
$$

treating the parameters δ_{b}, δ_{c} as pure constants.

- On each solution, constraint implies $O_{b}=O_{c}=m$.
- On each sol., declare $\delta_{b}=\delta_{b}(m), \delta_{c}=\delta_{c}(m)$ for large BHs.

Caveats on derivation of e.o.m

- The AOS "effective" dynamics is generated by:

$$
H_{\mathrm{AOS}}^{\mathrm{eff}}=L_{o}\left(O_{b}-O_{c}\right),
$$

treating the parameters δ_{b}, δ_{c} as pure constants.

- On each solution, constraint implies $O_{b}=O_{c}=m$.
- On each sol., declare $\delta_{b}=\delta_{b}(m), \delta_{c}=\delta_{c}(m)$ for large BHs.
- However, m is a function on phase space (const. motion)!
[Bodendorfer, Mele, Münch, Mena Marugán, García-Quismondo]

Extended phase space

- The AOS model can be derived from a Hamiltonian

$$
\underline{N} H_{\mathrm{AOS}}^{\mathrm{eff}}+\lambda_{b} \Psi_{b}+\lambda_{c} \Psi_{c},
$$

on a extended phase space that includes δ_{b}, δ_{c} (\& momenta).

- Ψ_{b}, Ψ_{c} : Relation between δ_{b}, δ_{c} and BH mass on solutions:

$$
\begin{gathered}
\Psi_{b}=K_{b}\left(O_{b}, O_{c}\right)-\delta_{b}, \quad \Psi_{c}=K_{c}\left(O_{b}, O_{c}\right)-\delta_{c}, \\
K_{b}(m, m) \sim\left(\frac{\sqrt{\Delta}}{\sqrt{2 \pi} \gamma^{2} m}\right)^{1 / 3}, \quad K_{c}(m, m) \sim \frac{1}{2 L_{o}}\left(\frac{\gamma \Delta^{2}}{4 \pi^{2} m}\right)^{1 / 3}
\end{gathered}
$$

Extended phase space

- The AOS model can be derived from a Hamiltonian

$$
\underline{N} H_{\mathrm{AOS}}^{\mathrm{eff}}+\lambda_{b} \Psi_{b}+\lambda_{c} \Psi_{c},
$$

on a extended phase space that includes δ_{b}, δ_{c} (\& momenta).

- AOS dynamics follows for $\lambda_{b}=0=\lambda_{c}$.

Gauge reduction

- The AOS model can be derived from a Hamiltonian

$$
\underline{N} H_{\mathrm{AOS}}^{\mathrm{eff}}+\lambda_{b} \Psi_{b}+\lambda_{c} \Psi_{c},
$$

on a extended phase space that includes δ_{b}, δ_{c} (\& momenta).

- AOS dynamics follows for $\lambda_{b}=0=\lambda_{c}$.
- Idea: fix the gauge so that $\lambda_{b}=\lambda_{c}=0$ to remove δ_{b}, δ_{c}.

Gauge reduction

- The AOS model can be derived from a Hamiltonian

$$
\underline{N} H_{\mathrm{AOS}}^{\mathrm{eff}}+\lambda_{b} \Psi_{b}+\lambda_{c} \Psi_{c},
$$

on a extended phase space that includes δ_{b}, δ_{c} (\& momenta).

- AOS dynamics follows for $\lambda_{b}=0=\lambda_{c}$.
- Idea: fix the gauge so that $\lambda_{b}=\lambda_{c}=0$ to remove δ_{b}, δ_{c}.
- Result: The reduced phase space is not symplectomorphic to that of Kantowski-Sachs cosmologies ($\neq \mathrm{GR}$ algebra).

Road to quantization

- The AOS model can be derived from a Hamiltonian

$$
\underline{N} H_{\mathrm{AOS}}^{\mathrm{eff}}+\lambda_{b} \Psi_{b}+\lambda_{c} \Psi_{c},
$$

on a extended phase space that includes δ_{b}, δ_{c} (\& momenta).

- LQC under control for triad/ connection algebra in GR.
- Quantization strategy: Use LQC tools to find a quantum representation of constraints in the extended framework.

Quantization: Kinematics

Holonomy-flux algebra

- Matrix elements of holonomies of A_{α}^{i} along θ and x :

$$
\mathcal{N}_{\mu_{b}}=e^{i b \mu_{b} / 2}, \quad \mathcal{N}_{\mu_{c}}=e^{i c \mu_{c} / 2}, \quad \mu_{b}, \mu_{c} \in \mathbb{R} .
$$

- Fluxes of E_{i}^{α} across surfaces determined by p_{b} and p_{c}.
- Holonomy-flux algebra:

$$
\left\{\mathcal{N}_{\mu_{b}}, p_{b}\right\}=\frac{i}{2} \mu_{b} \gamma \mathcal{N}_{\mu_{b}}, \quad\left\{\mathcal{N}_{\mu_{c}} p_{c}\right\}=i \mu_{c} \gamma \mathcal{N}_{\mu_{c}}
$$

Holonomy-flux algebra

- Matrix elements of holonomies of A_{α}^{i} along θ and x :

$$
\mathcal{N}_{\mu_{b}}=e^{i b \mu_{b} / 2}, \quad \mathcal{N}_{\mu_{c}}=e^{i c \mu_{c} / 2}, \quad \mu_{b}, \mu_{c} \in \mathbb{R} .
$$

- Fluxes of E_{i}^{α} across surfaces determined by p_{b} and p_{c}.
- Holonomy-flux algebra:

$$
\left\{\mathcal{N}_{\mu_{b}}, p_{b}\right\}=\frac{i}{2} \mu_{b} \gamma \mathcal{N}_{\mu_{b}}, \quad\left\{\mathcal{N}_{\mu_{c}} p_{c}\right\}=i \mu_{c} \gamma \mathcal{N}_{\mu_{c}}
$$

Two copies of homogeneous \& isotropic LQC

Kinematic Hilbert space

- $\mathscr{H}_{\mathrm{LQC}}^{\mathrm{kin}}$: space of square summable functions on \mathbb{R}^{2}.

$$
\text { Basis }\left|\mu_{b}, \mu_{c}\right\rangle \quad\left\langle\mu_{b}, \mu_{c} \mid \mu_{b}^{\prime}, \mu_{c}^{\prime}\right\rangle=\delta_{\mu_{b}, \mu_{b}} \delta_{\mu_{c}, \mu_{c}^{\prime}}
$$

- $\hat{\mathcal{N}}_{\mu_{b, c}} \rightarrow$ translation, $\hat{p}_{b, c} \rightarrow$ multiplication operators.

Kinematic Hilbert space

- $\mathscr{H}_{\mathrm{LQC}}^{\mathrm{kin}}$: space of square summable functions on \mathbb{R}^{2}.

$$
\text { Basis }\left|\mu_{b}, \mu_{c}\right\rangle \quad\left\langle\mu_{b}, \mu_{c} \mid \mu_{b}^{\prime}, \mu_{c}^{\prime}\right\rangle=\delta_{\mu_{b}, \psi_{b}} \delta_{\mu_{c} \mu_{c}^{\prime}}
$$

- $\hat{\mathcal{N}}_{\mu_{b, c}} \rightarrow$ translation, $\hat{p}_{b, c} \rightarrow$ multiplication operators.
- Schrödinger representation for δ_{b}, δ_{c} and momenta.
- Total (kinematic) Hilbert space:

$$
\mathscr{X}_{T}^{\mathrm{kin}}=\mathscr{H}_{\mathrm{LQC}}^{\mathrm{kin}} \otimes L^{2}\left(\mathbb{R}, d \delta_{b}\right) \otimes L^{2}\left(\mathbb{R}, d \delta_{c}\right)
$$

Hamiltonian constraint

$$
H_{\mathrm{AOS}}^{\mathrm{eff}}=L_{o}\left(O_{b}-O_{c}\right)
$$

- The "angular" part reads

$$
O_{c}=\frac{\sin \left(\delta_{c} c\right)}{\gamma L_{o} \delta_{c}} p_{c}, \quad \sin \left(\delta_{c} c\right)=\frac{1}{2 i}\left(\mathcal{N}_{2 \delta_{c}}-\mathcal{N}_{-2 \delta_{c}}\right)
$$

- Quantization: $\sin \left(\delta_{c} c\right) p_{c} / \delta_{c} \rightarrow \hat{\Omega}_{c}$ on (a subset of) $\mathscr{H}_{T}^{\text {kin }}$.

Hamiltonian constraint

$$
H_{\mathrm{AOS}}^{\mathrm{eff}}=L_{o}\left(O_{b}-O_{c}\right)
$$

- The "angular" part reads

$$
O_{c}=\frac{\sin \left(\delta_{c} c\right)}{\gamma L_{o} \delta_{c}} p_{c}, \quad \sin \left(\delta_{c} c\right)=\frac{1}{2 i}\left(\mathcal{N}_{2 \delta_{c}}-\mathcal{N}_{-2 \delta_{c}}\right)
$$

- Quantization: $\sin \left(\delta_{c} c\right) p_{c} / \delta_{c} \rightarrow \hat{\Omega}_{c}$ on (a subset of) $\mathscr{H}_{T}^{\text {kin }}$.
- For each fixed pair δ_{b}, δ_{c} change the LQC basis:

$$
\left|\mu_{b}, \mu_{c}\right\rangle \rightarrow\left|\tilde{\mu}_{b}=\mu_{b} \delta_{b}^{-1}, \tilde{\mu}_{c}=\mu_{c} \delta_{c}^{-1}\right\rangle
$$

$\xrightarrow{\sim} \hat{\Omega}_{\mathrm{c}}^{2}$ same as in FLRW cosmology

Hamiltonian constraint

$$
H_{\mathrm{AOS}}^{\mathrm{eff}}=L_{o}\left(O_{b}-O_{c}\right)
$$

- The "angular" part reads

$$
O_{c}=\frac{\sin \left(\delta_{c} c\right)}{\gamma L_{o} \delta_{c}} p_{c}, \quad \sin \left(\delta_{c} c\right)=\frac{1}{2 i}\left(\mathscr{N}_{2 \delta_{c}}-\mathscr{N}_{-2 \delta_{c}}\right)
$$

- Operator $\hat{O}_{c} \propto \hat{\Omega}_{c}$ essentially self-adjoint on

$$
\operatorname{Cy}_{\varepsilon_{c_{c}}^{ \pm}}=\operatorname{span}\left\{\left|\tilde{\mu}_{b}, \tilde{\mu}_{c}\right\rangle: \tilde{\mu}_{c}= \pm\left(\varepsilon_{c}+2 n\right), n \in \mathbb{N}\right\}, \quad \varepsilon_{c} \in(0,2]
$$

- Abs. continuous spectrum equal to \mathbb{R}, independent of δ_{c}.
[Lewandowski, Kaminski, Mena Marugán, Martín-Benito, Olmedo, Pawlowski]

Hamiltonian constraint

$$
H_{\mathrm{AOS}}^{\mathrm{eff}}=L_{o}\left(O_{b}-O_{c}\right)
$$

- The "angular" part reads

$$
O_{c}=\frac{\sin \left(\delta_{c} c\right)}{\gamma L_{o} \delta_{c}} p_{c}, \quad \sin \left(\delta_{c} c\right)=\frac{1}{2 i}\left(\mathcal{N}_{2 \delta_{c}}-\mathscr{N}_{-2 \delta_{c}}\right)
$$

- Operator $\hat{O}_{c} \propto \hat{\Omega}_{c}$ essentially self-adjoint on

$$
\operatorname{Cyl}_{\varepsilon_{c}}^{ \pm}=\operatorname{span}\left\{\left|\tilde{\mu}_{b}, \tilde{\mu}_{c}\right\rangle: \tilde{\mu}_{c}= \pm\left(\varepsilon_{c}+2 n\right), n \in \mathbb{N}\right\}, \quad \varepsilon_{c} \in(0,2]
$$

- Abs. continuous spectrum equal to \mathbb{R}, independent of δ_{c}.

$$
\overline{\mathrm{Cy}_{\varepsilon_{c}}^{ \pm}} \leftrightarrow \overline{\operatorname{span}\left\{\left|\tilde{\mu}_{b} \in \mathbb{R}\right\rangle\right.} \otimes L^{2}(\mathbb{R}, d m)
$$

Hamiltonian constraint

$$
H_{\mathrm{AOS}}^{\mathrm{eff}}=L_{o}\left(O_{b}-O_{c}\right)
$$

- The "radial" part reads

$$
O_{b}=-\frac{1}{2 \gamma L_{o}}\left[\Omega_{b}+\gamma^{2} \delta_{b}^{2} \tilde{p}_{b}^{2} \Omega_{b}^{-1}\right], \quad \Omega_{b}=\frac{\sin \left(\delta_{b} b\right)}{\delta_{b}} p_{b}, \quad \tilde{p}_{b}=\frac{p_{b}}{\delta_{b}}
$$

- Quantization: "Minimal" requirements on \hat{O}_{b}.

Hamiltonian constraint

$$
H_{\mathrm{AOS}}^{\mathrm{eff}}=L_{o}\left(O_{b}-O_{c}\right)
$$

- The "radial" part reads

$$
O_{b}=-\frac{1}{2 \gamma L_{o}}\left[\Omega_{b}+\gamma^{2} \delta_{b}^{2} \tilde{p}_{b}^{2} \Omega_{b}^{-1}\right], \quad \Omega_{b}=\frac{\sin \left(\delta_{b} b\right)}{\delta_{b}} p_{b}, \quad \tilde{p}_{b}=\frac{p_{b}}{\delta_{b}}
$$

- Quantization: "Minimal" requirements on \hat{O}_{b} :
\star Built from $\hat{\Omega}_{b}, \hat{\tilde{p}}_{b}$: Only depends on δ_{b}^{2} for each pair δ_{b}, δ_{c}.
* Preserves super-selection sectors of $\hat{\Omega}_{b}\left(\right.$ similar to $\left.\hat{\Omega}_{c}\right)$.
» Ess. self-adjoint, no singular sp., point sp. = discrete.

(in collab. with A. García-Quismondo, G.A. Mena Marugán \& A. Mínguez)

Constraint equations

- Total Hamiltonian: $\underline{N} H_{\mathrm{AOS}}^{\text {eff }}+\lambda_{b} \Psi_{b}+\lambda_{c} \Psi_{c}$.
- Quantum Hamiltonian constraint: $\left(\psi_{p} \mid \hat{O}_{b}=\left(\psi_{p} \mid \hat{O}_{c}\right.\right.$.

Constraint equations

- Total Hamiltonian: $\underline{N} H_{\mathrm{AOS}}^{\mathrm{eff}}+\lambda_{b} \Psi_{b}+\lambda_{c} \Psi_{c}$.
- Quantum Hamiltonian constraint: $\left(\psi_{p} \mid \hat{O}_{b}=\left(\psi_{p} \mid \hat{O}_{c}\right.\right.$,

$$
\hat{O}_{b} \psi_{p}\left(\tilde{\mu}_{b}, m, \delta_{b}, \delta_{c}\right)=m \psi_{p}\left(\tilde{\mu}_{b}, m, \delta_{b}, \delta_{c}\right), \quad m \in \mathbb{R}
$$

$\leadsto \psi_{p}=0$ for $m \notin \operatorname{Sp}_{\hat{o}_{b}}\left[\delta_{b}\right]$

Constraint equations

- Total Hamiltonian: $\underline{N} H_{\mathrm{AOS}}^{\text {eff }}+\lambda_{b} \Psi_{b}+\lambda_{c} \Psi_{c}$.
- Quantum Hamiltonian constraint: $\left(\psi_{p} \mid \hat{O}_{b}=\left(\psi_{p} \mid \hat{O}_{c}\right.\right.$,

$$
\hat{O}_{b} \psi_{p}\left(\tilde{\mu}_{b}, m, \delta_{b}, \delta_{c}\right)=m \psi_{p}\left(\tilde{\mu}_{b}, m, \delta_{b}, \delta_{c}\right), \quad m \in \mathbb{R}
$$

$\leadsto \psi_{p}=0$ for $m \notin \operatorname{Sp}_{\hat{o}_{b}}\left[\delta_{b}\right]$

Looking for physical states in the algebraic dual of:
$C_{0}^{\infty}\left(\operatorname{Sp}_{\hat{O}_{b}}^{c}\right) \cup \operatorname{span}\left\{\left|\omega_{n} \in \operatorname{Sp}_{\hat{O}_{b}}^{d}\right\rangle\right\}$

Physical Hilbert space

- Total Hamiltonian: $\underline{N} H_{\mathrm{AOS}}^{\text {eff }}+\lambda_{b} \Psi_{b}+\lambda_{c} \Psi_{c}$.
- Quantum Hamiltonian constraint: $\left(\psi_{p} \mid \hat{O}_{b}=\left(\psi_{p} \mid \hat{O}_{c}\right.\right.$,

$$
\leadsto \psi_{p}=0 \text { for } m \notin \operatorname{Sp}_{\hat{o}_{b}}\left[\delta_{b}\right]
$$

- Additional constraints: $\delta_{b}=K_{b}\left(O_{b}, O_{c}\right), \delta_{c}=K_{c}\left(O_{b}, O_{c}\right)$.
- Quantum imposition of all constraints on ($\psi_{p} \mid$:

$$
\left(\psi_{p} \mid \leftrightarrow \xi(m), \quad m \in \operatorname{Sp}_{\hat{o}_{b}}\left[\delta_{b}=K_{b}(m, m)\right]\right.
$$

Physical Hilbert space

- Total Hamiltonian: $\underline{N} H_{\mathrm{AOS}}^{\text {eff }}+\lambda_{b} \Psi_{b}+\lambda_{c} \Psi_{c}$.
- Quantum Hamiltonian constraint: $\left(\psi_{p} \mid \hat{O}_{b}=\left(\psi_{p} \mid \hat{O}_{c}\right.\right.$,

$$
\leadsto \psi_{p}=0 \text { for } m \notin \operatorname{Sp}_{\hat{o}_{b}}\left[\delta_{b}\right]
$$

- Additional constraints: $\delta_{b}=K_{b}\left(O_{b}, O_{c}\right), \delta_{c}=K_{c}\left(O_{b}, O_{c}\right)$.
- Quantum imposition of all constraints on ($\psi_{p} \mid$:

$$
\left(\psi_{p} \mid \leftrightarrow \xi(m), \quad m \in \operatorname{Sp}_{\hat{o}_{b}}\left[\delta_{b}=K_{b}(m, m)\right]\right.
$$

- Inner product on \mathscr{H}_{p} from spectral measure of \hat{O}_{b}.

Possibilities: Discrete mass

$$
o_{b}=-\frac{1}{2 \gamma L_{b}}\left[\Omega_{b}+\gamma^{2} \delta_{b}^{2} \Omega_{b}^{-1} \tilde{p}_{b}^{2}\right], \quad \Omega_{b}=\frac{\sin \left(\delta_{b} b\right)}{\delta_{b}} p_{b}, \quad \tilde{p}_{b}=\frac{p_{b}}{\delta_{b}}
$$

- Imagine that it is possible to define \hat{O}_{b} such that

$$
\hat{O}_{b}^{2} \propto \hat{\Omega}_{b}^{2}+2 \gamma^{2} \delta_{b}^{2} \hat{\tilde{p}}_{b}^{2}+\gamma^{4} \delta_{b}^{4} \hat{P}, \quad \hat{P} \text { positive }
$$

Possibilities: Discrete mass

$$
O_{b}=-\frac{1}{2 \gamma L_{o}}\left[\Omega_{b}+\gamma^{2} \delta_{b}^{2} \Omega_{b}^{-1} \tilde{p}_{b}^{2}\right], \quad \Omega_{b}=\frac{\sin \left(\delta_{b} b\right)}{\delta_{b}} p_{b}, \quad \tilde{p}_{b}=\frac{p_{b}}{\delta_{b}}
$$

- Imagine that it is possible to define \hat{O}_{b} such that

$$
\hat{O}_{b}^{2} \propto \hat{\Omega}_{b}^{2}+2 \gamma^{2} \delta_{b}^{2} \hat{\tilde{p}}_{b}^{2}+\gamma^{4} \delta_{b}^{4} \hat{P}, \quad \hat{P} \text { positive }
$$

$\leadsto\left\langle\hat{O}_{b}^{2}\right\rangle \geq \propto 2 \gamma^{2} \delta_{b}^{2}\left\langle\hat{\tilde{p}}_{b}^{2}\right\rangle \longrightarrow \operatorname{Sp}_{\hat{o}_{b}^{2}}\left[\delta_{b} \neq 0\right]$ discrete

Possibilities: Discrete mass

$$
o_{b}=-\frac{1}{2 \gamma L_{o}}\left[\Omega_{b}+\gamma^{2} \delta_{b}^{2} \Omega_{b}^{-1} \tilde{p}_{b}^{2}\right], \quad \Omega_{b}=\frac{\sin \left(\delta_{b} b\right)}{\delta_{b}} p_{b}, \quad \tilde{p}_{b}=\frac{p_{b}}{\delta_{b}}
$$

- Imagine that it is possible to define \hat{O}_{b} such that

$$
\hat{O}_{b}^{2} \propto \hat{\Omega}_{b}^{2}+2 \gamma^{2} \delta_{b}^{2} \hat{\tilde{p}}_{b}^{2}+\gamma^{4} \delta_{b}^{4} \hat{P}, \quad \hat{P} \text { positive }
$$

- Then $\mathrm{Sp}_{\hat{o}_{b}}\left[\delta_{b} \neq 0\right]$ discrete: Gaps in the physical BH mass.
[Zhang, Ma, Song, Zhang, 2020-2022]
- Consistent with recent works quantizing $H_{\mathrm{AOS}}^{\mathrm{eff}} \sin \left(\delta_{b} b\right) p_{b} / \delta_{b}$.
- Satisfactory $\delta_{b}, \delta_{c} \rightarrow 0$ limit? Spectrum becomes continuous.

Possibilities: Cont. mass

$$
O_{b}=-\frac{1}{2 \gamma L_{o}}\left[\Omega_{b}+\gamma^{2} \delta_{b}^{2} \Omega_{b}^{-1} \tilde{p}_{b}^{2}\right], \quad \Omega_{b}=\frac{\sin \left(\delta_{b} b\right)}{\delta_{b}} p_{b}, \quad \tilde{p}_{b}=\frac{p_{b}}{\delta_{b}}
$$

- The standard habitat for physical states may be too small.
- Imagine (e.g.) a "direct" quantization of O_{b}.

Possibilities: Cont. mass

$$
O_{b}=-\frac{1}{2 \gamma L_{o}}\left[\Omega_{b}+\gamma^{2} \delta_{b}^{2} \Omega_{b}^{-1} \tilde{p}_{b}^{2}\right], \quad \Omega_{b}=\frac{\sin \left(\delta_{b} b\right)}{\delta_{b}} p_{b}, \quad \tilde{p}_{b}=\frac{p_{b}}{\delta_{b}}
$$

- The standard habitat for physical states may be too small.
- Imagine (e.g.) a "direct" quantization of O_{b}.
- Quantum constraint $\left(\psi_{p} \mid \hat{O}_{b}=\left(\psi_{p} \mid \hat{O}_{c}\right.\right.$ may be understood as
$\left(\tilde{\Psi}_{p} \mid\left(\hat{\Omega}_{b}^{2}+\gamma^{2} \delta_{b}^{2} \hat{\tilde{p}}_{b}^{2}\right)=-\left(\tilde{\Psi}_{p} \mid 2 \gamma L_{o} m \hat{\Omega}_{b} \quad\right.\right.$ with $\left(\tilde{\Psi}_{p} \mid=\left(\psi_{p} \mid \hat{\Omega}_{b}^{-1}\right.\right.$
- Experience in LQC indicates that this eq. is solvable for continuous values of the BH mass. Good $\delta_{b} \rightarrow 0$ limit.

Possibilities: Cont. mass

$$
O_{b}=-\frac{1}{2 \gamma L_{o}}\left[\Omega_{b}+\gamma^{2} \delta_{b}^{2} \Omega_{b}^{-1} \tilde{p}_{b}^{2}\right], \quad \Omega_{b}=\frac{\sin \left(\delta_{b} b\right)}{\delta_{b}} p_{b}, \quad \tilde{p}_{b}=\frac{p_{b}}{\delta_{b}}
$$

- The standard habitat for physical states may be too small.
- Imagine (e.g.) a "direct" quantization of O_{b}.
- Quantum constraint $\left(\psi_{p} \mid \hat{O}_{b}=\left(\psi_{p} \mid \hat{O}_{c}\right.\right.$ may be understood as

$$
\left(\tilde{\Psi}_{p} \mid\left(\hat{\Omega}_{b}^{2}+\gamma^{2} \delta_{b}^{2} \hat{\tilde{p}}_{b}^{2}\right)=-\left(\tilde { \psi } _ { p } | 2 \gamma L _ { o } m \hat { \Omega } _ { b } \quad \text { with } \left(\tilde{\Psi}_{p} \mid=\left(\psi_{p} \mid \hat{\Omega}_{b}^{-1}\right.\right.\right.\right.
$$

Now we search on the algebraic dual of $D\left(\hat{O}_{b}\right)$ ("much" bigger!!)

Conclusions \& outlook

- Aim: LQC of a BH interior leading to AOS-type models.
- Extended phase space: motivation from dynamics of effective model \& convenient for quantization.
- Operators in Hamiltonian from FLRW LQC.
- Important: Choice of dual space to construct physical Hilbert space \rightarrow Discrete/continuous BH mass.
- WdW limit? Relational dynamics? Effective AOS?

