Quantum gravity at the corner

Marc Geiller

ENS de Lyon

ILQGS, October 27th 2020

Based on:

Freidel, MG, Pranzetti, 2006.12527, JHEP Freidel, MG, Pranzetti, 2007.03563, JHEP Freidel, MG, Pranzetti, 2007.12635

Motivations

Quantum gravity

- Central role played by symmetries, but which ones?
- What are the fundamental degrees of freedom?
- Where do they live?
- What does quantum gravity assign to lower-dimensional objects (corners, points)?
- What is the role of matter?
- Many pieces of answers from different approaches

Motivations

Quantum gravity

- Central role played by symmetries, but which ones?
- What are the fundamental degrees of freedom?
- Where do they live?
- What does quantum gravity assign to lower-dimensional objects (corners, points)?
- What is the role of matter?
- Many pieces of answers from different approaches

A new proposal

- Quantum gravity based on local holography
- · Focus on local symmetry content for arbitrary subregions and their corners
- Associate Hilbert space, states, quantum numbers to these corners
- Degrees of freedom organized by representation of these corner symmetry algebras
- · Space as entangling and fusion of these corner degrees of freedom
- Dynamics and constraints as charge conservation

Motivations

Push the logic of LQG further

- Focus on symmetries → diffeos and SU(2) so far, but why not more?
 [Ashtekar, Isham, Lewandowski, Rovelli, Smolin, Thiemann, Varadarajan, ...]
- Space as a network of quantum geometry building blocks → generalized twisted geometries [Bianchi, Freidel, Haggard, Livine, Speziale, Tambornino, Weiland, ...]
- Think in terms of coarse-graining, truncation, defects \rightarrow enlarge theory space [Bahr, Delcamp, Dittrich, Goeller, Livine, MG, Steinhaus, Riello, ...]

Reconcile different approaches

- AdS/CFT, holography: focus on the boundary
- LQG-type approaches: focus on the (discrete) bulk

Resolve persistent tensions in LQG

- Interplay between discretization and quantization
- Role of the Barbero–Immirzi parameter
- Discreteness of area vs internal Lorentz invariance
- Imposition of the simplicity constraints
- Non-commutativity of the fluxes
- Access to the frame
- Construction of the dynamics, inclusion of matter, ...

Roadmap

Setup and tools

- Boundaries turn gauge into physical symmetries: non-trivial charges and algebra at co-dimension 2 corners ${\rm S}$
- Best studied in covariant phase space formalism: $\delta L = EOMs + d\theta$ [Anderson, Ashtekar, Barnich, Brandt, Crnkovic, Kijowski, Lee, Wald, Witten, ...]
- Find classifying criterion for different formulations of gravity: corner symmetry algebra \mathfrak{g}^S
- Focus on: entangling spheres S, no boundary conditions, no time evolution, tangent diffeos

Roadmap

Setup and tools

- Boundaries turn gauge into physical symmetries: non-trivial charges and algebra at co-dimension 2 corners ${\bf S}$
- Best studied in covariant phase space formalism: $\delta L = EOMs + d\theta$ [Anderson, Ashtekar, Barnich, Brandt, Crnkovic, Kijowski, Lee, Wald, Witten, ...]
- Find classifying criterion for different formulations of gravity: corner symmetry algebra $\mathfrak{g}^{\mathsf{S}}$
- Focus on: entangling spheres S, no boundary conditions, no time evolution, tangent diffeos

Simple, yet deep result

- · For any formulation F of gravity, the symplectic potential is the sum of
 - a universal bulk piece, canonical $\mathsf{GR}\to\mathsf{gives}\;\mathsf{diff}(S)\subset\mathfrak{g}^S$
 - a corner piece \rightarrow adds extra charges and components to \mathfrak{g}^S

 $\theta_{\mathsf{F}} = \theta_{\mathsf{GR}} + \mathsf{d}\theta_{\mathsf{F}/\mathsf{GR}} + \delta L_{\mathsf{F}/\mathsf{GR}}$

• Different formulations have different corner algebras \rightarrow potentially inequivalent quantizations

Potentials

- Einstein–Hilbert Lagrangian $L_{\text{EH}} = \varepsilon\,R$
- Potential

$$\begin{split} \theta_{\mathsf{EH}} &= \widetilde{\varepsilon} \mathfrak{n}^{\mu} \nabla^{\nu} (\delta g_{\mu\nu} - g_{\mu\nu} g^{\alpha\beta} \delta g_{\alpha\beta}) \\ &= \widetilde{\varepsilon} (\mathsf{K} g^{\mu\nu} - \mathsf{K}^{\mu\nu}) \delta g_{\mu\nu} + \mathsf{d} (\sqrt{\mathsf{q}} \, \mathsf{s}_{\mu} \delta \mathfrak{n}^{\mu}) - 2 \delta (\widetilde{\varepsilon} \mathsf{K}) \\ &= \theta_{\mathsf{GR}} + \mathsf{d} \theta_{\mathsf{EH/GR}} - 2 \delta (\widetilde{\varepsilon} \mathsf{K}) \end{split}$$

Potentials

- Einstein–Hilbert Lagrangian $L_{\text{EH}} = \varepsilon\,R$
- Potential

$$\begin{split} \theta_{\mathsf{EH}} &= \widetilde{\varepsilon} \mathfrak{n}^{\mu} \nabla^{\nu} (\delta g_{\mu\nu} - g_{\mu\nu} g^{\alpha\beta} \delta g_{\alpha\beta}) \\ &= \widetilde{\varepsilon} (\mathsf{K} g^{\mu\nu} - \mathsf{K}^{\mu\nu}) \delta g_{\mu\nu} + \mathsf{d} (\sqrt{\mathsf{q}} \, \mathsf{s}_{\mu} \delta \mathfrak{n}^{\mu}) - 2 \delta (\widetilde{\varepsilon} \mathsf{K}) \\ &= \theta_{\mathsf{GR}} + \mathsf{d} \theta_{\mathsf{EH/GR}} - 2 \delta (\widetilde{\varepsilon} \mathsf{K}) \end{split}$$

Relative Lagrangians

• This is due to the well-known fact that

$$L_{\text{EH}} = L_{\text{GR}} + dL_{\text{EH/GR}} = \varepsilon \big(R^{(3)} - K^2 + K^{\mu\nu}K_{\mu\nu} \big) + 2d \big(\widetilde{\varepsilon} \, \mathfrak{n}_{\mu}(\mathfrak{n}^{\mu}K - \mathfrak{a}^{\mu}) \big)$$

Potentials

- Einstein–Hilbert Lagrangian $L_{\text{EH}} = \varepsilon\,R$
- Potential

$$\begin{split} \theta_{\mathsf{E}\mathsf{H}} &= \widetilde{\varepsilon} \mathfrak{n}^{\mu} \nabla^{\nu} (\delta g_{\mu\nu} - g_{\mu\nu} g^{\alpha\beta} \delta g_{\alpha\beta}) \\ &= \widetilde{\varepsilon} (\mathsf{K} g^{\mu\nu} - \mathsf{K}^{\mu\nu}) \delta g_{\mu\nu} + \mathsf{d} (\sqrt{\mathsf{q}} \, \mathsf{s}_{\mu} \delta \mathfrak{n}^{\mu}) - 2 \delta (\widetilde{\varepsilon} \mathsf{K}) \\ &= \theta_{\mathsf{G}\mathsf{R}} + \mathsf{d} \theta_{\mathsf{E}\mathsf{H}/\mathsf{G}\mathsf{R}} - 2 \delta (\widetilde{\varepsilon} \mathsf{K}) \end{split}$$

Relative Lagrangians

This is due to the well-known fact that

$$L_{\mathsf{EH}} = L_{\mathsf{GR}} + \mathsf{d}L_{\mathsf{EH}/\mathsf{GR}} = \varepsilon \left(\mathsf{R}^{(3)} - \mathsf{K}^2 + \mathsf{K}^{\mu\nu}\mathsf{K}_{\mu\nu} \right) + 2\mathsf{d} \big(\widetilde{\varepsilon}\,\mathfrak{n}_{\mu}(\mathfrak{n}^{\mu}\mathsf{K} - \mathfrak{a}^{\mu}) \big)$$

• But really follows from the less-known fact that

$$\delta L_{\text{EH/GR}} + d\theta_{\text{EH/GR}} = \theta_{\text{EH}} - \theta_{\text{GR}}$$

- Boundary Lagrangians (may) have symplectic potentials, which contribute as corner terms [Freidel, Perez, Pranzetti, 2016] [MG, Jai-akson, 2019] [Harlow, Wu, 2019] [Wieland, 2017]
- Corner terms are not ambiguities, but features ightarrow formulation-dependent charges and algebra

Bulk generators

- Consider a diffeomorphism δ_{ξ}
- Bulk piece: spatial diffeo constraint \leftrightarrow momentum conservation

$$\mathfrak{H}^{\Sigma}_{\mathsf{GR}}=\mathfrak{H}^{\Sigma}_{\mathsf{EH}}=-\int_{\Sigma}\xi_{\mu}\nabla_{\nu}P^{\mu\nu}\approx0$$

- Algebra $\{\mathcal{H}[\xi], \mathcal{H}[\zeta]\} = \mathcal{H}[\xi, \zeta]$
- How exactly is it represented?

Bulk generators

- Consider a diffeomorphism δ_{ξ}
- Bulk piece: spatial diffeo constraint \leftrightarrow momentum conservation

$$\mathfrak{H}^{\Sigma}_{\mathsf{GR}}=\mathfrak{H}^{\Sigma}_{\mathsf{EH}}=-\int_{\Sigma}\xi_{\mu}\nabla_{\nu}P^{\mu\nu}\approx0$$

- Algebra $\{\mathcal{H}[\xi], \mathcal{H}[\zeta]\} = \mathcal{H}[\xi, \zeta]$
- How exactly is it represented?

Corner charges and algebra

- GR: Brown–York charge $\mathcal{H}^S_{\text{GR}} = \int_S s_\mu \xi_\nu P^{\mu\nu}$
 - vanishing if $\xi|_S=0$
 - leads to universal component $\mathfrak{g}_{\mathsf{GR}}^S = \mathsf{diff}(S)$
- EH: Komar charge $\mathcal{H}^{S}_{EH} = \int_{S} \varepsilon_{\mu\nu} \nabla^{\mu} \xi^{\nu}$
 - non-vanishing if $\xi|_S=0 \to$ leads to an extra $\mathfrak{sl}(2,\mathbb{R})_\perp$
 - 2+2 decomposition reveals $\mathfrak{g}^{S}_{EH} = diff(S) \ltimes \mathfrak{sl}(2, \mathbb{R})_{\perp}$ [Donnelly, Freidel, 2016]

	Corner symmetries \mathfrak{g}^S					
Formulation of gravity	diff(S)	$\mathfrak{sl}(2,\mathbb{R})_{\perp}$	$\mathfrak{sl}(2,\mathbb{R})_{\parallel}$	su(2)	boosts	
Canonical general relativity (GR)	\checkmark					
Einstein–Hilbert (EH)	\checkmark	\checkmark				
Einstein–Cartan (EC)	\checkmark				\checkmark	
Einstein–Cartan–Holst time gauge	\checkmark		\checkmark	\checkmark		
Einstein-Cartan-Holst (ECH)	\checkmark		\checkmark	\checkmark	\checkmark	

	Corner symmetries \mathfrak{g}^S					
Formulation of gravity	diff(S)	$\mathfrak{sl}(2,\mathbb{R})_{\perp}$	$\mathfrak{sl}(2,\mathbb{R})_{\parallel}$	su(2)	boosts	
Canonical general relativity (GR)	\checkmark					
Einstein–Hilbert (EH)	\checkmark	\checkmark				
Einstein–Cartan (EC)	\checkmark				\checkmark	
Einstein–Cartan–Holst time gauge	\checkmark		\checkmark	\checkmark		
Einstein-Cartan-Holst (ECH)	\checkmark		\checkmark	\checkmark	\checkmark	

Back to our motivations

- Different formulations of gravity reveal different components of $\mathfrak{g}^{\mathsf{S}}$
- If \mathfrak{g}^S plays a role in quantizing gravity, what is the full symmetry algebra?
- Bigger algebra: more quantum numbers (handles) to reconstruct bulk dof and dynamics
- Let us continue justifying why
 - this has to do with quantum gravity
 - looking at extra components of $\mathfrak{g}^{\mathsf{S}}$ has physical implications

Strategy

- Start from BF theory $L_{\text{BF}}=B_{IJ}\wedge F^{IJ}[\omega]\quad \rightarrow \quad \theta_{\text{BF}}=B_{IJ}\wedge \delta \omega^{IJ}$
- Impose simplicity $B_{IJ} = E_{IJ}[e] = (* + \beta)(e \wedge e)_{IJ}$
- Work without time gauge to access boosts [Alexandrov, MG, Livine, Noui, \ldots]
- Use internal normal n^{I} [Peldan, Alexandrov, Bodendorfer, Thurn, Thiemann, Wieland]

Strategy

- Start from BF theory $L_{BF}=B_{IJ}\wedge F^{IJ}[\omega]\quad \rightarrow \quad \theta_{BF}=B_{IJ}\wedge \delta \omega^{IJ}$
- Impose simplicity $B_{IJ} = E_{IJ}[e] = (* + \beta)(e \wedge e)_{IJ}$
- Work without time gauge to access boosts [Alexandrov, MG, Livine, Noui, ...]
- Use internal normal n^{I} [Peldan, Alexandrov, Bodendorfer, Thurn, Thiemann, Wieland]

Decomposition

• Introduce boost and spin 2-forms and 1-forms (frames)

$$B_{IJ} \stackrel{\Sigma}{=} B_{[I} n_{J]} + \epsilon_{IJ} {}^{K} S_{K} \qquad \qquad B_{I} = \frac{1}{2} (b \times b)_{I} \qquad \qquad S_{I} = \frac{1}{2} (s \times s)_{I}$$

Decompose connection as

$$\omega^{\,IJ} = K^{[I} n^{J]} + \Gamma^{IJ} \qquad \qquad K^{I} = \mathsf{d}_\omega n^{I}$$

Strategy

- Start from BF theory $L_{\text{BF}}=B_{IJ}\wedge F^{IJ}[\omega]\quad \rightarrow \quad \theta_{\text{BF}}=B_{IJ}\wedge \delta \omega^{IJ}$
- Impose simplicity $B_{IJ} = E_{IJ}[e] = (* + \beta)(e \wedge e)_{IJ}$
- Work without time gauge to access boosts [Alexandrov, MG, Livine, Noui, ...]
- Use internal normal n^{I} [Peldan, Alexandrov, Bodendorfer, Thurn, Thiemann, Wieland]

Decomposition

• Introduce boost and spin 2-forms and 1-forms (frames)

$$B_{IJ} \stackrel{\Sigma}{=} B_{[I} n_{J]} + \varepsilon_{IJ} {}^{K} S_{K} \qquad \qquad B_{I} = \frac{1}{2} (b \times b)_{I} \qquad \qquad S_{I} = \frac{1}{2} (s \times s)_{I}$$

Decompose connection as

$$\boldsymbol{\omega}^{IJ} = \boldsymbol{K}^{[I}\boldsymbol{n}^{J]} + \boldsymbol{\Gamma}^{IJ} \hspace{1cm} \boldsymbol{K}^{I} = \boldsymbol{d}_{\boldsymbol{\omega}}\boldsymbol{n}^{I}$$

• Bulk + corner decomposition (up to total δ)

$$\theta_{\mathsf{BF}} = B_{\mathrm{I}} \wedge \delta \mathsf{K}^{\mathrm{I}} - \mathsf{d}_{\Gamma} s_{\mathrm{I}} \wedge s^{\mathrm{I}} + \mathsf{d} \left(B_{\mathrm{I}} \delta \mathfrak{n}^{\mathrm{I}} - \frac{1}{2} s_{\mathrm{I}} \wedge \delta s^{\mathrm{I}} \right)$$

Strategy

- Start from BF theory $L_{\text{BF}}=B_{IJ}\wedge F^{IJ}[\omega]\quad \rightarrow \quad \theta_{\text{BF}}=B_{IJ}\wedge \delta \omega^{IJ}$
- Impose simplicity $B_{IJ} = E_{IJ}[e] = (* + \beta)(e \wedge e)_{IJ}$
- Work without time gauge to access boosts [Alexandrov, MG, Livine, Noui, ...]
- Use internal normal n^{I} [Peldan, Alexandrov, Bodendorfer, Thurn, Thiemann, Wieland]

Decomposition

• Introduce boost and spin 2-forms and 1-forms (frames)

$$B_{IJ} \stackrel{\Sigma}{=} B_{[I} n_{J]} + \varepsilon_{IJ} {}^{K} S_{K} \qquad \qquad B_{I} = \frac{1}{2} (b \times b)_{I} \qquad \qquad S_{I} = \frac{1}{2} (s \times s)_{I}$$

Decompose connection as

$$\omega^{IJ} = K^{[I} n^{J]} + \Gamma^{IJ} \qquad \qquad K^{I} = \mathsf{d}_{\omega} n^{I}$$

• Bulk + corner decomposition (up to total δ)

$$\theta_{\mathsf{BF}} = B_{I} \wedge \delta \mathsf{K}^{I} - \mathsf{d}_{\Gamma} s_{I} \wedge s^{I} + \mathsf{d} \left(B_{I} \delta \mathfrak{n}^{I} - \frac{1}{2} s_{I} \wedge \delta s^{I} \right)$$

• Simplicity is now $B_{\rm I}=E_{\rm I}$ and $s_{\rm I}=\sqrt{\beta}~e_{\rm I}$

$$\theta_{\text{ECH}} \approx \mathsf{E}_{\mathrm{I}} \wedge \delta \mathsf{K}^{\mathrm{I}} + \mathsf{d}\left(\mathsf{E}_{\mathrm{I}} \delta \mathfrak{n}^{\mathrm{I}} - \frac{\beta}{2} e_{\mathrm{I}} \wedge \delta e^{\mathrm{I}}\right)$$

From bulk to corner

• Introducing 4-momentum aspect $\mathsf{P}^I\equiv(\mathsf{K}\times e)^I,$ we have $\theta_{\mathsf{ECH}}\approx\theta_{\mathsf{GR}}+\theta_{\mathsf{ECH/GR}}$ since

$$P^{\mu\nu}\delta g_{\mu\nu}=P_{I}\wedge\delta e^{I}=E_{I}\wedge\delta K^{I}+\delta(\dots)$$

• Shift emphasis from bulk to corner using $\beta(e \wedge e)_{IJ} \wedge \delta \omega^{IJ}[e] \approx -\beta d(e_I \wedge \delta e^I)$

From bulk to corner

• Introducing 4-momentum aspect $P^{I} \equiv (K \times e)^{I}$, we have $\theta_{ECH} \approx \theta_{GR} + \theta_{ECH/GR}$ since

$$P^{\mu\nu}\delta g_{\mu\nu}=P_{I}{\wedge}\delta e^{I}=E_{I}{\wedge}\delta K^{I}+\delta(\dots)$$

• Shift emphasis from bulk to corner using $\beta(e \wedge e)_{IJ} \wedge \delta \omega^{IJ}[e] \approx -\beta d(e_I \wedge \delta e^I)$

Generators and charges

- Diffeomorphisms
 - constraint $\nabla_{\nu}P^{\mu\nu}\approx 0$ as a conservation $d_{\Gamma}P^{I}\approx 0$
 - charge gives usual $\mathcal{H}_{ECH}^{S}[\xi] = \int_{S} \xi \lrcorner E_{IJ} \omega^{IJ}$ (contains topological Komar charge) [De Paoli, Speziale, Oliveri, 2018, 2020] [Perry, Godazgar, Godazgar, 2020]
- Lorentz transformations
 - Gauss constraint as charge conservation $d_{\varpi}E_{IJ}\approx 0$
 - Lorentz charges $\mathcal{H}^{S}_{\text{ECH}}[\alpha] = \int_{S} \alpha^{IJ} E_{IJ}$ with boosts and rotations since

$$\mathsf{E}_{\mathrm{I}\mathrm{J}} = \mathsf{E}_{[\mathrm{I}}\mathfrak{n}_{\mathrm{J}}] + \beta \varepsilon_{\mathrm{I}\mathrm{J}}{}^{\mathrm{K}}(e \times e)_{\mathrm{K}}$$

- Algebra $\mathfrak{g}^S_{\mathsf{ECH}}$ contains diff(S) and an ultra-local $\mathfrak{sl}(2,\mathbb{C})$

Zooming on the corner

Hierarchy of phase spaces, geometrical, and algebraic structures

- Go back and focus on BF corner phase space $\theta_{BF}=B_I\delta n^I-\frac{\beta}{2}e_I\wedge\delta e^I$

Zooming on the corner

Hierarchy of phase spaces, geometrical, and algebraic structures

- Go back and focus on BF corner phase space $\theta_{BF}=B_I\delta n^I-\frac{\beta}{2}e_I\wedge\delta e^I$
- Comes from precursor Poincaré-Heisenberg phase space
- Massive particle analogy
 - momentum $p^I=\gamma n^I=\beta^{-1}n^I$
 - Pauli–Lubanski vector $W^{\rm I} = \gamma S^{\rm I}$
 - Casimirs $p^2=-m^2=-\gamma^2$ and $W^2=m^2s(s+1),$ and $\gamma=0$ gravity as massless limit
 - Total angular momentum $J^{IJ}=B^{[I}n^{J]}+\epsilon^{IJ}{}_{K}S^{K}$
- Simplicity breaks Poincaré to Lorentz: area element \propto Lorentz-invariant Poincaré spin Casimir
- Space-like nature of surface S selects the discrete $\mathfrak{sl}(2,\mathbb{R})$ representations

Zooming on the corner

Hierarchy of phase spaces, geometrical, and algebraic structures

- Go back and focus on BF corner phase space $\theta_{BF} = B_I \delta n^I \frac{\beta}{2} e_I \wedge \delta e^I$
- Comes from precursor Poincaré-Heisenberg phase space
- Massive particle analogy
 - momentum $p^I=\gamma n^I=\beta^{-1}n^I$
 - Pauli–Lubanski vector $W^{\rm I} = \gamma S^{\rm I}$
 - Casimirs $p^2=-m^2=-\gamma^2$ and $W^2=m^2 s(s+1),$ and $\gamma=0$ gravity as massless limit
 - Total angular momentum $J^{IJ}=B^{[I}n^{J]}+\epsilon^{IJ}{}_{K}S^{K}$
- Simplicity breaks Poincaré to Lorentz: area element \propto Lorentz-invariant Poincaré spin Casimir
- Space-like nature of surface S selects the discrete $\mathfrak{sl}(2,\mathbb{R})$ representations

Explicit description of symmetry breaking towards gravity

$$\begin{array}{ccc} 16 \ dof & (p^{I}, X^{I}, z^{I}) \\ 12 \ dof & (n^{I}, B^{I}, e^{I}) \\ \end{array} \right) \text{ kinematical constraints } (p \perp \text{ corner}) \\ \hline \\ Poincaré & (n^{I}, B^{I}, \overline{S^{I}, q_{ab}}, \vartheta) \\ 8 \ \text{Dirac observables} & (J^{IJ}, q_{ab}, \vartheta) \rightarrow \mathfrak{sl}(2, \mathbb{C}) \oplus \mathfrak{sl}(2, \mathbb{R})_{\parallel} \oplus \mathfrak{u}(1) \\ \end{array}$$

Look at tangential metric

- Decompose tangential frame $e^{\mathrm{I}}_{\mathrm{a}}$ at the corner in terms of
 - spin operator $S^{I} = \frac{\beta}{2} (e \times e)^{I}$
 - tangential metric $q_{\,a\,b}=e^{I}_{\,a}e^{J}_{\,b}\eta_{\,IJ}$
 - twist angle θ
- sl(2, ℝ)_{||} algebra [Freidel, Perez, 2015]

$$\left\{q_{ab}(x), q_{cd}(y)\right\} = -\frac{1}{\beta} \left(q_{ac}\varepsilon_{bd} + q_{bc}\varepsilon_{ad} + q_{ad}\varepsilon_{bc} + q_{bd}\varepsilon_{ac}\right)(x)\delta^{2}(x-y)$$

- Geometrical balance relation $S^2 = \beta^2 q$ relating $\mathfrak{su}(2)$ and $\mathfrak{sl}(2,\mathbb{R})$ Casimirs
- Space-like surface: internal Lorentz-invariant quantization of area in the continuum (see also [Wieland, 2017, 2018] with spinors and null surfaces)

Look at tangential metric

- Decompose tangential frame $e^{\mathrm{I}}_{\mathrm{a}}$ at the corner in terms of
 - spin operator $S^{I} = \frac{\beta}{2} (e \times e)^{I}$
 - tangential metric $q_{\,a\,b}=e^{I}_{\,a}e^{J}_{\,b}\eta_{\,IJ}$
 - twist angle θ
- sl(2, ℝ)_{||} algebra [Freidel, Perez, 2015]

$$\left\{q_{ab}(x), q_{cd}(y)\right\} = -\frac{1}{\beta} \left(q_{ac}\varepsilon_{bd} + q_{bc}\varepsilon_{ad} + q_{ad}\varepsilon_{bc} + q_{bd}\varepsilon_{ac}\right)(x)\delta^{2}(x-y)$$

- Geometrical balance relation $S^2 = \beta^2 q$ relating $\mathfrak{su}(2)$ and $\mathfrak{sl}(2,\mathbb{R})$ Casimirs
- Space-like surface: internal Lorentz-invariant quantization of area in the continuum (see also [Wieland, 2017, 2018] with spinors and null surfaces)

Corner frame provides a complex structure

- Ambiguity $e_a^{\rm I} \mapsto e_a^{\rm I}(\vartheta) = e_a^{\rm I} \cos \vartheta + \star e_a^{\rm I} \sin \vartheta$ with $\star e_a^{\rm I} = \sqrt{q}^{-1} q_{ab} \epsilon^{bc} e_c^{\rm I}$
- Complex structure as $\star^2 = -1$
- Area conjugated to angle $\beta\{\sqrt{q},\vartheta\}=1$ and $\beta\{\sqrt{q},\cdot\}=\star$
- Jacobi implies that * structure is Poisson-compatible

Simplicity at the corner

Shifting emphasis from bulk to corner lifts ambiguities

• Start from BF potential

$$\theta_{\mathsf{BF}} = B_{\mathrm{I}} \delta n^{\mathrm{I}} - \frac{\beta}{2} e_{\mathrm{I}} \wedge \delta e^{\mathrm{I}}$$

- Simplicity is relation $C^I \equiv B^I - \beta^{-1}S^I = 0$ between boost B^I and spin $S^I[e]$

Simplicity at the corner

Shifting emphasis from bulk to corner lifts ambiguities

Start from BF potential

$$\theta_{\mathsf{BF}} = \mathsf{B}_{\mathsf{I}} \delta \mathfrak{n}^{\mathsf{I}} - \frac{\beta}{2} \mathfrak{e}_{\mathsf{I}} \wedge \delta \mathfrak{e}^{\mathsf{I}}$$

- Simplicity is relation $C^{\rm I}\equiv B^{\rm I}-\beta^{-1}S^{\rm I}=0$ between boost $B^{\rm I}$ and spin $S^{\rm I}[e]$
- 2nd class with themselves (no spin foam quantization map, no secondary constraints)

$$\left\{\boldsymbol{C}^{I},\,\boldsymbol{C}^{J}\right\}=\boldsymbol{C}^{[I}\boldsymbol{n}^{J]}-(1+\beta^{-2})\boldsymbol{\epsilon}^{IJ}{}_{K}\boldsymbol{S}^{K}$$

- 3 constraints split into
 - 1 1st class $C \equiv C^2 + (\beta + \beta^{-1})C^{I}S_{I} = 0$ continuum version of diagonal simplicity [Livine, Oriti, 2002] [Rovelli, Speziale, 2011]

- 2 2nd class
$$C_a \equiv C_I e_a^I = 0$$

Simplicity at the corner

Shifting emphasis from bulk to corner lifts ambiguities

Start from BF potential

$$\theta_{\mathsf{BF}} = B_{\mathrm{I}} \delta n^{\mathrm{I}} - \frac{\beta}{2} e_{\mathrm{I}} \wedge \delta e^{\mathrm{I}}$$

- Simplicity is relation $C^{\rm I}\equiv B^{\rm I}-\beta^{-1}S^{\rm I}=0$ between boost $B^{\rm I}$ and spin $S^{\rm I}[e]$
- 2nd class with themselves (no spin foam quantization map, no secondary constraints)

$$\left\{\boldsymbol{C}^{I},\,\boldsymbol{C}^{J}\right\}=\boldsymbol{C}^{[I}\boldsymbol{n}^{J]}-(1+\beta^{-2})\boldsymbol{\epsilon}^{IJ}{}_{K}\boldsymbol{S}^{K}$$

- 3 constraints split into
 - 1 1st class $\mathfrak{C}\equiv C^2+(\beta+\beta^{-1})C^IS_I=0$

continuum version of diagonal simplicity [Livine, Oriti, 2002] [Rovelli, Speziale, 2011]

- 2 2nd class $C_{\alpha} \equiv C_{\rm I} e^{\rm I}_{\alpha} = 0$

Gupta-Bleuler

- Use compatible complex structure to build $C_{\alpha}^{\pm} = (1 \pm i \star)C_{\alpha}$ with $\{C_{\alpha}^{\pm}, C_{b}^{\pm}\} = 0$
- Replace 2^{nd} class $C_{\,\alpha}$ by quantum holomorphic 1^{st} class $C_{\,\alpha}^{-}|\Psi\rangle=0$
- Alternatively, use master constraint $\mathfrak{M}=C_{\,a}\,q^{\,a\,b}\,C_{\,b}$
 - Classically ok since $\mathfrak{M}=2C_a^+\,q^{\,a\,b}\,C_b^-$
 - Quantum level not immediate since (commutator) anomaly ${\mathfrak M}=2C^+_a\,q^{\,ab}\,C^-_b+{\mathcal A}$

Classical solutions

- Rewrite $\mathcal{C} = 0$ and $\mathcal{M} = 0$ in terms of Lorentz and Poincaré spin Casimirs (Q, \widetilde{Q} , S^2)
- Selects Lorentz weights determined by Poincaré spin as $(\mathsf{k}=\mathsf{s},\rho=\beta^{-1}\mathsf{s})$
- + $|S| \propto$ corner area, and LQG kinematical spins $L_I = (*J)_{IJ} t^J$ are boosted areas $|L| = j \geqslant s$

Classical solutions

- Rewrite $\mathcal{C} = 0$ and $\mathcal{M} = 0$ in terms of Lorentz and Poincaré spin Casimirs (Q, \widetilde{Q} , S^2)
- Selects Lorentz weights determined by Poincaré spin as $(\mathsf{k}=\mathsf{s},\rho=\beta^{-1}\mathsf{s})$
- + $|S| \propto$ corner area, and LQG kinematical spins $L_I = (*J)_{IJ} t^J$ are boosted areas $|L| = j \geqslant s$

8 Dirac observables

- Total angular momentum J^{IJ} (Lorentz charges)
- Tangential metric q_{ab}
- Angle ϑ
- Algebra $\mathfrak{g}_{\mathsf{ECH}}^{\mathsf{S}} = \mathsf{diff}(\mathsf{S}) \ltimes (\mathfrak{sl}(2,\mathbb{C}) \oplus \mathfrak{sl}(2,\mathbb{R})_{\parallel} \oplus \mathfrak{u}(1))$
- Note that $q_{\,\alpha\,b}$ and ϑ are not charges of gauge transformations

	Corner symmetries \mathfrak{g}^S					
Formulation of gravity	diff(S)	$\mathfrak{sl}(2,\mathbb{R})_{\perp}$	$\mathfrak{sl}(2,\mathbb{R})_{\parallel}$	su(2)	boosts	
Canonical general relativity (GR)	\checkmark					
Einstein–Hilbert (EH)	\checkmark	\checkmark				
Einstein–Cartan (EC)	\checkmark				\checkmark	
Einstein–Cartan–Holst time gauge	\checkmark		\checkmark	\checkmark		
Einstein–Cartan–Holst (ECH)	\checkmark		\checkmark	\checkmark	\checkmark	

 $??? \longrightarrow$

Continuous representations

- Study quantum anomaly ${\cal A}$ and states $C^-_\alpha |\Psi\rangle = 0 = {\cal C} |\Psi\rangle$
- Quantization of the frame e^{I}_{a} (needs tensor operators \rightarrow intertwiners \rightarrow bulk information?)
- Represent $\mathfrak{g}^S_{\mathsf{ECH}} = \mathsf{diff}(S) \ltimes \mathfrak{h}^S$ to get QG building blocks, knowing that

$$\mathbf{C}_{\mathsf{SL}(2,\mathbb{R})} = -\beta^2 \mathfrak{q} \qquad \mathbf{C}_{\mathsf{SU}(2)} = \beta^2 \mathfrak{q} \qquad \mathbf{C}_{\mathsf{SL}(2,\mathbb{C})}^{(1)} = (\beta^2-1)\mathfrak{q} \qquad \mathbf{C}_{\mathsf{SL}(2,\mathbb{C})}^{(2)} = -2\beta \,\mathfrak{q}$$

- Discreteness of area element \sqrt{q} gives discrete measure on \mathfrak{h}^S
- diff(S²) not unreasonable [Penna, 2018] [Donnelly, Freidel, Moosavian, Speranza]

Discrete subalgebras

- LQG-type truncations from piecewise-constant smearings on partition of S
- Defect-like picture [Dittrich, MG] from smearing on circles around punctures [Freidel, Perez, Pranzetti, 2016] [Freidel, Livine, Pranzetti, 2019]

Edge modes

Why

- What brought us here in the first place: boundaries break gauge-invariance
- Possibility to restore gauge-invariance by suppressing the charges [De Paoli, Speziale, 2018]
 - goes against the systematic treatment of relative potentials $\theta_{\text{F/GR}}$
 - loose observables and quantum numbers
- · Edge modes allow to have gauge-invariance as well as non-trivial symmetry charges
- Contains information for gluing and coarse-graining

Edge modes

Why

- What brought us here in the first place: boundaries break gauge-invariance
- Possibility to restore gauge-invariance by suppressing the charges [De Paoli, Speziale, 2018]
 - goes against the systematic treatment of relative potentials $\theta_{\text{F/GR}}$
 - loose observables and quantum numbers
- · Edge modes allow to have gauge-invariance as well as non-trivial symmetry charges
- · Contains information for gluing and coarse-graining

How

- [Donnelly, Freidel, MG, Balasubramanian, Parrikar, Speranza, Takayanagi, Tamaoka, ...]
- Extended potential $\theta_{\text{ext}} = \theta^{\Sigma} + \theta^{S}[B, n, e]$ with independent fields at the corner
- Replace $\delta|_S$ by $\delta \chi^{-1} \delta \chi$ with $\chi = (\phi, \rho) \in SL(2, \mathbb{C})^S \times SL(2, \mathbb{R})^S$ a choice of gauge frame
- Usual gauge transformations δ_{α} lead to generator $\mathcal{H}[\alpha] = \mathcal{H}^{\Sigma}[\alpha] + \mathcal{H}^{S}[\alpha]$ with
 - bulk components (e.g. Gauss law) ≈ 0
 - corner equation of motion imposing (1st class) continuity conditions

$$B^{I} \stackrel{s}{=} \varphi^{I}{}_{J} \boldsymbol{B}^{J} \qquad \qquad n^{I} \stackrel{s}{=} \varphi^{I}{}_{J} \boldsymbol{n}^{J} \qquad \qquad \boldsymbol{e}_{a}^{I} \stackrel{s}{=} \varphi^{I}{}_{J} \rho_{a}{}^{b} \boldsymbol{e}_{b}^{J}$$

• Symmetries Δ_{α} acting only on edge modes, leading to gauge-invariant corner charges $\mathfrak{Q}[\alpha]$

Generalized twisted geometries

Initial incarnation

- Map between $T^*SU(2)$ and geometrical data (N^s, N^t, j, ϑ) [Freidel, Speziale, 2010]
- SU(2) holonomy g rotating N^s = g ▷ N^t
- APD SL(2, ℝ) transformation needed to map metrics (i.e. frames instead of fluxes) [Haggard, Rovelli, Wieland, Vidotto, 2013] [Freidel, Livine, 2018]
- Attempts to generalize [Dupuis, Freidel, MG, Livine, Ziprick, Speziale, Tambornino, Wieland]

Generalized twisted geometries

Initial incarnation

- Map between T*SU(2) and geometrical data (N^s, N^t, j, θ) [Freidel, Speziale, 2010]
- SU(2) holonomy g rotating N^s = g ▷ N^t
- APD SL(2, ℝ) transformation needed to map metrics (i.e. frames instead of fluxes) [Haggard, Rovelli, Wieland, Vidotto, 2013] [Freidel, Livine, 2018]
- Attempts to generalize [Dupuis, Freidel, MG, Livine, Ziprick, Speziale, Tambornino, Wieland]

Corner reconstruction

- Data from Poincaré spin operator, metric, and twiste angle (S^s, S^t, s, ϑ)
- SL(2, \mathbb{C}) holonomy φ such that $S^s = \varphi \triangleright S^t$
- Comes from edge mode gauge frames (half-holonomies) and bulk-corner continuity $e = \chi \triangleright e$

$$e^s = e^t \qquad \Leftrightarrow \qquad \textbf{e}^s = \chi_{st} \triangleright \textbf{e}^t \quad \text{with} \quad \chi_{st} = \chi_s^{-1} \chi_t$$

We have shown that

- Using canonical bulk + corner split and focusing on the corner contains physics
- When applied to tetrad gravity, naturally leads to LQG features
 - internal normal \boldsymbol{n}^{I} in the phase space
 - corner metric is non-commutative when $\gamma
 eq 0$
 - simplicity constraints satisfy a self-2nd class algebra in the continuum
 - internal Lorentz-invariance and discrete area spectrum
 - new quantum numbers, generalized twisted geometries
- · Focusing on the corner paves the road for where to go next

Next

- Search for biggest symmetry algebra (include topological terms)
- Continuum quantization of \mathfrak{g}^S
- Space as fusion of corner states
- Dynamics and conservation of charges
- Matter as defects of geometry

Announcement

LOOPS'21

- July 19 23 in Lyon (France)
- Summer school in Marseille, July 12 16
- · Hopefully in person

