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Introduction and motivations
Loop quantum gravity has a built-in notion of quantum Riemannian three-geometry.
Given a kinematical spin network state on a graph Γ,
? links carry information about quanta of area,
? nodes carry information about quanta of volume.

For practical applications (cosmology, n-point functions, . . . ), we work on a
truncation of the full LQG Hilbert space H =

⊕
Γ

HΓ.

? What is the geometrical interpretation of states on a fixed graph?
(Rovelli and Speziale [1005.2927])

? Twisted geometries: (Freidel and Speziale [1001.2748])

T ∗SU(2) 3 (h,X) ' (j, ξ,N, Ñ) ∈ T ∗S1 × S2 × S2
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Parametrization of the LQG phase space in terms of continuous geometries?
We are going to relate the holonomy-flux algebra to configurations in the phase space
of continuous gravity: piecewise-flat connections and gauge-invariant electric fields.
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The continuous phase space of gravity

The classical starting point of LQG is the formulation of first order gravity in terms
of su(2)-valued phase space variables:
? Ashtekar-Barbero connection

Aia = Γia + γKi
a.

? Densitized triad field
Eai =

1

2
εabcεijke

j
be
k
c .

These variables form the Poisson algebra{
Aia(x), Ebj (y)

}
= γδijδ

b
aδ

3(x, y),
{
Aia(x), Ajb(y)

}
=
{
Eai (x), Ebj (y)

}
= 0,

and span the phase space P ≡ T ∗A, whose symplectic potential is given by

Θ =

∫
Σ

Tr(E ∧ δA).

5 / 32



The continuous phase space of gravity

The phase space P carries an action of the group G of SU(2) gauge transformations.
The infinitesimal generator of these transformations is the Gauss constraint

G(α) =

∫
Σ

αi(dAE)i = 0, α ∈ su(2),

whose action is given by

δGαA =
{
A,G(α)

}
= dAα, δGαE =

{
E,G(α)

}
= [E,α].

P also carries an action of diffeomorphisms:

δDξ A =
{
A,D(ξ)

}
= LξA, δDξ E =

{
E,D(ξ)

}
= LξE,

where ξa is a vector field.
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The continuous phase space of gravity

Given a group G of gauge transformations, with infinitesimal generator G, the
symplectic reduction of P with respect to G is defined as

PG ≡ P �G = G−1(0)/G.

The Marsden-Weinstein-Meyer theorem ensures that PG is again symplectic
manifold. In particular, it carries a symplectic structure.
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The discrete LQG phase space

In loop quantum gravity, we do not work with the continuous phase space P, but
instead with phase spaces PΓ associated to embedded oriented graphs.

(
A(x), E(x)

) “loop assumption”
−→

(
he, Xe

)

How do we describe this map from continuous to discrete data?
In other words, how do we construct the holonomies and the fluxes?
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The discrete LQG phase space – The holonomies he

s(e) t(e)
he(A)

The holonomy is given by the path-ordered exponential

SU(2) 3 he(A) = −→exp

∫
e

A.

? Under finite gauge transformations of the connection,

g . A = gAg−1 + gdg−1, g ∈ SU(2),

the holonomy becomes

he(g . A) = gs(e)he(A)g−1
t(e).

? Under diffeomorphisms: he(Φ∗A) = hΦ(e)(A).
? Under orientation reversal: he−1(A) = he(A)−1.
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The discrete LQG phase space – The fluxes Xe

To define the flux of the densitized triad field, we need to choose:
? A surface Fe intersecting e at the point u.
? A system of paths πe going from the vertex s(e) to the point x ∈ Fe.

With the data (Fe, πe), we can define the flux

Xi
(Fe,πe)(A,E) ≡

∫
Fe

hπe(x)Ei(x)h−1
πe (x) s(e) t(e)

x

u

Fewhere
hπe(x) ≡ −→exp

∫ x

s(e)

A.

It satisfies the following properties:
? Gauge-covariance:

X(Fe,πe)(g . A, g . E) = gs(e)X(Fe,πe)(A,E)g−1
s(e).

? Orientation reversal:

X(Fe−1 ,πe−1) = −h−1
e X(Fe,πe)he.

These flux elements are naturally non-commuting, because they carry information
about both A and E.
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The discrete LQG phase space – The holonomy-flux algebra

The discrete elements (he, Xe) ∈ SU(2)× su(2) associated to each edge of the graph
Γ satisfy the Poisson algebra{
Xi
e, X

j
e′
}

= δee′ε
ij
kX

k
e ,

{
Xi
e, he′

}
= −δee′τ ihe + δee′−1heτ

i,
{
he, he′

}
= 0.

This is the Poisson structure on T ∗SU(2).

The spin network phase space associated to the graph Γ is therefore given by

PΓ ≡ ×
e
T ∗SU(2)e,

and the symplectic potential is

ΘΓ =
∑
e

Tr
(
Xedheh−1

e

)
.

The Hilbert space HΓ of LQG on a graph is the quantization of PΓ.
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The discrete LQG phase space – Gauge invariance

The discrete spin network phase space PΓ carries a natural action of the gauge group
SU(2)|VΓ|:

g . he = gs(e)heg
−1
t(e), g . Xe = gs(e)Xeg

−1
s(e),

and it is therefore possible to define the gauge-invariant phase space

PGΓ ≡ PΓ � SU(2)|VΓ| = G−1
v (0)/SU(2)|VΓ|.

We are going to identify later on the generator Gv of these transformations. It is the
discrete analogue of the continuous Gauss law.
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The discrete LQG phase space

Given an embedding of Γ into Σ, a surface Fe and a system of paths πe, we have
described a map

P −→ PΓ

(A,E) 7−→
(
he(A), X(Fe,πe)(A,E)

)
from continuous to discrete data.

To what extent can this map be inverted?

A priori there are many ambiguities, and it is not possible to uniquely reconstruct
the continuous data starting from he and Xe.
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Relating continuous and discrete geometries

Let us consider a cellular decomposition ∆ of Σ, with one-skeleton Γ∗,
together with its dual graph Γ.

Γ∗ Γ

continuous data discrete data(
A(x), E(x)

)
∈ P (he, Xe) ∈ PΓ
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Relating continuous and discrete geometries

We are going to construct the symplectic reduction of P with respect to two
constraints:

Flatness outside of Γ∗

Generated by

F(φ) =

∫
Σ

φi ∧ F i(A),

δFφ A = 0, δFφ E = dAφ,

for φ ∈ Ω1(Σ, su(2)) vanishing on Γ∗.

Gauss law outside of the vertices of Γ
Generated by

G(α) =

∫
Σ

αi(dAE)i,

δGαA = dAα, δGαE = [E,α],

for α ∈ Ω0(Σ, su(2)) vanishing on the vertices VΓ of Γ.
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Relating continuous and discrete geometries

With these two constraints, we can define the symplectic reduction

P̃ ≡ T ∗A �
(
G × F

)
= C/

(
G × F

)
,

where the constraint space is

C ≡
{

(A,E) ∈ T ∗A | F (A) = 0 outside of Γ∗, dAE = 0 outside of VΓ

}
.

Claim: The orbit space P̃ is finite-dimensional. It is the continuous analogue of the
discrete spin network phase space PΓ.

Let us now construct the explicit parametrization of P̃.
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Relating continuous and discrete geometries

We are going to solve F and G on the three-cells Cv of ∆ \ Γ∗, and then glue the
solutions consistently.

v1
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Relating continuous and discrete geometries
On a three-dimensional cell Cv, we have the following parametrization:

Solution to the curvature constraint
In terms of the SU(2) element

av(x) ≡ −→exp

∫ v

x

A,

the flat connection is given by A(x) = av(x)dav(x)−1.
Note that the integration does not depend on the path.

Solution to the Gauss constraint outside of the vertex v

For a flat connection, the covariant derivative of the electric field becomes

dAE = dE + [avda−1
v , E] = avdXva−1

v ,

where
Xv ≡ a−1

v Eav ∈ su(2).

Therefore, the Gauss law dAE = 0 implies that Xv is a closed two-form.

Now we have to glue these solutions with the neighboring cells. . .
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Relating continuous and discrete geometries

v1 v2

cell C1 cell C2

a1(x) a2(x)

X1(x) X2(x)
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Relating continuous and discrete geometries

v1 he v2

cell C1 gluing condition cell C2

a1(x) a2(x) = a1(x)he a2(x)

X1(x) X2(x) = h−1
e X1(x)he X2(x)

The transition element he is the holonomy

he(A) = as(e)(x)−1at(e)(x) = −→exp

∫
e

A.

This shows that the constraint space C is spanned by the data
(
av, Xv, he

)
.

Now, we have to divide C by the action of the gauge groups F and G.
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Relating continuous and discrete geometries

The action of F and G on the discrete data
(
av, Xv, he

)
is given by

av(x) −→ gav(x), Xv(x) −→ Xv(x) + d
(
a−1
v φav

)
,

with φ = 0 on Γ∗ and g = 1 on VΓ.

The observables that are invariant under
(
F × G

)
are therefore:

? Holonomies
he(A) ≡ −→exp

∫
e

A = as(e)(x)−1at(e)(x).

? Fluxes

Xe(A,E) =

∫
Fe

hπe(x)E(x)h−1
πe (x) =

∫
Fe

av(v)av(x)−1E(x)av(x)av(v)−1 =

∫
Fe

Xv.

The continuous Gauss law becomes∫
Cv

av(x)−1dAE(x)av(x) =

∫
Cv

dXv =

∫
∪eFe=∂Cv

Xs(e) =
∑

e|s(e)=v

Xe = Gv.
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Relating continuous and discrete geometries

We are going to show that the map

[I] : P̃ −→ PΓ

(A,E) 7−→
(
he(A), Xe(A,E)

)
from continuous to discrete data
? is a Poisson map,
? is diffeomorphism-invariant (under suitable conditions),
? can be inverted to reconstruct continuous geometries

[
A(he), E(he, Xe)

]
.
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Relating continuous and discrete geometries – Symplectic structures

Let us write the symplectic potential of first order gravity on ∆, and evaluate it on
the configurations in C:

Θ =

∫
Σ

Tr(E ∧ δA)

=
∑
v

∫
Cv

Tr
(
E ∧ δ(avda−1

v )
)

=
∑
v

∫
∂Cv

Tr
(
Xv ∧ δava−1

v

)
=

∑
e

∫
Fe

[
Tr
(
Xs(e) ∧ δa−1

s(e)as(e)

)
− Tr

(
Xt(e) ∧ δa−1

t(e)at(e)

)]
=

∑
e

Tr
(
Xeδheh

−1
e

)
= ΘΓ

This shows that P̃ is finite-dimensional, and isomorphic to PΓ.
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Relating continuous and discrete geometries – Diff-invariance

Let us consider a diffeomorphism Φo connected to the identity and preserving Γ∗ and
the vertices of Γ.

The property I ◦ Φo = I can be shown using the on-shell equivalence between
diffeomorphisms and gauge transformations.

LξA = ιξF + dA(ιξA)

= dA(ιξA)

LξE = ιξdAE + dA(ιξE) + [E, ιξA]

= dA(ιξE) + [E, ιξA]

which shows that Lξ = δFιξE + δGιξA.
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Gauge choices

At the continuous level, we have an equivalence class of gauge-related configurations:(
A,E

)
∼
(
g . A, g(E + dAφ)g−1).

A choice of a representative in this equivalence class is a choice of gauge, i.e. a map

T : PΓ −→ C
(he, Xe) 7−→ (A,E)

such that I ◦ T = Id.

There are lots of possibilities for the choice of E(x).
Powerful criterion: Find gauge choices that are diffeomorphism-covariant.
? Loop quantum gravity gauge E|0〉 = 0, singular E outside of Γ.
? Spin foam gauge F |0〉F = 0, flat E outside of Γ∗.
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Gauge choices – Singular gauge (LQG)

The singular electric field can be constructed explicitly. It is given by

ES(x) ≡ dA

(∑
e∈Γ

hπe(x)−1Xehπe(x)

∫
e(y)

ω(x, y)

)
=

∑
e

hπe(x)−1Xehπe(x)δe(x),

and satisfies

ES(x) = 0, ∀x /∈ Γ (singular condition),

dAES = 0 (Gauss law),

I
(
ES(he, Xe)

)
= Xe (gauge choice).
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Gauge choices – Flat gauge (spin foams)

A flat geometry within each cell of Σ \ Γ∗ is defined by
? a flat connection A,
? a frame field e satisfying dAe = 0.

Indeed, since dAe = γ[K, e], the torsion-free condition and the invertibility of e imply
K = 0, and therefore A = Γ(e). If A is flat, the metric determined by e is therefore
flat as well.

It is always possible to use the gauge freedom

F : E −→ E + dAφ

to find a E such that dAe = 0.

PΓ can be seen as the space of piecewise metric-flat geometries on Σ \ Γ∗.

In fact, PΓ = T ∗MΓ∗ , where MΓ∗ is the moduli space of flat connections modulo
gauge transformations (cf. Bianchi [0907.4388]).
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Gauge choices – Flat gauge and Regge geometries

If we have a frame field such that dAe = 0, then

ev(x) = av(x)dxvav(x)−1,

where xv(x) are flat coordinates. The flux elements become

Xi
e =

1

2
εijk

∫
Fe

hπe(x)
(
ejv ∧ ekv

)
hπe(x)−1 =

1

2
εijk

∫
Fe

dxjv ∧ dxkv .

If the two-cells are forced to be flat, Xe = jeNe.

? LQG = piecewise flat geometries.
? Regge = piecewise-linear flat geometries:

only the component of K parallel to e is non-vanishing.
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Cylindrical consistency

What is the relationship between operators O ∈ P and OΓ ∈ PΓ?

The discrete operators OΓ are called cylindrically consistent if

O|C(A,E) = OΓ

(
he(A), Xe(A,E)

)
.

Because of our construction,

O is a cylindrical operator iff O|C(A,E) is invariant under F × G.

Example

? Continuous area operator: A(S) =

∫
S

√
EiaE

a
i

? LQG area operator: ALQG(S) =
∑

e|e∪S 6=0

√
Xi
eXei

The continuous area operator is clearly not cylindrical, therefore A(S)|C 6= ALQG(S).
In fact, the LQG operator is the continuous operator in the singular gauge: it can be
written exclusively in terms of fluxes.

What about other operators and other gauges?
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Conclusion

? We have given a parametrization of the discrete LQG phase space PΓ in terms of
continuous geometries on P̃.

? The data (he, Xe) labels an equivalence class of continuous geometries.

? Clarifies the relation between the geometry of LQG, spin foams, and Regge.

? The geometric operators in LQG are gauge-fixed operators.

? LQG as the quantization of a TQFT with defects?

? Formulation of classical general relativity in terms of (he, Xe)?

? Other gauge choices for the geometric operators.

? What happens in the case of a non-vanishing cosmological constant?
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Merci
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