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Outline of the talk.

First Part.

I. Introduction to Simplicial GFT models for 4d euclidean Quantum Gravity.

II. Model building ambiguities. Formal expressions of the (vacuum) amplitudes Aβ .

III. A new SGFT model (with Duflo map) based on the BO proposal. Explicit formula
of the coefficient wBO(j−, j+, j , β) encoding the simplicity constraints.

Second Part.

I. Numerical evaluation of the coefficients wBO(j−, j+, j , β).

II. Analysis of the results.

Third Part.

I. UV divergences in SGFT and SF models. Why is it an important open issue?

II. Rad. corr. and their large-j scaling behaviour. How to compute the d.o.d.?
Main strategies and known results.

III. Numerical approach to Rad. Corr. Preliminary results for the BO and EPRL SGFT
models. Critical discussion of the results and their implications.



First Part. I. Introduction to SGFT models for 4d euclidean QG.

GFTs are combinatorially non-linear and non-local quantum/statistical field theories defined on
several copies of a given Lie Group G or its Lie algebra g. Oriti,Krajewski,Freidel.

Φ : G×4 × S3 → R S[Φ] =
1

2

∫
ΦkK−1Φk −
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∫
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Φk4
Φk5
V

Φk (Gi ) = Φk (G1,G2,G3,G4) G = SU(2), Spin(4), SL(2,C) (1.1)

Two classes of models: Simplicial and Tensorial GFTs. Example of simplicial interaction.

Figure: Two interaction vertices glued along one propagator.

Oriti,Krajewski,Freidel


First Part. I. Introduction to SGFT models for 4d euclidean QG.

I. SGFTs provides a QFT reformulation and completition of all Spin foam models.

II. The perturbative expansion of such models around the gaussian theory generates the
sum on all possible simplicial complexes of all topologies as sum on Feyn graphs.

Z[J] =

∫
[dµK(Φ)] e−Sint[Φ]−JΦ =

∑
G

λN

sym[G]
A(G)

III. Advantages. No triangulation dependence. Powerfull QFT methods to study
the pert./non-pert. renormalizability and the continuum limit of a large
class of models.Oriti,BenGeloun,Carrozza,Lahoche,Benedetti,Samary,Martini,
Kowslowski,Duarte; Dittrich,Bahr,Steinhaus.

Figure: Gluing of two GFT building blocks.
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First Part. II. Model building ambiguities. Amplitudes expressions.

Key aspect in the formulation of SGFT models for QG: definition and imposition of the required
geometricity constraints turning topological simplicial BF theory into simplicial quantum gravity.

Closure constraint - Gauß low.

Xf ∈ so(4) Xf ≡ (x−f , x
+
f )

∑
f⊃e

Xf = 0 Pcl(Gi , G̃i ) =

∫
dH

4∏
i=1

δ(GiHG̃−1
i )

Φk (Gi ) = (Pcl ◦ ΦH .k ) (Gi ) = ΦH .k (HGi ) H . k = h+k(h−)−1 (1.2)

Linear simplicity constraints (for the case of models with Barbero-Immirzi parameter).

( ?X IJ
f − γX

IJ
f )kJ = 0 ⇔ kx−f k−1 + βx+

f = 0 β =
γ − 1

γ + 1

Sβk (Gi , G̃i ) =
∑
Ji ji

∫ [
dui

] 4∏
i=1

dJi dji w(Ji , ji , β)ΘJi
[
Gik
−1uik(G̃)−1

]
χji [ui ] (1.3)

Issue: ambiguities in the imposition of the geometricity constraints. Different strategies.



First Part. II. Model building ambiguities. Amplitudes expressions.

Purpose of the constraint imposition: define models where constraint violating field config. do
not contribute to the dynamics. Main strategies and their implication.

I. Insert the constraint operator Cβk = Pcl ◦ Sβk in the interaction kernel.

II. Implement the constraints in the covariance and thus in the path int measure.
Banburski,L.Q.Chen; BenGeloun.

Kβ = δ
[
k(k ′)−1

]
(Pcl ◦ Sβk ◦ Pcl) Vβ = (Sβki

◦ Pcl ◦ Pcl ◦ Sβkl
) (1.4)

III. Impose the constraints acting with Cβk on all the fields Φk in the GFT action.

IV. At the classical level GFT models resulting from different strategies will have diffent
e.o.m and symmetries.

V. At the quantum level the above prescriptions will in general modify the properties of the
resulting Feyn. ampl. (Spinfoam ampl.) in particular their large-j scaling behaviour.

VI. When the closure and simplicity constraint operator can be combined into a single
orthogonal projector no construction ambiguities apper.

Banburski,L.Q.Chen
BenGeloun


First Part. II. Model building ambiguities. Amplitudes expressions.

Key point: regardless of the above
construction choices, the amplitudes
AG have always the same general
structure. In the spin picture, they
only differ for the explicit form and the
number of insertions of the coefficient
encoding the simplicity constraints.
Notation: v , e, f denote the vertices,
the edges (four-strands) and faces of
an arbitrary vavuum GFT graph G.

Aβ(G) =
∑
Jf jef

∑
Ive ie

∏
f∈G

dJf

∏
e∈∂f

djef

∏
e∈G
Aβe (Jf , jef , Ive , Iv′e , Ie)

∏
v∈G
{15Jf }v (1.5)

Aβe = dIve dIv′e dIe

[∏
f3e

wn(Jf , jef , β)

]
E (Jf , jef , Ive , Iv′e , Ie) J = (j−, j+) I = (i−, i+) (1.6)

E =

j−1 i− j−2
j+
1 i+ j+

2
j1 i j2


j−3 i− j−4
j+
3 i+ j+

4
j3 i j4


j−1 i ′− j−2
j+
1 i ′+ j+

2
j1 i j2


j−3 i ′− j−4
j+
3 i ′+ j+

4
j3 i j4

 (1.7)



First Part. II. Model building ambiguities. Amplitudes expressions.

The same amplitudes can be rewritten in the group representation, exploiting the duality
between the spin and the holonomy formulation of the GFT framework. This is achieved either
by taking the inverse Fourier transform giving the pure lattice gauge theory formulation of the
model’s amplitudes or directly from the corresponding Feyn. rules in group picture.
Dittrich,Bahr,Steinhaus,Hellmann,Kaminski.

Aβ(G) =

∫ [ ∏
v∈G

∏
e3v

dHve

][ ∏
e∈G

dke

] ∏
f∈Fcl

Aβf (Hve , ke) (1.8)

Aβf (Hve , ke) =
∑
Jf jef

dJf

∫ [∏
e∈f

duef

]
ΘJf

[∏
e∈f

HveUef (Hv′e)−1

][∏
e∈f

djef w
q(Jf , jef , β)χjef (uef )

]
(1.9)

Dittrich,Bahr,Steinhaus,Hellmann,Kaminski


First Part. III. The BO model and its coefficient wBO(j−, j+, j , β).

Simplicity constraints: relation between the selfdual/anti-selfdual parts of a bivector. Standard
criteria: translate this condition into a restriction on spins, Perelomov states, spinors. Perez.

EPRL Model: Engle,Pereira,Rovelli,Livine; Engle,Zipfel; S.Alexandrov; KKL.

wEPRL(j−, j+, j , β) = δj−|β|j+δj (1−β)j+ |β| ≤ 1 (1.10)

BO Model: Baratin,Oriti; FO (to appear). Exploiting the lie algebra formulation, the
simplicity constraints are imposed directly on flux variables via ? multiplication with a NC δ?.

ΦβBO(Xi , k) =
4∏

i=1

SβBO(Xi , k) ? Φ(X1,X2,X3,X4, k) (1.11)

SβBO(x−, x+, k) = δ−kx−k−1

(
βx+

)
=

∫
du Ek−1uk (x−)Eu(βx+) u ∈ SU(2) (1.12)

We need Sβk to be in the image of the NC Fourier Transform. This requirement implies:

Eu(βx+) = Ω(ψu , β)Euβ (x+) (1.13)

The above Eq. admits a unique non-trivial solution defining the group element uβ .

Perez
Engle,Pereira,Rovelli,Livine
Engle,Zipfel
S.Alexandrov
KKL
Baratin,Oriti
FO


First Part. III. The BO model and its coefficient wBO(j−, j+, j , β).

The previous Eq. admits a unique non-trivial solution defining the group element uβ .

uβ = e i
ψβ

2
n̂β ·~σ ψβ = |β|ψ ψ ∈ [0, 2π[ n̂β = sign(β)n̂ Ω(β, ψ) =

sin |β|ψ
2

β sin ψ
2

(1.14)

Few important remarks:

I. The simplicity constraints Sβk encodes the choice of the Q. map via the parametric

deformation of the group element uβ dictated by the form of the NC plane waves.

II. For generic values of β, Sβk it is not an orthogonal projector unless β = 0, 1.

III. It commutes with the closure constraint projector Pcl ◦ SβH−1.k
= Sβk ◦ Pcl up to a

rotation of the normal.

IV. It does not impose any rationality condition on the Immirzi parameter.

Upon group Fourier transform and Peter-Weyl decomposition we find:

S j−j+β

m−m+n−n+ =

∫
dU D j−

m−n−
(u)D j+

m+n+ (uβ) =
∑
jm

C j−j+j

m−m+m
C j−j+j

n−n+m
wBO(j−, j+, j , β) (1.15)



First Part. III. The BO model and its coefficient wBO(j−, j+, j , β).

The coefficient wBO(j−, j+, j , β) encoding the simpl. constraints is defined as:

wBO(j−, j+, j , β) =
(−1)j

−+j++j

π
√

(2j− + 1)(2j+ + 1)

λ∑
a=0

(sign(β))a
{
a j− j−

j j+ j+

}
T j−j+

a (|β|) (1.16)

T j−j+

a (|β|) = (2a + 1)

j−∑
p =−j−

j+∑
q =−j+

C j−aj−

p 0 p C j+aj+

q 0 q Υpq(|β|) (1.17)

Υpq(|β|) =

∫ 2π

0
dψ

1

|β|
sin

ψ

2
sin
|β|ψ

2
e−i(p+|β|q)ψ

=



i−ie2iπ|β|+2π|β|(|β|−1)

4β2(|β|−1)
∀ p, q; 2(p + |β|q) = 1− |β|

i−ie2iπ|β|−2π|β|(|β|+1)

4β2(|β|+1)
∀ p, q; 2(p + |β|q) = −1− |β|

− i−ie−2iπ|β|+2π|β|(|β|+1)

4β2(|β|+1)
∀ p, q; 2(p + |β|q) = 1 + |β|

− i−ie−2iπ|β|−2π|β|(|β|−1)

4β2(|β|−1)
∀ p, q; 2(p + |β|q) = −1 + |β|

8i|β|(p+|β|q)e−2iπ(p+|β|q) cos |β|π−2(−1+β2+(p+|β|q)2)e−2iπ(p+|β|q) sin |β|π+8i|β|(p+|β|q)

|β|(2|β|q+|β|+2p−1)(2|β|q+|β|+2p+1)(2|β|q−|β|+2p−1)(2|β|q−|β|+2p+1)

(1.18)

Next step: numerical analysis of the above coefficient. Oriti,Celoria,Finocchiaro.

Oriti,Celoria,Finocchiaro


Second Part. II. Analysis of the results.



Second Part. II. Analysis of the results.
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Second Part. II. Analysis of the results.
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Third Part. I. Bubble divergences in GFT and SF. Why are important?

I. The analysis of the divergences allows us to understand in a quantitative way how differ-
ent model building prescriptions (e.g. different choices of the face weights, different way
of imposing the constraint) affect the UV scaling beahviour of the resulting amplitudes.

II. It provides a criterion to put constraints on the ambiguities involved in the mod-
els’definitions. E.g. tuning the choice of the face weights to obtain convergent results
for specific families of bubbles.

III. It allows to extract an approximate exstimate of the degree of divergence of specific
classes of Feyn. graphs useful in searching for power counting renorm. models. More
in general it represents a preliminary exercise providing important indication about the
large-N limit analysis of geometric 4d SGFT models.

IV. It allows us to formulate a practical euristic ansatz for the theory space, e.g. by keeping
those interactions required to consistently renormalize the model up to a given order in
perturbation theory. This is needed if we want to study the FRG of SGFT.

V. Moreover divergences are expected to be related to the existence of residual gauge
symmetries (diffeomorphisms).Therefore the study of the divergences can give us an
hint about the presence of such residual symmetries.



Third Part. II. Rad. Corrections. Known results.

Let us mention the know results simultaneously giving an overview of the method used.

I. Radiative corrections to the self-energy and interaction vertex of the topological SU(2)
BF and EPRL Spinfoam models both in the Euclidean and Lorentzian cases (only the
self energy in the second case). Perini,Rovelli,Speziale; Riello.

II. Exact degree of divergence of arbitrary connected 2-complexes in the Rieman-
nian Dupuis-Livine (holomorphic) Spinfoam model. L.Q.Chen; Banburski,L.Q.Chen;
Freidel,Hnybida,Dupuis,Livine,Speziale,Tambornino.

III. Holonomy Spinfoam models: single and multiple bubble contributions in the BC
model. Divergences and the Wave Front Set analysis. Dittrich,Bonzom, Dittrich,
Bahr,Hellmann,Kaminski. Mathematical characterization of (bubble) divergences in
Spinfoam models; Bonzom,Smerlak.

IV. Radiative correction to the two-point function of Boulatov-Ooguri GFT model via heat
kernel regularization. BenGeloun,Bonzom.

V. Radiative corrections to the euclidean EPRL GFT model with geometricity con-
straint enforced either in the propagator or in the Vertex. BenGeloun,Gurau,

Rivasseau; Krajewski,Magnen,Rivasseau,Tanasa,Vitale.

VI. Scaling bounds, powercounting results and perturbative renormalizability of topological
TGFTs in 3d and 4d . Oriti,Gurau,Freidel,BenGeloun,Carrozza,Carrozza.

Perini,Rovelli,Speziale
Riello
L.Q.Chen
Banburski,L.Q.Chen
Freidel,Hnybida,Dupuis,Livine,Speziale,Tambornino
Dittrich,Bonzom
Dittrich,Bahr,Hellmann,Kaminski
Dittrich,Bahr,Hellmann,Kaminski
Bonzom,Smerlak
BenGeloun, Bonzom
BenGeloun,Gurau,Rivasseau
BenGeloun,Gurau,Rivasseau
Krajewski,Magnen,Rivasseau,Tanasa,Vitale
Oriti,Gurau,Freidel,BenGeloun,Carrozza,Carrozza


Third Part. III. Numerical approach. Preliminary results.

Radiative correction to the four-point function. Leading order term. Comparing EPRL and BO.

1

3

2

4

5

6

Evaluating the scaling behaviour of the bulk amplitude.

AEPRL
bulk (G4, β) =

∑
j+

[2(1− |β|)j+ + 1]3

(2|β|j+ + 1)(2j+ + 1)
(1.19)

ABO
bulk(G4, β) =

∑
j−1 j+1

∑
j1j2j3

dj1dj2dj3
d
j−1

dj+1

wBO(j−1 , j
+
1 , j1, β)wBO(j−1 , j

+
1 , j2, β)wBO(j−1 , j

+
1 , j3, β)

(1.20)



Third Part. III. Numerical approach. Preliminary results.
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Figure: Plot of the Bulk amplitude as function of the Cutoff. BO model.



Conclusions. Summary and Outlook.

Summary

I In this talk I presented a new GFT-Spinfoam model. Oriti,Finocchiaro (to appear)

II We provided the explicit formula of the coefficient encoding the simplicity con-
straints. We studied its behaviour numerically and discussed the results. Oriti,
Celoria,Finocchiaro (to appear)

III With a very simple example we showed how to use the above results (BO model) to
study the scaling behaviour of radiative corrections via numerical methods, comparing
our result to the EPRL model.

Outlook

I Perform a systematic analysis of the leading order radiative corrections to the n-point
functions n ≤ 5 for different values of the β and different prescription for implementig
the simplicity constraints. Perform a similar analysis for the EPRL model

II Extract an approximate estimate of the degree of divergences of specific classes of Feyn.
graphs. Try to formulate an ansatz for the theory space of SGFT models.

III Define the analog of the BO model with SL(2,C) group. Oriti,Rosati (to appear).

Oriti, Finocchiaro
Oriti,Celoria,Finocchiaro
Oriti,Celoria,Finocchiaro
Oriti,Rosati
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