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Background

* Black holes: Promising observational windows to quantum
oravity phenomena, in the dawn of GW astronomy.

* Long history of works for the quantization of black holes
n LOG & LOCG. Satistactory yet simple description?

[Ashtekar, Bojowald, Modesto, Cartin, Khanna, Boehmer, Vandersloot, Chiou,
Campiglia, Gambini, Pullin, Sabharwal, Brannlund, Kloster, De Benedictis,
Olmedo, Dadhich, Joe, Singh, Haggard, Rovelli, Corichi, Saini, Cortez, Cuervo,
Morales-Técotl, Ruelas, Yonika, Bianchi, Christodoulo, D’Ambrosio, Alesci,
Bahrami, Pranzetti, Kelly, Santacruz, Wilson-Ewing, Zhang, Ma, Song,
Bodendorfer, Mele, Minch, Mena Marugan, Garcia-Quismondo, Perez, Speziale,
Viollet, Han, Liu, Alonso-Bardaji, Brizuela, Vera, ...]



Background

* Black holes: Promising observational windows to quantum
oravity phenomena, in the dawn of GW astronomy.

* Long history of works for the quantization of black holes
n LOG & LOCG. Satistactory yet simple description?

* Spherical symmetry as starting point.

* Use LOQGC techniques to describe the interior.
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n LOG & LOCG. Satistactory yet simple description?

Recent LOQC approaches mostly study “effective” models.

Highlight: Extension of Kruskal spacetime by AOS.
[Ashtekar, Olmedo, Singh 2019]



Background

Black holes: Promising observational windows to quantum
oravity phenomena, in the dawn of GW astronomy.

Loong history of works for the quantization of black holes
n LOG & LOCG. Satistactory yet simple description?

Recent LOQC approaches mostly study “effective” models.
Highlight: Extension of Kruskal spacetime by AOS.

* Quantization? (General properties, eff. regimes, etc.)



BH interior & its
“eftective” LOQC models



Interior region in GR

* Metric: Gosmology of Kantowski-Sachs type.

pi(®)
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* Symmetry-reduced Ashtekar-Barbero variables:

ds? = — N(t)*dt* 1 dx* + |p(1)|dQ%, x € (0,L)

ES— (Dy, D)l

b,pp} =7, Le.p.f =2y, y — Immirzi
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Interior region in GR

* Metric: Gosmology of Kantowski-Sachs type.

% D o pp(®) 0 2
ds® = — N(t)~dt~ 4 dx“+ |p.(1)|dQ;, x € (0,L)

LZ|p.2)]

* Symmetry-reduced Ashtekar-Barbero variables:

— (pp,p) AL — (b,0)
b,pp} =7, Le.p.f =2y, y — Immirzi

e (Classical Hamiltoman:

b
H[N] = NL, (OF — OF°) w1 0,° = 0;° =m
7 P
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Regularization of Hamiltonian

b
H[N]=NL, (05— 0F%), inGR: 0 =08 =m
avara

e Anticipating lack of continuity in LQC: b, ¢ not well-def.

* Use symmetries and rewrite the curvature of A, 1n terms
of an holonomy circuit enclosing a minimum area A.



Regularization of Hamiltonian

b
H[N]=NL, (05— 0F%), inGR: 0 =08 =m
avara

e Anticipating lack of continuity in LQC: b, ¢ not well-def.

* Use symmetries and rewrite the curvature of A, 1n terms
of an holonomy circuit enclosing a minimum area A.

* Regularized Hamiltonian [ignoring G(5,)|:
HZE[Ny] = L0 |b — sin(8,b)/6,)| — L,0OX |c — sin(5,0)/6,|,
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Regularization of Hamiltonian

b
H[N]=NL, (05— 0F%), inGR: 0 =08 =m
avara

e Anticipating lack of continuity in LQC: b, ¢ not well-def.

* Use symmetries and rewrite the curvature of A, 1n terms
of an holonomy circuit enclosing a minimum area A.

* Regularized Hamiltonian [ignoring G(5,)|:

H8[Ny] = L,OKS [b — sin(8,b)/5,)| — L,0XS ¢ - sin(3,0)/8,]
AMAAAAAAAA™ AN AAALAAR A
— Ob = 0
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“Effective” models
sin(5,b)

Hreg[N] = NL,
b\/ ‘pc‘

(0 0 L - 0,=-0=m
Several studies of the evolution generated by H, 2[N].

Freedom 1n the choice of parameters 9, 9. .

[Ashtekar, Bojowald, Modesto, Campiglia, Gambini, Pullin, Bochmer, Vandersloot,
Chiou, Joe, Singh, Corichi, Olmedo, Saini, Bodendorter, Mele, Minch,

Mena Marugan, Garcia-Quismondo, Han, Liu, ...]



“Effective” models
sin(8,b)
5[9 \/ ‘pc‘

HZE[N] = (0 0 L - 0,=-0=m

» Several studies of the evolution generated by H_ S[N].

* Freedom 1in the choice of parameters §,,d. .

e 2019: “Quantum Transfiguration of Kruskal BHs”.

[Ashtekar, Olmedo, Singh]|
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H™[N] = NL,
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(0 0 L - 0,=-0=m
» Several studies of the evolution generated by H_ S[N].

* Freedom 1in the choice of parameters §,,d. .

e 2019: “Quantum Transfiguration of Kruskal BHs” (AOS),

1/3 B
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27y2m 2 \ 47°m



AOND type of models:

Hamiltonian formulation



Caveats on derivation of e.o.m

* The AOS “ettective” dynamics 1s generated by:

Hios = L, (0, — 0.)( = HEIN7])

treating the parameters 9, 4. as pure constants.

* On each solution, constraint implies O, = O. = m.

* On each sol., declare 6, = 6,(m), 6. = 6.(m) tor large BHs.



Caveats on derivation of e.o.m

The AOS “eftective” dynamics 1s generated by:
et
HAOS e L (0 OC )’
treating the parameters 9, 4. as pure constants.
On each solution, constraint implies O, = O. = m.

On each sol., declare 6, = 6,(m), 6. = 6.(m) tor large BHs.

However, m 1s a function on phase space (const. motion)!

[Bodendorfer, Mele, Munch, Mena Marugan, Garcia-Quismondo]



Eixtended phase space

e The AOS model can be derived from a Hamiltonian

NHS s + ¥, + AP

T it

on a extended phase space that includes §,, . (& momenta).

 ¥,,¥.: Relation between §,, 6. and BH mass on solutions:

¥, =K,(0,,0,) -6, ¥.=K.(0,0,) -4,

C

1/3 5\ e
K,(m,m) ~ \/Z , K(m,m) ~ 1 r
), ﬁzyzm c




Eixtended phase space

e The AOS model can be derived from a Hamiltonian

]—VHIZf(f)S - /Ib\Pb i /lclpm
on a extended phase space that includes §,, . (& momenta).

e AOS dynamics follows for 4, =0 = 4..
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(Gauge reduction

'The AOS model can be derived from a Hamiltonian

NHS s+ 4, + AP

G (2

on a extended phase space that includes §,, . (& momenta).

AONS dynamics follows for 4, =0 = 4..

Idea: fix the gauge so that 4, = 4. = 0 to remove &, o

C [ ]

Result: The reduced phase space 1s mot symplectomorphic
to that of Kantowski-Sachs cosmologies (# GR algebra).

[BEN, Mena Marugan, Garcia-Quismondo]|



Road to quantization

e The AOS model can be derived from a Hamiltonian

NHS s+ 4, + AP

G (2

on a extended phase space that includes §,, . (& momenta).

* LOQC under control for triad/connection algebra in GR.

* Quantization strategy: Use LOQGC tools to find a quantum
representation of constraints in the extended framework.



Quantization: Kinematics



Holonomy-flux algebra

e Matrix elements of holonomies of A! along 6 and x:

= b _ e
Ik, S Y= W U, E IR

» Fluxes of E across surfaces determined by p, and p,..

* Holonomy-flux algebra:

l
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Holonomy-flux algebra

e Matrix elements of holonomies of A! along 6 and x:

_ _ L en D
Ik, S Y= Ups . € R

» Fluxes of E across surfaces determined by p, and p,..

* Holonomy-flux algebra:

l

{'/Vﬂbapb} - 2

Ui e 58l = 00,

'Iwo copies of homogeneous & 1sotropic LOQC




Kinematic Hilbert space

o K lfgc : space of square summable functions on R-.

Basis | Uy, Mc> </4b, He W;;a ﬂév> =~ 5/4;9,/4;;5/40/%

» W, — translation, p, . — multiplication operators.



Kinematic Hilbert space

H lfgc : space of square summable functions on R-.

Basis | Uy, Mc> </4b, He W;;a ﬂév> =~ 5/4;9,/4;;5/40/%

N, — translation, p, . — multiplication operators.

Schrodinger representation for 9,, . and momenta.

Total (kinematic) Hilbert space:

H3" = H{oe ® LR, db,) ® L (R, d6,)



Hamiltonian constraint
Hif(f)s = (Ob &= 06)

e The “angular” part reads

s1in(od.c)

|
G — : sin(o,.c =—</V - N_ >
¢ ) 2% (0.€) 7 25, 25,

» Quantization: sin(,c)p./8. = Q. on (a subset of) k",



Hamiltonian constraint
Hif(f)s = (Ob &= 06)

e The “angular” part reads

s1in(od.c)

|
G — i sin(o,.c =—</V - N_ >
¢ o P (0.0) 7 25, 25,

» Quantization: sin(,c)p./8. = Q. on (a subset of) k",

» For each fixed pair 9, 6. change the LOC basis:

|/4b,//ic> o |/Zb — //ib5b_laﬂc = ﬂc5C_1>

N2 Q2 same as in FLRW cosmology



Hamiltonian constraint
Hif(f)s = (Ob &= 06)

e The “angular” part reads

s1in(od.c)

1
0. = i sin(o,.c =—</V = N _ >
o P (0.€) 7 26, 26,

e Operator 0, « Q. essentially self-adjoint on

Cyl; = span{ | fiy, i) : fi. = £ (e, +2n), n €N}, ¢, € (0,2]
* Abs. continuous spectrum equal to R, independent of 4.

| Lewandowski, Kaminski, Mena Marugan, Martin-Benito, Olmedo, Pawlowski|



Hamiltonian constraint
Hif(f)s = (Ob &= 06)

e The “angular” part reads

s1in(od.c)

1
0. = i sin(o,.c =—</V = N _ >
yL, 0, : i 21 & e

e Operator 0, « Q. essentially self-adjoint on

Cyl; = span{ | fiy, i) : fi. = £ (e, +2n), n €N}, ¢, € (0,2]

* Abs. continuous spectrum equal to R, independent of 4.

Cylg—: < span{ | i, € R) ® L*(R, dm)



Hamiltonian constraint
i
HXOS = L, (Ob - OC)
* The “radial” part reads

| sin(o,b) Dy
O, = Q,+ 77 6: 0, Q, = -
b oI, [ b TV OpDPpaey ] b 5, P> Pb Y

* Quantization: “Minimal” requirements on O,.



Hamiltonian constraint
i
HXOS = L, (Ob - OC)
* The “radial” part reads

| sin(o,b) Dy
O, = Q,+ 77 6: 0, Q, = -
b oI, [ b TV OpDPpaey ] b 5, P> Pb Y

» Quantization: “Minimal” requirements on O,:
* Built from Q,, p, : Only depends on 87 for each pair 6, §,.
* Preserves super-selection sectors of Q, (similar to Q).

* Liss. selt-adjoint, no singular sp., point sp. = discrete.



UNDER

CONSTRUCTION

Physical states

(in collab. with A. Garcia-Quismondo, G.A. Mena Marugan & A. Minguez)



Constraint equations

e Total Hamiltonian: NH$ + 4%, + 1. P, .

» Quantum Hamiltonian constraint: (y, | 0, = (, | 0..
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Constraint equations

e Total Hamiltonian: NH$ + 4%, + 1. P, .

e Quantum Hamiltonian constraint: (l//p | Ob = (l//p | éc :

Oy (i M, 8y, 8,) = my (i, m, 5,,8,), m € R

A2 y,=01lorm & Spg [6,]

Looking for physical states
in the algebraic dual of:

Cy (Sp; ) U span{ |w, € Sp% )}
e s




Physical Hilbert space

Total Hamiltonian: NHS ¢ + 4,¥, + 4. P,

Quantum Hamiltonian constraint: (qu | @b — (l//p | éc :

A2y, =0lorm & Sp; [5,]

Additional constraints: 6, = K,(0,, 0.), 6. = K (O,,0,) .
Quantum imposition of all constraints on (y, | :

(l//p‘ S é:(m)a m & Spéb[éb - Kb(ma m)]



Physical Hilbert space

Total Hamiltonian: NHS ¢ + 4,¥, + 4. P,

Quantum Hamiltonian constraint: (qu | @b — (l//p | éc :

APy, =0 for m & Spy [
Additional constraints: 6, = K,(0,, 0.), 6. = K (O,,0,) .
Quantum imposition of all constraints on (y, | :

(y, | & ¢m), m € Spy [0, = Ky(m, m)]

Inner product on #, from spectral measure of 0,.



Possibilities: Discrete mass

1 $in(5,b) Dy
O, = Q,+ 726 prl, Q= -
; 2yL0[ » VR0 B, Q, 5, Pr P=7

e Imagine that it is possible to define O, such that

Vo
~
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Possibilities: Discrete mass

| sin(o,b) Ds
0, = @ T O (O — .
b 201, [ b TV Opaey Pb] b 5, Pp>  Pbp 7y

e Imagine that it is possible to define O, such that

Vo
~

@% X fli +- 2;/25,92 p,% 3= y45gf’, P positive

AND> <é;%> > X 2}’25,3(]%,9) — Spgld, # O] discrete




Possibilities: Discrete mass

1 $in(5,b) Dy
O, = Q,+ 726 prl, Q= -
; 2yL0[ » VR0 B, Q, 5, Pr P=7

Imagine that it is possible to define O, such that
@% X fli +- 2;/25,92 f)’,% 3= y45gf’, P positive

T'hen Spy, [5, # 0] discrete: Gaps 1n the physical BH mass.

[Zhang, Ma, Song, Zhang, 2020-2022]
. . $ifaiie eff .
Consistent with recent works quantizing Hy ¢ sin(6,0)p,/6, .

Satistactory d,, 6. — 0 limit? Spectrum becomes continuous.



Possibilities: Cont. mass

| sin(o,b) D
0 = Q it 252Q_1~2 : Q i ] =
Sy Q, + 7267 53|, Q, 5, Pr B=p

* T'he standard habitat for physical states may be too small.

* Imagine (e.g.) a “direct” quantization of O, .



Possibilities: Cont. mass

|
0, = Q, + 76,9, 'p;|, Q=
b 2yL0[ bl b Pb] b

sin(o,b) . D

5, Py Pp = 5_b

* T'he standard habitat for physical states may be too small.

* Imagine (e.g.) a “direct” quantization of O, .
» Quantum constraint (| 0, = (w, | 0. may be understood as
(W, | (€ + 7°8,5p) = — (51, | 2yLymQ,  with (@, | = (v, | Q!

* Experience in LOQGC indicates that this eq. 15 solvable for
continuous values of the BH mass. Good 9, — 0 limit.



Possibilities: Cont. mass

| sin(o,b) D
O, = Q,+ 726 prl, Q= -
b 2;/L0[ » + 782 e, Q, 5, Pr P=7

* T'he standard habitat for physical states may be too small.
* Imagine (e.g.) a “direct” quantization of O, .

» Quantum constraint (| 0, = (w, | 0. may be understood as

(5, | Q4 + 7?67 p}) = — (@, | 27Lym<,  with (F,| = (p, | Q"

Now we search on the algebraic !

dual of D(O,) (“much” bigger!!) }




Conclusions & outlook

Aim: LQC of a BH interior leading to AOS-type models.

Extended phase space: motivation from dynamics of
eftective model & convenient for quantization.

Operators in Hamiltonian from FLRW LQC. f

Important: Choice of dual space to construct physical
Hilbert space — Discrete/continuous BH mass. /iy

WdAW lIimit? Relational dynamics? Eftective AOS?



