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Quantum gravity

¢ Central role played by symmetries, but which ones?

¢ What are the fundamental degrees of freedom?

* Where do they live?

» What does quantum gravity assign to lower-dimensional objects (corners, points)?
* What is the role of matter?

* Many pieces of answers from different approaches
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Quantum gravity

¢ Central role played by symmetries, but which ones?

¢ What are the fundamental degrees of freedom?

* Where do they live?

» What does quantum gravity assign to lower-dimensional objects (corners, points)?
* What is the role of matter?

* Many pieces of answers from different approaches

A new proposal

* Quantum gravity based on local holography

* Focus on local symmetry content for arbitrary subregions and their corners

« Associate Hilbert space, states, quantum numbers to these corners

* Degrees of freedom organized by representation of these corner symmetry algebras
« Space as entangling and fusion of these corner degrees of freedom

* Dynamics and constraints as charge conservation
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Push the logic of LQG further

« Focus on symmetries — diffeos and SU(2) so far, but why not more?
[Ashtekar, Isham, Lewandowski, Rovelli, Smolin, Thiemann, Varadarajan, ...]

» Space as a network of quantum geometry building blocks — generalized twisted geometries
[Bianchi, Freidel, Haggard, Livine, Speziale, Tambornino, Weiland, .. .]

¢ Think in terms of coarse-graining, truncation, defects — enlarge theory space
[Bahr, Delcamp, Dittrich, Goeller, Livine, MG, Steinhaus, Riello, ...]
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Reconcile different approaches
« AdS/CFT, holography: focus on the boundary
* LQG-type approaches: focus on the (discrete) bulk

Resolve persistent tensions in LQG

.

Interplay between discretization and quantization

Role of the Barbero—Immirzi parameter

Discreteness of area vs internal Lorentz invariance

Imposition of the simplicity constraints

Non-commutativity of the fluxes

Access to the frame

Construction of the dynamics, inclusion of matter, ...
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Setup and tools

* Boundaries turn gauge into physical symmetries: non-trivial charges and algebra at
co-dimension 2 corners S

« Best studied in covariant phase space formalism: 6L = EOMs + d©
[Anderson, Ashtekar, Barnich, Brandt, Crnkovic, Kijowski, Lee, Wald, Witten, .. .]

Find classifying criterion for different formulations of gravity: corner symmetry algebra gs

Focus on: entangling spheres S, no boundary conditions, no time evolution, tangent diffeos
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Setup and tools

* Boundaries turn gauge into physical symmetries: non-trivial charges and algebra at
co-dimension 2 corners S

« Best studied in covariant phase space formalism: 6L = EOMs + d©
[Anderson, Ashtekar, Barnich, Brandt, Crnkovic, Kijowski, Lee, Wald, Witten, .. .]

« Find classifying criterion for different formulations of gravity: corner symmetry algebra gs

* Focus on: entangling spheres S, no boundary conditions, no time evolution, tangent diffeos

Simple, yet deep result
e For any formulation F of gravity, the symplectic potential is the sum of
- a universal bulk piece, canonical GR — gives diff(S)C g°

- a corner piece — adds extra charges and components to gS

OF = 0GR + dOF/Gr + SLF/GR

- Different formulations have different corner algebras — potentially inequivalent quantizations
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Metric gravity

Potentials
« Einstein—Hilbert Lagrangian Lgy = €R
» Potential

Ogy = Enuvv(éguv - guvglxﬁégtxﬁ)
=¢e(Kg" —K")8guy +d(\/q s dnt) — 25(€K)
= 0GR + dOg/cr — 28(€K)
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Metric gravity

Potentials
« Einstein—Hilbert Lagrangian Lgy = €R
» Potential

Ogy = Enuvv(éguv - guvgaﬁégaﬁ)
=¢e(Kg" —K")8guy +d(\/q s dnt) — 25(€K)
= 0GR + dOg/cr — 28(€K)

Relative Lagrangians
* This is due to the well-known fact that
Len = Ler + dLenjcr = € (R — K2 + KMVK iy ) + 2d(Enu(n*K — at))
« But really follows from the less-known fact that
dLen/Gr + dOeH/GrR = OeH — OGR

« Boundary Lagrangians (may) have symplectic potentials, which contribute as corner terms
[Freidel, Perez, Pranzetti, 2016] [MG, Jai-akson, 2019] [Harlow, Wu, 2019] [Wieland, 2017]

« Corner terms are not ambiguities, but features — formulation-dependent charges and algebra
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Metric gravity

Bulk generators
» Consider a diffeomorphism &

* Bulk piece: spatial diffeo constraint <> momentum conservation
Hig = HE, = fJ £ VVPHY 20
bx

* Algebra {F([&], FH([C]} = FH[E, (]

* How exactly is it represented?
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Metric gravity

Bulk generators
» Consider a diffeomorphism &

* Bulk piece: spatial diffeo constraint <> momentum conservation
Hig = HE, = fJ £ VVPHY 20
b3
* Algebra {F([E], FC[C]} = F([E, C]
* How exactly is it represented?

Corner charges and algebra
+ GR: Brown—York charge Hgg =J spé&y PHY
S

- vanishing if £|s =0

- leads to universal component ggg = diff(S)
+ EH: Komar charge Jg&, :J ey VHEY
s

- non-vanishing if &|s = 0 — leads to an extra s[(2,R)
- 2+ 2 decomposition reveals g, = diff(S)xsl(2,R) | [Donnelly, Freidel, 2016]
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Metric gravity

Corner symmetries g5

Formulation of gravity diff(S) | sl(2,R). | sl(2,R) su(2) boosts
Canonical general relativity (GR) v
Einstein—Hilbert (EH) v v

Einstein—Cartan (EC)

Einstein—Cartan—Holst time gauge

Einstein—Cartan—Holst (ECH)

7/18



Metric gravity

Corner symmetries g5

Formulation of gravity diff(S) | sl(2,R). | sl(2,R) su(2) boosts
Canonical general relativity (GR) v
Einstein—Hilbert (EH) v v

Einstein—Cartan (EC)

Einstein—Cartan—Holst time gauge

Einstein—Cartan—Holst (ECH)

Back to our motivations
< Different formulations of gravity reveal different components of gs
o If gs plays a role in quantizing gravity, what is the full symmetry algebra?

+ Bigger algebra: more quantum numbers (handles) to reconstruct bulk dof and dynamics
e Let us continue justifying why

- this has to do with quantum gravity

- looking at extra components of gS has physical implications
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Strategy
+ Start from BF theory Lge = BjjaFU[w]  —
+ Impose simplicity Bij = Eyjle] = (x + B)(ene)y;

« Work without time gauge to access boosts [Alexandrov, MG, Livine, Noui, ... ]|

SBF = BIJ/\S(,UU

« Use internal normal n! [Peldan, Alexandrov, Bodendorfer, Thurn, Thiemann, Wieland]

8/18



Tetrad gravity

Strategy

+ Start from BF theory Lgr = BjyaFU[w] —  0gr = Byasw!

+ Impose simplicity Bij = Eyjle] = (x + B)(ene)y;

« Work without time gauge to access boosts [Alexandrov, MG, Livine, Noui, ... ]|

« Use internal normal n! [Peldan, Alexandrov, Bodendorfer, Thurn, Thiemann, Wieland]

Decomposition

* Introduce boost and spin 2-forms and 1-forms (frames)

b3 1 1
BU:B[ITL]]JrEUKSK BI:E(b X b)p 5125(8 X S)1
* Decompose connection as

wl =xnll 41l Kl =dgn!
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b3 1 1
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* Decompose connection as
wl =xnll 41l Kl =dgn!

« Bulk + corner decomposition (up to total §)
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Tetrad gravity

Strategy

+ Start from BF theory Lgr = BjyaFU[w] —  0gr = Byasw!

+ Impose simplicity Bij = Eyjle] = (x + B)(ene)y;

« Work without time gauge to access boosts [Alexandrov, MG, Livine, Noui, ... ]|

« Use internal normal n! [Peldan, Alexandrov, Bodendorfer, Thurn, Thiemann, Wieland]

Decomposition

* Introduce boost and spin 2-forms and 1-forms (frames)

b3 1 1
BU:B[ITL]]+E]]KSK BI:E(b X b)p 5125(8 X S)1
* Decompose connection as
wl =xnll 41l Kl =dgn!

« Bulk + corner decomposition (up to total §)
i I 11 i
Ogr = BiAdK' —drsias' +d | Byon' — 58]/\58
= Simplicity is now By = E; and s; = /B eg

Oech &~ EjASK! 4+ d (Elénl — gel/\661>
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Tetrad gravity

From bulk to corner
* Introducing 4-momentum aspect PT = (K x e)!, we have 8gcy = Bcr + Oech/cr Since

PHV8g.y = Prade! = EfasKI +6(...)

» Shift emphasis from bulk to corner using [S(e/\e)U/\SwU[e] ~ —PBd(ejndel)
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Tetrad gravity

From bulk to corner

* Introducing 4-momentum aspect PT = (K x e)!, we have 8gcy = Bcr + Oech/cr Since
P¥Y8g,y = Piadel = EfasKI +5(...)

= Shift emphasis from bulk to corner using [S(e/\e)U/\éwU[e] ~ —PBd(ejndel)

Generators and charges
« Diffeomorphisms

- constraint V,P*Y & 0 as a conservation drP! 0

- charge gives usual SHECH [E] :J & EIIwU (contains topological Komar charge)
S

[De Paoli, Speziale, Oliveri, 2018, 2020] [Perry, Godazgar, Godazgar, 2020]
 Lorentz transformations

- Gauss constraint as charge conservation d, E1y & 0

- Lorentz charges }CECH[oc] —J ocHEU with boosts and rotations since
s

Eyp = Epnyy + Bery (e x e)x

+ Algebra g, contains diff(S) and an ultra-local s[(2, C)
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Zooming on the corner

Hierarchy of phase spaces, geometrical, and algebraic structures

» Go back and focus on BF corner phase space Ogr = Blénl — %ey\f)el
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Zooming on the corner

Hierarchy of phase spaces, geometrical, and algebraic structures

» Go back and focus on BF corner phase space Ogr = Blénl — %ey\f)el
* Comes from precursor Poincaré—Heisenberg phase space
* Massive particle analogy
- momentum p! = ynl = g~ Inl
- Pauli-Lubanski vector W! = yS!
- Casimirs p2 = —m? = —y? and W? = m?s(s + 1), and y = 0 gravity as massless limit
- Total angular momentum JU = BInJl 4 ¢y SK
» Simplicity breaks Poincaré to Lorentz: area element oc Lorentz-invariant Poincaré spin Casimir

+ Space-like nature of surface S selects the discrete s((2,R) representations
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Zooming on the corner

Hierarchy of phase spaces, geometrical, and algebraic structures

» Go back and focus on BF corner phase space Ogr = Blénl — EeI/\Z‘)eI

* Comes from precursor Poincaré—Heisenberg phase space
* Massive particle analogy
- momentum p! = ynl = g~ Inl
- Pauli-Lubanski vector W! = yS!
- Casimirs p2 = —m? = —y? and W? = m?s(s + 1), and y = 0 gravity as massless limit
- Total angular momentum JU = BInJl 4 ¢y SK
» Simplicity breaks Poincaré to Lorentz: area element oc Lorentz-invariant Poincaré spin Casimir

+ Space-like nature of surface S selects the discrete s((2,R) representations

Explicit description of symmetry breaking towards gravity

16 dof (pl, XL, zh
) kinematical constraints (p L corner)
12 dof (n!, BL el)
. < ~
Poincaré (n!,BL, S qup.®) S2=p2q
) simplicity constraints st =pB!
8 Dirac observables Y. qap.®) — sl(2,C) @ sl(2, R) @u(l)
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Discreteness at the corner

Look at tangential metric
+ Decompose tangential frame el at the corner in terms of
- spin operator ST = %(e x e)l

- tangential metric qqp = eLelny
- twist angle @
+ sl(2,R)) algebra [Freidel, Perez, 2015]

1
{dav(x). qca(y)} = _E(qacabd + QbcEad + Gad€be + Gvaac)(x)8%(x — )

+ Geometrical balance relation S? = 32q relating su(2) and sl(2, R) Casimirs

» Space-like surface: internal Lorentz-invariant quantization of area in the continuum
(see also [Wieland, 2017, 2018] with spinors and null surfaces)
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Discreteness at the corner

Look at tangential metric
+ Decompose tangential frame el at the corner in terms of
- spin operator ST = %(e x e)l

- tangential metric qqp = eLelny
- twist angle @
+ sl(2,R)) algebra [Freidel, Perez, 2015]

1
{dav(x). qca(y)} = _E(qacabd + QbcEad + Gad€be + Gvaac)(x)8%(x — )

+ Geometrical balance relation S? = 32q relating su(2) and sl(2, R) Casimirs

» Space-like surface: internal Lorentz-invariant quantization of area in the continuum
(see also [Wieland, 2017, 2018] with spinors and null surfaces)

Corner frame provides a complex structure

« Ambiguity el — el (9)= el cos® + el sind with xel = /g ' qape?el

« Complex structure as x2 = —1

* Area conjugated to angle B{,/q,9} =1and B{\/q. -} =~
« Jacobi implies that *x structure is Poisson-compatible
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Simplicity at the corner

Shifting emphasis from bulk to corner lifts ambiguities
» Start from BF potential

Ogr = Bion! — gel/\BeI

- Simplicity is relation CI = B! — ~1S! = 0 between boost B! and spin S![e]
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Simplicity at the corner
Shifting emphasis from bulk to corner lifts ambiguities
» Start from BF potential
Opr = Bron! — %eI/\SeI
- Simplicity is relation CI = B! — ~1S! = 0 between boost B! and spin S![e]
« 2" class with themselves (no spin foam quantization map, no secondary constraints)
{chcl =clIndl — (1 + p72)elysK
* 3 constraints split into
- 11%classC=C2+ (B+ B HCIs =0

continuum version of diagonal simplicity [Livine, Oriti, 2002] [Rovelli, Speziale, 2011]
- 22" class Cq = Crel, =0
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Simplicity at the corner

Shifting emphasis from bulk to corner lifts ambiguities

» Start from BF potential

Ogr = Bion! — %CI/\SQI

- Simplicity is relation CI = B! — ~1S! = 0 between boost B! and spin S![e]
« 2" class with themselves (no spin foam quantization map, no secondary constraints)
{chcl =clIndl — (1 + p72)elysK
* 3 constraints split into
11%classC=C2+ (B+ B HCIs; =0

continuum version of diagonal simplicity [Livine, Oriti, 2002] [Rovelli, Speziale, 2011]
- 22" class Cq = Crel, =0

Gupta—Bleuler
+ Use compatible complex structure to build CE = (1 £1%)Cq with {C¥, Cli,} =0
+ Replace 2" class C4 by quantum holomorphic 1%t class Clw)y=0
< Alternatively, use master constraint M = Caqclb Cyp
- Classically ok since M =2C{q®°Cy

- Quantum level not immediate since (commutator) anomaly M = 2C2{q‘1ng + A
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Simplicity at the corner

Classical solutions

* Rewrite € =0 and M = 0 in terms of Lorentz and Poincaré spin Casimirs (Q, (5 S?)
« Selects Lorentz weights determined by Poincaré spin as (k =s, p = ~ls)

* |S| o< corner area, and LQG kinematical spins L = (>|<])UtI are boosted areas |[L| =j > s
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Simplicity at the corner

Classical solutions
+ Rewrite € =0 and M = 0 in terms of Lorentz and Poincaré spin Casimirs (Q, Q, $2)
« Selects Lorentz weights determined by Poincaré spin as (k =s, p = ~ls)

* |S| o< corner area, and LQG kinematical spins L = (>|<])UtI are boosted areas |[L| =j > s

8 Dirac observables

+ Total angular momentum JU (Lorentz charges)

» Tangential metric qqb

* Angle ©

* Algebra ggqy = diff(S)x (sI(2, C)@sI(2, R); ®u(1))

* Note that qq4p and & are not charges of gauge transformations
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Symmetries at the corner

Corner symmetries g5

Formulation of gravity diff(S) | sl(2,R). | sl(2,R); | su(2) | boosts

Canonical general relativity (GR)

Einstein—Hilbert (EH) v v
Einstein—Cartan (EC) v v
Einstein—Cartan—Holst time gauge v
Einstein—Cartan—Holst (ECH) v v v
7T ——
i
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Corner quantization

Continuous representations
+ Study quantum anomaly A and states C|¥) = 0 = C|¥)
* Quantization of the frame el (needs tensor operators — intertwiners — bulk information?)
* Represent EECH = diff(S)x b3 to get QG building blocks, knowing that
Csior) = —Bq Csuz) = B°q CélL)(zlc) =(B?—1)q C(SZL)(ZC) =—2Bq
« Discreteness of area element ,/q gives discrete measure on BhS

- diff(S?) not unreasonable [Penna, 2018] [Donnelly, Freidel, Moosavian, Speranzal

Discrete subalgebras
* LQG-type truncations from piecewise-constant smearings on partition of S

« Defect-like picture [Dittrich, MG| from smearing on circles around punctures
[Freidel, Perez, Pranzetti, 2016] [Freidel, Livine, Pranzetti, 2019]
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Edge modes

Why

* What brought us here in the first place: boundaries break gauge-invariance

» Possibility to restore gauge-invariance by suppressing the charges [De Paoli, Speziale, 2018]
- goes against the systematic treatment of relative potentials O gr
- loose observables and quantum numbers

* Edge modes allow to have gauge-invariance as well as non-trivial symmetry charges

« Contains information for gluing and coarse-graining
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Edge modes

Why

* What brought us here in the first place: boundaries break gauge-invariance

 Possibility to restore gauge-invariance by suppressing the charges [De Paoli, Speziale, 2018]
- goes against the systematic treatment of relative potentials 6r,gr
- loose observables and quantum numbers

* Edge modes allow to have gauge-invariance as well as non-trivial symmetry charges

« Contains information for gluing and coarse-graining

How
« [Donnelly, Freidel, MG, Balasubramanian, Parrikar, Speranza, Takayanagi, Tamaoka, ...]
* Extended potential Oext = 0% + 05 [B, n, e] with independent fields at the corner
- Replace 8|s by 6 —x~16x with x = (¢, p)€ SL(2,C)5 xSL(2,R)S a choice of gauge frame
- Usual gauge transformations 8« lead to generator H[oa] = H* [«x] + F5 [«] with
- bulk components (e.g. Gauss law) ~ 0

- corner equation of motion imposing (1% class) continuity conditions
S S S
B' = ¢'B n' = ¢'yn eq = @'pa’el
* Symmetries Ay acting only on edge modes, leading to gauge-invariant corner charges Q[o]
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Generalized twisted geometries

Initial incarnation
= Map between T*SU(2) and geometrical data (N%, Nt,j,9) [Freidel, Speziale, 2010]
» SU(2) holonomy g rotating N = g> Nt

* APD SL(2,R) transformation needed to map metrics (i.e. frames instead of fluxes)
[Haggard, Rovelli, Wieland, Vidotto, 2013] [Freidel, Livine, 2018]

» Attempts to generalize [Dupuis, Freidel, MG, Livine, Ziprick, Speziale, Tambornino, Wieland]
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Generalized twisted geometries

Initial incarnation
= Map between T*SU(2) and geometrical data (N%, Nt,j,9) [Freidel, Speziale, 2010]
» SU(2) holonomy g rotating N = g> Nt

* APD SL(2,R) transformation needed to map metrics (i.e. frames instead of fluxes)
[Haggard, Rovelli, Wieland, Vidotto, 2013] [Freidel, Livine, 2018]

» Attempts to generalize [Dupuis, Freidel, MG, Livine, Ziprick, Speziale, Tambornino, Wieland]

Corner reconstruction

+ Data from Poincaré spin operator, metric, and twiste angle (S*, St,s,9)

» SL(2,C) holonomy ¢ such that S$ = @ > St

« Comes from edge mode gauge frames (half-holonomies) and bulk-corner continuity e = x > e

es =et & e’ =xst>et with xst =Xx5'Xt
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We have shown that
* Using canonical bulk + corner split and focusing on the corner contains physics
* When applied to tetrad gravity, naturally leads to LQG features

- internal normal n! in the phase space

- corner metric is non-commutative when y # 0

- simplicity constraints satisfy a self-2"9 class algebra in the continuum

- internal Lorentz-invariance and discrete area spectrum

- new quantum numbers, generalized twisted geometries

« Focusing on the corner paves the road for where to go next

Next

« Search for biggest symmetry algebra (include topological terms)
« Continuum quantization of g%

* Space as fusion of corner states

* Dynamics and conservation of charges

* Matter as defects of geometry
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LOOPS’21
+ July 19 — 23 in Lyon (France)
* Summer school in Marseille, July 12 — 16

« Hopefully in person
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