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Introduction and motivations

Loop quantum gravity has a built-in notion of quantum Riemannian three-geometry.
Given a kinematical spin network state on a graph T,

* links carry information about quanta of area,
* nodes carry information about quanta of volume.

For practical applications (cosmology, n-point functions, ... ), we work on a
truncation of the full LQG Hilbert space H = @’Hr.

7 What is the geometrical interpretation of states on a fixed graph?
(Rovelli and Speziale [1005.29271)

* Twisted geometries: (Freidel and Speziale [1001.2748])

T°SU(2) 5 (h, X) ~ (j,§, N, N) € T"S! x §* x §* ‘\\" ’A
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Parametrization of the LQG phase space in terms of continuous geometries?
We are going to relate the holonomy-flux algebra to configurations in the phase space
of continuous gravity: piecewise-flat connections and gauge-invariant electric fields.
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The continuous phase space of gravity

The classical starting point of LQG is the formulation of first order gravity in terms
of su(2)-valued phase space variables:

* Ashtekar-Barbero connection
AL =T, + KL,
* Densitized triad field

1 .
a abe j k
E; = 5&‘ €ijk€yec-

These variables form the Poisson algebra
{AL(@), Ej (y)} = 16;626° (. y), {AL(2), Al(y)} = {E! (@), Bj(y)} =0,

and span the phase space P = T* A, whose symplectic potential is given by

@zéﬁ@AM)



The continuous phase space of gravity

The phase space P carries an action of the group G of SU(2) gauge transformations.
The infinitesimal generator of these transformations is the Gauss constraint

Gla) = /Zozi(dAE)i =0, acsu(2),

whose action is given by

65A={A,G(a)} = daa, S5E ={E,G(a)} = [E,q].

P also carries an action of diffeomorphisms:
SFA={AD(€)} = LeA, FE={E D)} = LE,

where &, is a vector field.



The continuous phase space of gravity

Given a group G of gauge transformations, with infinitesimal generator G, the
symplectic reduction of P with respect to G is defined as

PC=P )G =G"0)/G.

The Marsden-Weinstein-Meyer theorem ensures that P is again symplectic
manifold. In particular, it carries a symplectic structure.



The discrete LQG phase space

In loop quantum gravity, we do not work with the continuous phase space P, but
instead with phase spaces Pr associated to embedded oriented graphs.

“loop assumption”
(A(), E()) . (he, Xe)

How do we describe this map from continuous to discrete data?
In other words, how do we construct the holonomies and the fluxes?



The discrete LQG phase space — The holonomies h,

t(e)

The holonomy is given by the path-ordered exponential

SU(2) 3 he(A) = &xp / A.

* Under finite gauge transformations of the connection,
grA=gAg' +gdg”",  geSU2),
the holonomy becomes
he(g> A) = goeyhe (A)g; L)

% Under diffeomorphisms: h.(®*A) = hge)(A).

% Under orientation reversal: h,—1(A) = h.(A)™".



The discrete LQG phase space — The fluxes X,
To define the flux of the densitized triad field, we need to choose:

* A surface F. intersecting e at the point u.

* A system of paths 7. going from the vertex s(e) to the point = € Fe.
With the data (F.,w.), we can define the flux

Xl oy (A, ) = / i (1) B (@) 5 () s(e) i(e)

e
where Fe

hr, (z) = &P ’ A.

s(e)
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To define the flux of the densitized triad field, we need to choose:

* A surface F. intersecting e at the point u.

* A system of paths 7. going from the vertex s(e) to the point = € Fe.
With the data (F.,w.), we can define the flux

Xl oy (A, ) = / i (1) B (@) 5 () s(e) i(e)

e

where ” F.
hr, (z) = &P A.
s(e)
It satisfies the following properties:
* Gauge-covariance:

X(Fome) (9> A, 9> E) = go(e) X (o me) (A, E)g ey
* Orientation reversal:

-1
X(x = o Xy mo B

e—1 ’Tre_l)

These flux elements are naturally non-commuting, because they carry information
about both A and E.
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The discrete LQG phase space — The holonomy-flux algebra

The discrete elements (he, Xe) € SU(2) x su(2) associated to each edge of the graph
I" satisfy the Poisson algebra

(XD X0} = 60, XE, (X0 hod = —8eerThe + 0,0-1het,  {he b} =0.

This is the Poisson structure on T*SU(2).

The spin network phase space associated to the graph I is therefore given by
Pr = xT"SU(2)e,
and the symplectic potential is

Or = > Tr(Xcdheh: ).

The Hilbert space Hr of LQG on a graph is the quantization of Pr.



The discrete LQG phase space — Gauge invariance

The discrete spin network phase space Pr carries a natural action of the gauge group
SU(Q)‘VF‘:
gb he = gs(e)hegii)v g Xe = gs(e)Xeg;(i)a

and it is therefore possible to define the gauge-invariant phase space

PE = pr ) SU@)Y = G (0)/su() ",

We are going to identify later on the generator GG, of these transformations. It is the
discrete analogue of the continuous Gauss law.



The discrete LQG phase space

Given an embedding of I' into X, a surface F. and a system of paths m., we have
described a map
P — Pr
(AE) —  (he(A), X(F, x. (A E))

from continuous to discrete data.
To what extent can this map be inverted?

A priori there are many ambiguities, and it is not possible to uniquely reconstruct
the continuous data starting from he and Xe.



Relating continuous and discrete geometries

Let us consider a cellular decomposition A of 3, with one-skeleton I'*,
together with its dual graph I

continuous data discrete data
(A(z),E(z)) € P (he, Xe) € Pr



Relating continuous and discrete geometries

We are going to construct the symplectic reduction of P with respect to two
constraints:

Flatness outside of I'*
Generated by

H@=L@AWML

53 A =0, 07 E =dag,
for ¢ € Q'(X,5u(2)) vanishing on T'*.




Relating continuous and discrete geometries
We are going to construct the symplectic reduction of P with respect to two
constraints:

Flatness outside of I'*
Generated by

H@=L@Awm»

53 A =0, 07 E =dag,
for ¢ € Q'(X,5u(2)) vanishing on T'*.
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Generated by
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89A = daa, 0SE = [E, 0],
for a € Q°(%, su(2)) vanishing on the vertices Vi of T'.




Relating continuous and discrete geometries

With these two constraints, we can define the symplectic reduction

P

T*A ) (G x F)
C/(G x F),

where the constraint space is

C={(A,E) e T"A| F(A) = 0 outside of I'", daE = 0 outside of V1 }.

Claim: The orbit space P is finite-dimensional. It is the continuous analogue of the
discrete spin network phase space Pr.

Let us now construct the explicit parametrization of P.



Relating continuous and discrete geometries

We are going to solve F and G on the three-cells C, of A\ I'*, and then glue the
solutions consistently.



Relating continuous and discrete geometries

On a three-dimensional cell C,,, we have the following parametrization:

Solution to the curvature constraint
In terms of the SU(2) element

a, () Eeﬁ/:A,

the flat connection is given by A(x) = a,(x)da,(z)™ .
Note that the integration does not depend on the path.




Relating continuous and discrete geometries

On a three-dimensional cell C,, we have the following parametrization:

Solution to the curvature constraint
In terms of the SU(2) element

x)zeﬁ%/:A,

the flat connection is given by A(z) = a,(x)da,(z) ™"
Note that the integration does not depend on the path.

Solution to the Gauss constraint outside of the vertex v

For a flat connection, the covariant derivative of the electric field becomes
daE = dE + [ayday ', E] = aydX,ay ",

where
X, = a, 'Ea, € su(2).

Therefore, the Gauss law d4 E = 0 implies that X, is a closed two-form.

Now we have to glue these solutions with the neighboring cells. ..



Relating continuous and discrete geometries

cell C, cell Cy
a1(x) az(x)
Xi1(x) Xo(z)
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Relating continuous and discrete geometries

cell Cy gluing condition cell Cy
a1(x) az2(x) = a1(x)he az(x)
X1 (x) Xo(x) = ho' X1(x)he Xo(x)

The transition element h. is the holonomy
he(A) = as(e) (:Ij)_lat<5) (:E) = er)/A

This shows that the constraint space C is spanned by the data (av, X, he).
Now, we have to divide C by the action of the gauge groups F and G.



Relating continuous and discrete geometries

The action of F and G on the discrete data (av, X, he) is given by
av () — gas(z), Xo(x) — Xo(x) + d(ay ' day),

with =0 on I'" and g =1 on Vr.



Relating continuous and discrete geometries

The action of F and G on the discrete data (av, X, he) is given by

av () — gas(z), Xo(x) — Xo(x) + d(ay ' day),
with =0 on I'" and g =1 on Vr.

The observables that are invariant under (.7-' X Q) are therefore:

* Holonomies
he(A) = CQ/A = gy (2) g (2).

* Fluxes

XA B) = [ e @BE@h: @ = [ au)a)  E@a@a @ = [ X..

Fe

e 1&‘,
The continuous Gauss law becomes

/ aﬂ(x)*ldAE(x)av(x):/ dsz/U Xie= Y. Xe=Go.

v v eFe=0Cy els(e)=v



Relating continuous and discrete geometries

We are going to show that the map
Z : P — Pr
(A7 E) — (he(A),Xe(A,E))
from continuous to discrete data
* is a Poisson map,

* is diffeomorphism-invariant (under suitable conditions),

* can be inverted to reconstruct continuous geometries [A(he), E(he, X)].



Relating continuous and discrete geometries — Symplectic structures

Let us write the symplectic potential of first order gravity on A, and evaluate it on
the configurations in C:

S}

/ Tr(E A 6A)

=

Z/ Tr(E A §(avday 1))

B Z/ Tr(X, A davay”)

Z /F [Tr (Xs(e) A (501‘;(}3)(15(6)) —Tr (Xt(e) A (501;('1)0,“6))]

> Tr(Xedheh: ')

= @F

This shows that P is finite-dimensional, and isomorphic to Pr.



Relating continuous and discrete geometries — Diff-invariance

Let us consider a diffeomorphism ®, connected to the identity and preserving I'* and
the vertices of I'.

The property Z o &, = 7 can be shown using the on-shell equivalence between
diffeomorphisms and gauge transformations.

LeA=1eF+da(eA)

ﬁgE = LgdAE —+ dA(LgE) —+ [E, L;’:A}



Relating continuous and discrete geometries — Diff-invariance

Let us consider a diffeomorphism ®, connected to the identity and preserving I'* and
the vertices of I'.

The property Z o &, = 7 can be shown using the on-shell equivalence between
diffeomorphisms and gauge transformations.

Since on C the curvature F' vanishes outside of ' and d4 F vanishes outside of Vr,

[,,gA = LgF + dA(LgA) = dA(LgA)

L‘{E = LgdAE —+ dA(LgE) —+ [E, Lé:A} = dA(LgE) —+ [E, LgA]

which shows that £¢ = 5LF5E + 6?&144



Gauge choices

At the continuous level, we have an equivalence class of gauge-related configurations:

(AE) ~ (9> A, g(E +dag)g™").

A choice of a representative in this equivalence class is a choice of gauge, i.e. a map
T : Pr — C
(he, Xe) — (AE)
such that Zo 7 = Id.

There are lots of possibilities for the choice of E(z).
Powerful criterion: Find gauge choices that are diffeomorphism-covariant.

* Loop quantum gravity gauge E|0) = 0, singular E outside of T".
* Spin foam gauge F|0)r = 0, flat E outside of I'*.



Gauge choices — Singular gauge (LQG)

The singular electric field can be constructed explicitly. It is given by

da (Z e (@) X (2) [ ( )w(a:,w)

ecl’ €

= Zhﬂ-e (LE)_lXehTre (‘T)ée(x)7

Es(it’)

and satisfies

Es(z)=0, Va¢l (singular condition),
dsaFEs =0 (Gauss law),

Z(Es(he, Xe)) = Xe (gauge choice).



Gauge choices — Flat gauge (spin foams)

A flat geometry within each cell of ¥\ I'* is defined by
* a flat connection A,

* a frame field e satisfying dae = 0.

Indeed, since dae = v[K, €], the torsion-free condition and the invertibility of e imply
K =0, and therefore A =T'(e). If A is flat, the metric determined by e is therefore
flat as well.



Gauge choices — Flat gauge (spin foams)

A flat geometry within each cell of ¥\ I'* is defined by
* a flat connection A,

* a frame field e satisfying dae = 0.

Indeed, since dae = v[K, €], the torsion-free condition and the invertibility of e imply
K =0, and therefore A =T'(e). If A is flat, the metric determined by e is therefore
flat as well.

It is always possible to use the gauge freedom
F:E— E+da¢

to find a F such that dae = 0.
Pr can be seen as the space of piecewise metric-flat geometries on X\ I'".

In fact, Pr = T Mr~, where Mr~ is the moduli space of flat connections modulo
gauge transformations (cf. Bianchi [0907.4388]).



Gauge choices — Flat gauge and Regge geometries

If we have a frame field such that dae = 0, then
ev(z) = ay(z)dzvay (x)fl,

where x,(z) are flat coordinates. The flux elements become

R . N 1, .
Xi = fszjk/ oo (@) (€ A ) hr ()" = L jk/ dzd A dat.
2 F. 2 Fe



Gauge choices — Flat gauge and Regge geometries

If we have a frame field such that dae = 0, then

ev(z) = ay(z)dzya, (z) ",

where x,(z) are flat coordinates. The flux elements become

1 . B 1, .
X! = fszjk/ hr.(z) (e*Z) A 65) b, (z) "' = Z¢ jk/ da? A dzk.
2 F. 2 Fe

If the two-cells are forced to be flat, X. = j. V..

* LQG = piecewise flat geometries.

* Regge = piecewise-linear flat geometries:
only the component of K parallel to e is non-vanishing.



Cylindrical consistency

What is the relationship between operators O € P and Or € Pr?

The discrete operators Or are called cylindrically consistent if
Olc(A, E) = Or(he(A), Xc(A,E)).

Because of our construction,

O is a cylindrical operator iff O|¢(A, E) is invariant under F x G.



Cylindrical consistency

What is the relationship between operators O € P and Or € Pr?

The discrete operators Or are called cylindrically consistent if
Olc(A, E) = Or(he(A), Xc(A,E)).
Because of our construction,
O is a cylindrical operator iff O|¢(A, E) is invariant under F x G.

Example

* Continuous area operator:  A(S) :/ \/ ELE?
s
* LQG area operator:  Apqc(S) = Z £\ XiXei

e|eUS#0

The continuous area operator is clearly not cylindrical, therefore A(S)|c # ALqc(S).
In fact, the LQG operator is the continuous operator in the singular gauge: it can be
written exclusively in terms of fluxes.

What about other operators and other gauges?
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Conclusion

* We have given a parametrization of the discrete LQG phase space Pr in terms of
continuous geometries on P.

* The data (he, Xe) labels an equivalence class of continuous geometries.

* Clarifies the relation between the geometry of LQG, spin foams, and Regge.
* The geometric operators in LQG are gauge-fixed operators.

7 LQG as the quantization of a TQFT with defects?

? Formulation of classical general relativity in terms of (he, X)?

7 Other gauge choices for the geometric operators.

? What happens in the case of a non-vanishing cosmological constant?
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