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Picard-Lefschetz theory: The highly oscillatory 
integral is dominated by constructed 
interference at saddle points of the Einstein-
Hilbert action, solving the boundary value 
problem

δSEH

δ𝒢
= 0 ↦ Gμν = κTμν



Wheeler: A classical trajectory emerges as an interference phenomena in 
quantum mechanics. Classical spacetime spacetime may emerge as an 
interference effect in superspace
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In quantum gravity, the path integral for gravity has influenced many 
explorations

Complex saddle points?

• The path integral over spacetimes 

Classical spacetime emerges from 
real saddle points. Quantum 
transitions follow from relevant 
complex saddle points.



Overview 
1. Oscillatory integrals and Picard-Lefschetz theory


2. Feynman sums over histories and the Wiener measure


3. Caustics, Stoke’s transitions and quantum tunnelling



Interference



Interference
• Interference is among the most universal phenomena in 

physics 

• Unfortunately, the associated multi-dimensional highly 
oscillatory integrals are generally delicate to define and 
expensive to evaluate

Ψ(y) = ∫
∞

−∞
eif(x,y)dx

• Conditionally convergent integrals need to be regulated with 
care


• Picard-Lefschetz theory formalizes saddle point methods 
and solves these problems



Conditional convergence
Alternating sums occur in many places, ranging from classical systems, and 
wave optics, to quantum physics


• Absolutely v.s. conditionally convergent sums

S =
∞

∑
i=1

ai

∞

∑
i=1

|ai | < ∞

• Conditional series depend on the ordering
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Oscillatory integrals
Oscillatory integrals occur in many places, ranging from classical systems, 
wave optics, to quantum physics


• Fresnel integral can be defined with the typical regularization

∫
∞

−∞
eix2dx = lim

R→∞ ∫
R

−R
eix2dx = − (1 + i)

π
2

lim
R→∞

erf ( i − 1

2
R) = (1 + i)

π
2
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• Higher dimensional generalizations run into problems

∫
N

∏
l=1

eiy2
l dyl = lim

R→∞

2πN/2

Γ(N/2) ∫
R

0
eir2rN−1dr = lim

R→∞
(iπ)N/2(1 −

Γ(N/2, − iR2)
Γ(N/2) )

oscillates around the box cutoff regulator for N = 2 and diverges for N > 2.



Oscillatory integrals
Oscillatory integrals occur in many places, ranging from classical systems, 
wave optics, to quantum physics


• Absolutely v.s. conditionally convergent integrals

I = ∫ f(x)dx ∫ | f(x) |dx < ∞

∬ f(x, y) dx dy = ∫ [∫ f(x, y) dx] dy = ∫ [∫ f(x, y) dy] dx

• Fubini’s theorem

• Dominated convergence theorem

lim
n→∞ [∫ fn(x)dx] = ∫ [ lim

n→∞
fn(x)] dx | fn(x) | ≤ g(x) ∀n ∫ |g(x) |dx < ∞when with

∫
∞

−∞
eif(x) dx ∫

x(1)=x1

x(0)=x0

eiS[x(t)] 𝒟x(t)or
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Saddle point methods
Using Cauchy’s integral formula for integrals over analytic functions:


• Saddle point methods (WKB or Eikonal approximation)

∫
∞

−∞
eif(x) dx ≈ ∑

k
∫ αk exp [−x2/σ2

k ] dx = π ∑
k

αkσk

• What is the optimal contour?


• Which saddle points to include?
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Picard-Lefschetz theory
Picard-Lefschetz theory: For theories with analytic actions:

• Analytically continue the 
integrand into the complex plane


• Find all saddle points 

• Find the steepest ascent and 
descent contours associated 
with the real part of the exponent


• Deform the integration domain to 
the relevant descent thimbles

I = ∫ℝ
eif(x)dx

J

J

V

V

KV

KV

Vif(x) = h(x) + iH(x)

I = ∑
i

nieiH(xi) ∫𝒥i

eh(x)dx

Absolutely convergent

Thimble is relevant when the ascent contour 
intersects the original integration contour



• Fresnel integral

∫
∞

−∞
eix2dx = lim

R→∞ ∫
R

−R
eix2dx = (1 + i)

π
2

• Multi-dimensional extension

∬ℝ2

ei(x2+y2)dxdy = lim
R→∞

2π∫
R

0
r eir2dr = lim

R→∞ [iπ − πeiR2]
• Complex analysis

∫ℝ
eix2 dx =

1 + i

2 ∫ℝ
e−u2 du = (1 + i)

π
2

x =
1 + i

2
u

Picard-Lefschetz theory

∬ℝ2

ei(x2+y2) d(x, y) = i∫ℝ2

e−(u2+v2) d(u, v) = iπ



In wave optics, the Kirchhoff-Fresnel 
integral describes a thin lens. Picard-
Lefschetz theory identifies real and 
complex rays and rewrites the integral 
into a sum of non-oscillatory integrals

Ψ(y) = ∫
∞

−∞
e

iν( (x − y)2
2 + α

1 + x2 )dx

Picard-Lefschetz theory



Picard-Lefschetz theory yields the optimal deformation of analytic 
conditionally convergent integrals and yields the unique result:

∫ℝn

eif(x)dx ≡ lim
R→∞ ∫ gR(x)eif(x)dx = lim

R→∞ ∑
i

∫𝒥i

gR(x)eif(x)dx = ∑
i

∫𝒥i

eif(x)dx

For a regulator g, that converges to 1 as            , is analytic in the complex 
plane, decays rapidly enough that no contributions from infinity are 
introduced. Extreme paths cancel out.

R → ∞

Picard-Lefschetz theory



Feynman Path integral



Path integral
Interference gives our cleanest description of the Universe as formalized by the 
Feynman path integral. But how is this infinite-dimensional conditionally 
convergent oscillatory integral defined?



Path integral
General idea: the path integral has support for paths for 
saddle points of the action

δS
δx

= 0 ↦
∂L
∂x

−
d
dt

∂L
∂ ·x

= 0 ↦ m··x = −
∂
∂x

V(x)

However, which saddles are relevant? 


Can we make this idea rigorous? 


Can everything be described in terms of 
classical paths?

x(0) = x0, x(T) = x1

G[x1, x0; T] = ∫
x(T)=x1

x(0)=x0

eiS[x]/ℏ𝒟x



Path integral

• Feynman and Hibbs: “...we feel that the possible awkwardness of the 
special definition of the sum over all paths may eventually require new 
definitions to be formulated. Nevertheless, the concept of the sum 
over paths, like the concept of an ordinary integral, is independent of 
a special definition and valid in spite of the failure of such definitions”


• Terence Tau: “The point of rigour is not to destroy all intuition; instead, 
it should be used to destroy bad intuition while clarifying and 
evaluating good intuition. It is only with a combination of both 
rigorous formalism and good intuition that one can tackle complex 
mathematical problems.”

What is the problem? And why should we care?



sigma-measure 

1.  

2.  

Infinite dimensional integrals

f =
r

∑
i=1

αi1Ai
 integrates to ∫Ω

f dμ =
r

∑
i=1

αi μ(Ai)

Integration theory is an application of measure theory

A ∈ 𝒜 ⇒ Ac ∈ 𝒜

sigma-algebra    on the space 

1.  

2.  

3.

𝒜
Ω ∈ 𝒜

Ω

An ∈ 𝒜, n ∈ ℕ ⇒ ∪∞
n=1 An ∈ 𝒜

An ∈ 𝒜, n ∈ ℕ, pairwise disjoint 

μ : 𝒜 → [0,∞]
μ(∅) = 0

⇒ μ(∪∞
n=1An) =

∞

∑
n=1

μ(An)

We define integrals of positive simple functions as a finite sum

leading to the general integral for positive functions

∫Ω
f dμ = sup {∫Ω

g dμ where g is simple and 0 ≤ g ≤ f}



The infinite product of Lebesgue measures is not a sigma measure


• Lebesgue formalized the standard measure on geometric spaces


• Unfortunately, the infinite product is not a measure due to translation 
invariance 

  The measure of the n-dimensional hypercube can be subdivided

                                    In the limit


the subcube has a vanishing measure

and so does any subset that we construct from them.

Such measures are useless in physics!  

Infinite dimensional integrals

𝒟x !=
∞

∏
i=1

dxi

μ([a, b]) = b − a

1 = μ([0,1]n) = 2nμ([0,1/2]n) n → ∞
μ([0,1/2]∞) = 0



μB(Q) =
2πW

∏N+1
i=1 (W 2π(ti − ti−1)) ∫

b1

a1

…∫
bN

aN

e−∑N+1
i=1

(wi − wi−1)2

2W2(ti − ti−1 dw1…dwN

There exist infinite-dimensional measures that that are not translation invariant

Restricted Brownian motion moving 
between two points, leads to the 
Brownian bridge measure. When applied 
to a space of N slits, the measure forms 
an N-dimensional integral 

Q = {w ∈ Ω |ai < w(ti) < bi, 0 < t1 < … < tN < 1}

with stiffness, W. Note that the paths are not differentiable!

Infinite dimensional integrals



Feynman-Kac formula

∫ e
i
ℏ ∫ (m ·x2/2−V(x))dt𝒟x → ∫ e− 1

ℏ ∫ (m ·x2/2+V(x))dt𝒟x

When using a Wick rotation: interference -> statistical physics 

The smoothing due to the kinetic term and wildness of the infinite product 
“measure” are beautifully balanced in the Brownian bridge.

∫ e− 1
ℏ ∫ (m ·x2/2+V(x))dt𝒟x

∫ e− 1
ℏ ∫ m ·x2/2dt𝒟x

≡ ∫ e− 1
ℏ ∫ V(x)dtdμB(x)

which is still mathematically ill-defined. However, we can define the set of 
symbols in terms of the Brownian bridge measure

e− 1
ℏ ∫ m

2
·x2dt𝒟x ≡ dμB



New proposal for real-time QM
When applying Picard-Lefschetz theory to the real-time path integral, can we 
deform the paths and define the integral using the Brownian bridge measure 
for each relevant instanton?

∫ℝn

eif(x)dx ≡ lim
R→∞ ∫ gR(x)eif(x)dx = lim

R→∞ ∑
i

∫𝒥i

gR(x)eif(x)dx = ∑
i

∫𝒥i

eif(x)dx

For a regulator g, that converges to 1 as            , is analytic in the complex 
plane, decays rapidly enough that no contributions from infinity are 
introduced. Extreme paths cancel out and we obtain a unique result:

R → ∞

G[x1, x0; T] = ∫
x(T)=x1

x(0)=x0

eiS[x]/ℏ𝒟x ≡ ∑
nC

eiS[xC]/ℏ ∫𝒥nC

eiθnC
(δx)dμnC

(δx) Θ(T)

phase, reduces to Maslow phase 
in semiclassical limit

Real, positive  
probability measuresum over relevant 

classical solutions
contour in space of complexities paths  
associated with the relevant instanton



New proposal for real-time QM

This formula should also apply to gravity!

m··x = − V′ (x),  with x(0) = x0,  and x(T) = x1

where the instantons are defined by

The structure of the path integral is completely organized by the classical 
paths. Note that this formula is exact and not the saddle point 
approximation. For more details see arXiv:2207.12798 (JF and Neil Turok)

G[x1, x0; T] = ∫
x(T)=x1

x(0)=x0

eiS[x]/ℏ𝒟x ≡ ∑
nC

eiS[xC]/ℏ ∫𝒥nC

eiθnC
(δx)dμnC

(δx) Θ(T)

phase, reduces to Maslow phase 
in semiclassical limit

Real, positive  
probability measuresum over relevant 

classical solutions
contour in space of complexities paths  
associated with the relevant instanton



New proposal for real-time QM
The structure of the path integral is completely organized by the classical 
paths. Note that this formula is exact and not the saddle point 
approximation. For more details see arXiv:2207.12798 (JF and Neil Turok)

An instanton is relevant if and only if there exists a steepest ascent 
deformation of the saddle point to a real path
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The quantum big bang



• In the early 1980’s, both Hartle, Hawking and Vilenkin 
developed famous models for the quantum big bang, 
known as the no-boundary and the tunnelling proposal. 


• Nucleation of a classical closed Lambda-dominated 
universe out of a forbidden ‘Euclidean’ quantum phase. 


• Aim: use the path integral for gravity to construct a 
predictive model for the initial conditions of our universe.


• In recent work, we used Picard-Lefschetz theory to study 
these proposals in the Lorentzian formulation.

The no-boundary proposal
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The propagator in action
G[x1, x0; T] S[x(t)]



Rosen-Morse potential
• Enough formalism! How to study this all in practice? 


• The Teller potential is both solvable and generic

Ĥ = −
ℏ2

2m
∂2

∂x2
+

V0

cosh2 x

G[x1, x0; T] = Θ(T)∫
∞

0
(ϕ+

k (x1)ϕ+
k (x0)* + ϕ−

k (x1)ϕ−
k (x0)*) e− iℏk2T

2m dk

with the eigenstates

and the path integral in the spectral representation

ϕ±
k (x) =

k sinh(πk)
cosh(2πk) + cosh(2πν)

Pik
N (±tanh x) N = −

1
2

+ iν, ν =
1

2ℏ
8mV0 − ℏ2



The propagator as a function of time

Caustics in the Rosen-Morse Barrier



The potential barrier: there are always either 1 or 3 real classical paths

Caustics in the Rosen-Morse Barrier



Not only in the propagator but also 
in the Schrödinger equation

Caustics in the Rosen-Morse Barrier



Ψ(μ, ν) = ∫ eiν(x4/4+μ2x2/2+μ1x)dx

Caustics and Stoke’s lines

39
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Caustics in the Rosen-Morse Barrier
Caustics, Stoke’s phenomena 
and singularity crossings, 
organize the classical paths 
solving the boundary value 
problem corresponding to the 
real-time Feynman path integral


By tracking the global structure, 
we define the path integral


We find six qualitatively different 
regions 



Energy propagator
Classically forbidden behaviour is most easily seen in the energy propagator 



Energy propagator
Classically forbidden behaviour is most easily seen in the energy propagator 



Energy propagator
As we change the final position, 
the classical paths coalesce in a 
caustic and subsequently undergo 
a singularity crossing and 
complex caustic after with the 
classical path no longer solves the 
boundary value problem



Quantum tunnelling rate
Classically forbidden behaviour is most easily seen in the energy propagator 

We recover the WKB tunnelling rate:

Singularity crossing

Complex classical paths are indeed 
responsible for quantum tunnelling and 

and quantum reflections!



Caustics in the Rosen-Morse Well
The propagator consists of an interference pattern structured by caustics!



• Interference is central to our 
understanding of the quantum 
universe 

• We propose a new definition of the 
real-time path integral using Picard-
Lefschetz theory 

• Instantons go beyond complex 
classical paths! Singularity crossings 
are central to a real-time description 
of quantum tunnelling


• We hope that this will be useful in 
quantum mechanics, quantum field 
theory, and Lorentzian quantum 
cosmology

Summary


