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Background
• Black holes: Promising observational windows to quantum 

gravity phenomena, in the dawn of  GW astronomy. 

• Long history of  works for the quantization of  black holes 
in LQG & LQC. Satisfactory yet simple description?

[Ashtekar, Bojowald, Modesto, Cartin, Khanna, Boehmer, Vandersloot, Chiou, 
Campiglia, Gambini, Pullin, Sabharwal, Brannlund, Kloster, De Benedictis, 

Olmedo, Dadhich, Joe, Singh, Haggard, Rovelli, Corichi, Saini, Cortez, Cuervo, 
Morales-Técotl, Ruelas, Yonika, Bianchi, Christodoulo, D’Ambrosio, Alesci, 

Bahrami, Pranzetti, Kelly, Santacruz, Wilson-Ewing, Zhang, Ma, Song, 
Bodendorfer, Mele, Münch, Mena Marugán, García-Quismondo, Perez, Speziale, 

Viollet, Han, Liu, Alonso-Bardaji, Brizuela, Vera, …]



Background
• Black holes: Promising observational windows to quantum 

gravity phenomena, in the dawn of  GW astronomy. 

• Long history of  works for the quantization of  black holes 
in LQG & LQC. Satisfactory yet simple description? 

Spherical symmetry as starting point. 

Use LQC techniques to describe the interior.
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Background
• Black holes: Promising observational windows to quantum 

gravity phenomena, in the dawn of  GW astronomy. 

• Long history of  works for the quantization of  black holes 
in LQG & LQC. Satisfactory yet simple description? 

• Recent LQC approaches mostly study “effective” models. 

• Highlight: Extension of  Kruskal spacetime by AOS. 

Quantization? (General properties, eff. regimes, etc.)



BH interior & its 
 “effective” LQC models



• Metric: Cosmology of  Kantowski-Sachs type. 

• Symmetry-reduced Ashtekar-Barbero variables:

Interior region in GR

ds2 = − N(t)2dt2 +
p2

b(t)
L2

o |pc(t) |
dx2 + |pc(t) |dΩ2

S, x ∈ (0,Lo)

Eα
i → (pb, pc) Ai

α → (b, c)

{b, pb} = γ, {c, pc} = 2γ, γ → Immirzi
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• Metric: Cosmology of  Kantowski-Sachs type. 

• Symmetry-reduced Ashtekar-Barbero variables: 

• Classical Hamiltonian:

Interior region in GR

ds2 = − N(t)2dt2 +
p2

b(t)
L2

o |pc(t) |
dx2 + |pc(t) |dΩ2

S, x ∈ (0,Lo)

Eα
i → (pb, pc) Ai

α → (b, c)

{b, pb} = γ, {c, pc} = 2γ, γ → Immirzi

HKS[N] = NLo
b

γ |pc |
(OKS

b − OKS
c ) OKS

b = OKS
c = m

 ADM mass∝



• Anticipating lack of  continuity in LQC:  not well-def. 

• Use symmetries and rewrite the curvature of   in terms 
of  an holonomy circuit enclosing a minimum area .

b̂, ̂c

Ai
α

Δ

Regularization of  Hamiltonian

HKS[N] = NLo
b

γ |pc |
(OKS
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c ), in GR : OKS
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• Anticipating lack of  continuity in LQC:  not well-def. 

• Use symmetries and rewrite the curvature of   in terms 
of  an holonomy circuit enclosing a minimum area . 

• Regularized Hamiltonian [ignoring ]:

b̂, ̂c

Ai
α

Δ

𝒪(δb)

Regularization of  Hamiltonian

HKS[N] = NLo
b

γ |pc |
(OKS

b − OKS
c ), in GR : OKS

b = OKS
c = m

Hreg
KS [NT] = LoOKS

b [b → sin(δbb)/δb)] − LoOKS
c [c → sin(δcc)/δc],

NT =
γδb |pc |

sin(δbb)
, |δb | , |δc | coord. lengths of  min. area plaquettes



• Anticipating lack of  continuity in LQC:  not well-def. 

• Use symmetries and rewrite the curvature of   in terms 
of  an holonomy circuit enclosing a minimum area . 

• Regularized Hamiltonian [ignoring ]:

b̂, ̂c

Ai
α

Δ

𝒪(δb)

Regularization of  Hamiltonian

HKS[N] = NLo
b

γ |pc |
(OKS

b − OKS
c ), in GR : OKS

b = OKS
c = m

Hreg
KS [NT] = LoOKS

b [b → sin(δbb)/δb)] − LoOKS
c [c → sin(δcc)/δc],

 =: Ob  =: Oc



• Several studies of  the evolution generated by . 

• Freedom in the choice of  parameters 

Hreg
KS [N]

δb, δc .

“Effective” models

Hreg
KS [N] = NLo

sin(δbb)
γδb |pc |

(Ob − Oc), effLQC : Ob = Oc = m

[Ashtekar, Bojowald, Modesto, Campiglia, Gambini, Pullin, Boehmer, Vandersloot, 
Chiou, Joe, Singh, Corichi, Olmedo, Saini, Bodendorfer, Mele, Münch,  

Mena Marugán, García-Quismondo, Han, Liu, …]
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• Several studies of  the evolution generated by . 

• Freedom in the choice of  parameters  

• 2019: “Quantum Transfiguration of  Kruskal BHs” (AOS),

Hreg
KS [N]

δb, δc .

“Effective” models

Hreg
KS [N] = NLo

sin(δbb)
γδb |pc |

(Ob − Oc), effLQC : Ob = Oc = m

δb ∼ ( Δ

2πγ2m )
1/3

, Loδc ∼
1
2 ( γΔ2

4π2m )
1/3

, on solutions



AOS type of  models: 
Hamiltonian formulation



• The AOS “effective” dynamics is generated by: 

treating the parameters  as pure constants. 

• On each solution, constraint implies  

• On each sol., declare  for large BHs.

δb, δc

Ob = Oc = m .

δb = δb(m), δc = δc(m)

Caveats on derivation of  e.o.m

Heff
AOS = Lo (Ob − Oc)( = Hreg

KS [NT])



• The AOS “effective” dynamics is generated by: 

treating the parameters  as pure constants. 

• On each solution, constraint implies  

• On each sol., declare  for large BHs. 

• However,  is a function on phase space (const. motion)!

δb, δc

Ob = Oc = m .

δb = δb(m), δc = δc(m)

m

Caveats on derivation of  e.o.m

Heff
AOS = Lo (Ob − Oc),

[Bodendorfer, Mele, Münch, Mena Marugán, García-Quismondo]



• The AOS model can be derived from a Hamiltonian 

on a extended phase space that includes  (& momenta). 

•  Relation between  and BH mass on solutions:

δb, δc

Ψb, Ψc : δb, δc

Extended phase space

NHeff
AOS + λbΨb + λcΨc,

Ψb = Kb (Ob, Oc) − δb, Ψc = Kc (Ob, Oc) − δc,

Kb(m, m) ∼ ( Δ

2πγ2m )
1/3

, Kc(m, m) ∼
1

2Lo ( γΔ2

4π2m )
1/3



• The AOS model can be derived from a Hamiltonian 

on a extended phase space that includes  (& momenta). 

• AOS dynamics follows for 

δb, δc

λb = 0 = λc .

Extended phase space

NHeff
AOS + λbΨb + λcΨc,
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• The AOS model can be derived from a Hamiltonian 

on a extended phase space that includes  (& momenta). 

• AOS dynamics follows for  

• Idea: fix the gauge so that  to remove  

• Result: The reduced phase space is not symplectomorphic 
to that of  Kantowski-Sachs cosmologies (  GR algebra).

δb, δc

λb = 0 = λc .

λb = λc = 0 δb, δc .

≠

Gauge reduction

NHeff
AOS + λbΨb + λcΨc,

[BEN, Mena Marugán, García-Quismondo]



• The AOS model can be derived from a Hamiltonian 

on a extended phase space that includes  (& momenta). 

• LQC under control for triad/connection algebra in GR. 

• Quantization strategy: Use LQC tools to find a quantum 
representation of  constraints in the extended framework.

δb, δc

Road to quantization

NHeff
AOS + λbΨb + λcΨc,



Quantization: Kinematics



• Matrix elements of  holonomies of   along  and : 

• Fluxes of   across surfaces determined by  and  

• Holonomy-flux algebra:

Ai
α θ x

Eα
i pb pc .

Holonomy-flux algebra

𝒩μb
= eibμb/2, 𝒩μc

= eicμc/2, μb, μc ∈ ℝ .

{𝒩μb
, pb} =

i
2

μbγ𝒩μb
, {𝒩μc

, pc} = iμcγ𝒩μc



• Matrix elements of  holonomies of   along  and : 

• Fluxes of   across surfaces determined by  and  

• Holonomy-flux algebra: 

Two copies of  homogeneous & isotropic LQC

Ai
α θ x

Eα
i pb pc .

Holonomy-flux algebra

𝒩μb
= eibμb/2, 𝒩μc

= eicμc/2, μb, μc ∈ ℝ .

{𝒩μb
, pb} =

i
2

μbγ𝒩μb
, {𝒩μc

, pc} = iμcγ𝒩μc



•  space of  square summable functions on  

• translation,  multiplication operators.

ℋkin
LQC : ℝ2 .

�̂�μb,c
→ ̂pb,c →

Kinematic Hilbert space

Basis |μb, μc⟩ ⟨μb, μc |μ′ b, μ′ c,⟩ = δμb,μ′ b
δμc,μ′ c



•  space of  square summable functions on  

• translation,  multiplication operators. 

• Schrödinger representation for  and momenta. 

• Total (kinematic) Hilbert space:

ℋkin
LQC : ℝ2 .

�̂�μb,c
→ ̂pb,c →

δb, δc

Kinematic Hilbert space

Basis |μb, μc⟩ ⟨μb, μc |μ′ b, μ′ c,⟩ = δμb,μ′ b
δμc,μ′ c

ℋkin
T = ℋkin

LQC ⊗ L2(ℝ, dδb) ⊗ L2(ℝ, dδc)



• The “angular” part reads 

• Quantization:  on (a subset of)  sin(δcc)pc/δc → Ω̂c ℋkin
T .

Hamiltonian constraint
Heff

AOS = Lo (Ob − Oc)

Oc =
sin(δcc)
γLoδc

pc, sin(δcc) =
1
2i (𝒩2δc

− 𝒩−2δc)



• The “angular” part reads 

• Quantization:  on (a subset of)  

• For each fixed pair  change the LQC basis: 

sin(δcc)pc/δc → Ω̂c ℋkin
T .

δb, δc

Hamiltonian constraint
Heff

AOS = Lo (Ob − Oc)

Oc =
sin(δcc)
γLoδc

pc, sin(δcc) =
1
2i (𝒩2δc

− 𝒩−2δc)

|μb, μc⟩ → | μ̃b = μbδ−1
b , μ̃c = μcδ−1

c ⟩

 same as in FLRW cosmologyΩ̂2
c



• The “angular” part reads 

• Operator  essentially self-adjoint on 

• Abs. continuous spectrum equal to  independent of  

Ôc ∝ Ω̂c

ℝ, δc .

Hamiltonian constraint
Heff

AOS = Lo (Ob − Oc)

Oc =
sin(δcc)
γLoδc

pc, sin(δcc) =
1
2i (𝒩2δc

− 𝒩−2δc)

Cyl±εc
= span{ | μ̃b, μ̃c⟩ : μ̃c = ± (εc + 2n), n ∈ ℕ}, εc ∈ (0,2]

[Lewandowski, Kaminski, Mena Marugán, Martín-Benito, Olmedo, Pawlowski]



• The “angular” part reads 

• Operator  essentially self-adjoint on 

• Abs. continuous spectrum equal to  independent of  

Ôc ∝ Ω̂c

ℝ, δc .

Hamiltonian constraint
Heff

AOS = Lo (Ob − Oc)

Oc =
sin(δcc)
γLoδc

pc, sin(δcc) =
1
2i (𝒩2δc

− 𝒩−2δc)

Cyl±εc
↔ span{ | μ̃b ∈ ℝ⟩ ⊗ L2(ℝ, dm)

Cyl±εc
= span{ | μ̃b, μ̃c⟩ : μ̃c = ± (εc + 2n), n ∈ ℕ}, εc ∈ (0,2]



• The “radial” part reads 

• Quantization: “Minimal” requirements on .Ôb

Hamiltonian constraint
Heff

AOS = Lo (Ob − Oc)

Ob = −
1

2γLo
[Ωb + γ2δ2

b p̃2
bΩ

−1
b ], Ωb =

sin(δbb)
δb

pb, p̃b =
pb

δb



• The “radial” part reads 

• Quantization: “Minimal” requirements on : 

Built from  Only depends on  for each pair . 

Preserves super-selection sectors of   (similar to ). 

Ess. self-adjoint, no singular sp., point sp.  discrete.

Ôb

Ω̂b, ̂p̃b : δ2
b δb, δc

Ω̂b Ω̂c

=

Hamiltonian constraint
Heff

AOS = Lo (Ob − Oc)

Ob = −
1

2γLo
[Ωb + γ2δ2

b p̃2
bΩ

−1
b ], Ωb =

sin(δbb)
δb

pb, p̃b =
pb

δb



Physical states
(in collab. with A. García-Quismondo, G.A. Mena Marugán & A. Mínguez)



• Total Hamiltonian:  

• Quantum Hamiltonian constraint: 

NHeff
AOS + λbΨb + λcΨc .

(ψp | Ôb = (ψp | Ôc .

Constraint equations
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• Total Hamiltonian:  

• Quantum Hamiltonian constraint:  ,

NHeff
AOS + λbΨb + λcΨc .

(ψp | Ôb = (ψp | Ôc

Constraint equations

Ôb ψp(μ̃b, m, δb, δc) = m ψp(μ̃b, m, δb, δc), m ∈ ℝ

 for ψp = 0 m ∉ SpÔb
[δb]

Looking for physical states 
in the algebraic dual of:

C∞
0 (Spc

Ôb
) ∪ span{ |ωn ∈ Spd

Ôb
⟩}



• Total Hamiltonian:  

• Quantum Hamiltonian constraint:  , 

• Additional constraints:  

• Quantum imposition of  all constraints on 

NHeff
AOS + λbΨb + λcΨc .

(ψp | Ôb = (ψp | Ôc

δb = Kb(Ob, Oc), δc = Kc(Ob, Oc) .

(ψp | :

Physical Hilbert space

 for ψp = 0 m ∉ SpÔb
[δb]

(ψp | ↔ ξ(m), m ∈ SpÔb
[δb = Kb(m, m)]



• Total Hamiltonian:  

• Quantum Hamiltonian constraint:  , 

• Additional constraints:  

• Quantum imposition of  all constraints on  

• Inner product on  from spectral measure of  

NHeff
AOS + λbΨb + λcΨc .

(ψp | Ôb = (ψp | Ôc

δb = Kb(Ob, Oc), δc = Kc(Ob, Oc) .

(ψp | :

ℋp Ôb .

Physical Hilbert space

 for ψp = 0 m ∉ SpÔb
[δb]

(ψp | ↔ ξ(m), m ∈ SpÔb
[δb = Kb(m, m)]



• Imagine that it is possible to define  such thatÔb

Possibilities: Discrete mass
Ob = −

1
2γLo

[Ωb + γ2δ2
bΩ−1

b p̃2
b], Ωb =

sin(δbb)
δb

pb, p̃b =
pb

δb

Ô2
b ∝ Ω̂2

b + 2γ2δ2
b

̂p̃2
b + γ4δ4

b
̂P, ̂P positive



• Imagine that it is possible to define  such thatÔb

Possibilities: Discrete mass

Ô2
b ∝ Ω̂2

b + 2γ2δ2
b

̂p̃2
b + γ4δ4

b
̂P, ̂P positive

⟨Ô2
b⟩ ≥ ∝ 2γ2δ2

b⟨ ̂p̃2
b⟩  discreteSpÔ2

b
[δb ≠ 0]

Ob = −
1

2γLo
[Ωb + γ2δ2

bΩ−1
b p̃2

b], Ωb =
sin(δbb)

δb
pb, p̃b =

pb

δb



• Imagine that it is possible to define  such that 

• Then  discrete: Gaps in the physical BH mass. 

• Consistent with recent works quantizing  

• Satisfactory  limit? Spectrum becomes continuous.

Ôb

SpÔb
[δb ≠ 0]

Heff
AOS sin(δbb)pb/δb .

δb, δc → 0

Possibilities: Discrete mass

Ô2
b ∝ Ω̂2

b + 2γ2δ2
b

̂p̃2
b + γ4δ4

b
̂P, ̂P positive

Ob = −
1

2γLo
[Ωb + γ2δ2

bΩ−1
b p̃2

b], Ωb =
sin(δbb)

δb
pb, p̃b =

pb

δb

[Zhang, Ma, Song, Zhang, 2020-2022]



• The standard habitat for physical states may be too small. 

• Imagine (e.g.) a “direct” quantization of  Ob .

Possibilities: Cont. mass
Ob = −

1
2γLo

[Ωb + γ2δ2
bΩ−1

b p̃2
b], Ωb =

sin(δbb)
δb

pb, p̃b =
pb

δb



• The standard habitat for physical states may be too small. 

• Imagine (e.g.) a “direct” quantization of   

• Quantum constraint  may be understood as 

• Experience in LQC indicates that this eq. is solvable for 
continuous values of  the BH mass. Good  limit.

Ob .

(ψp | Ôb = (ψp | Ôc

δb → 0

Possibilities: Cont. mass

(ψ̃p | (Ω̂2
b + γ2δ2

b
̂p̃2
b) = − (ψ̃p |2γLomΩ̂b with (ψ̃p | = (ψp |Ω̂−1

b

Ob = −
1

2γLo
[Ωb + γ2δ2

bΩ−1
b p̃2

b], Ωb =
sin(δbb)

δb
pb, p̃b =

pb

δb



• The standard habitat for physical states may be too small. 

• Imagine (e.g.) a “direct” quantization of   

• Quantum constraint  may be understood as

Ob .

(ψp | Ôb = (ψp | Ôc

Possibilities: Cont. mass
Ob = −

1
2γLo

[Ωb + γ2δ2
bΩ−1

b p̃2
b], Ωb =

sin(δbb)
δb

pb, p̃b =
pb

δb

Now we search on the algebraic 
dual of   (“much” bigger!!)D(Ôb)

(ψ̃p | (Ω̂2
b + γ2δ2

b
̂p̃2
b) = − (ψ̃p |2γLomΩ̂b with (ψ̃p | = (ψp |Ω̂−1

b



• Aim: LQC of  a BH interior leading to AOS-type models. 

• Extended phase space: motivation from dynamics of  
effective model & convenient for quantization. 

• Operators in Hamiltonian from FLRW LQC. 

• Important: Choice of  dual space to construct physical 
Hilbert space  Discrete/continuous BH mass. 

• WdW limit? Relational dynamics? Effective AOS?

→

Conclusions & outlook


