A gravitationally induced decoherence model using Ashtekar variables

Friedrich-Alexander-Universität Erlangen-Nürnberg



joint work with Max Fahn and Michael Kobler *arxiv:2206.06397[gr-qc]* work in progress with: Max Fahn, Roman Kemper, Michael Kobler

> International Loop Quantum Gravity Seminar Panel on Quantum Information in Gravity

22.11.2022

Kristina Giesel, Institut für Quantengravitation, FAU Erlangen-Nürnberg

Open Quantum Systems

We consider gravitationally induced decoherence in the context of open quantum systems

Isolated quantum system: \mathcal{H}_S system Hamiltonian H_S Dynamics: density matrix $\partial_t \rho = \frac{1}{i\hbar}[H_S, \rho]$

System S + environment ε : $\mathcal{H} = \mathcal{H}_S \otimes \mathcal{H}_{\varepsilon}$ Dynamics: $H_{tot} = H_S + H_{\varepsilon} + H_{int}$ $H_{int}(t) = \sum_{\alpha} S_{\alpha}(t) \otimes E_{\alpha}(t)$ Aim: Effective dynamics for S: master equation $\partial_t \rho = \frac{1}{i\hbar} [H_{tot}, \rho]$ $\partial_t \rho_S = \frac{d}{dt} \operatorname{tr}_{\varepsilon} \left(U_{tot}(t)\rho(0)U_{tot}^{\dagger}(t) \right) = \frac{1}{i\hbar} \operatorname{tr}_{\varepsilon} \left([H_{tot}, \rho] \right)$

Lindblad equation

Lindblad equation (completely positive master equation)

$$\frac{\partial}{\partial t}\rho_S(t) = \frac{1}{i\hbar} \left[H_S + H_{\rm LS}, \rho_S(t) \right] + \sum_k \gamma_k \left(L_k \rho_S(t) L_k^{\dagger} - \frac{1}{2} \left\{ L_k^{\dagger} L_k, \rho_S(t) \right\} \right)$$

Lindblad operators L_k LS correction $H_{\rm LS}$ γ_k time-independ. For given $H_{\rm S}$ model characterised by choice of L_k, γ_k

Simple example: dephasing

Choices:
$$k = 1, L = \sqrt{\gamma}H, \quad H = H_S + H_{LS}$$

 $\frac{\partial}{\partial t}\rho_S(t) = \frac{1}{i\hbar}[H, \rho_S(t)] + \gamma \left(H\rho_t H - \frac{1}{2}H^2\rho_S(t) - \frac{1}{2}\rho_S(t)H^2\right)$
energy eigenbasis $\rho_{mn}(t) \equiv \langle m | \rho_t | n \rangle = \rho_{mn}(0) \exp\left(-\frac{i}{\hbar}(E_m - E_n)t - \frac{\gamma}{2}(E_m - E_n)^2t\right)$

Gravitationally induced decoherence I

We choose gravity as the environment

Phenomenologial models often take Linblad eq. as starting point

[Ellís, Lopez, Mavromatos, Nanopoulos 1996]; [Benattí, Floreaníní 1999]; [Lísí, Marrone, Montaníno 2000]; [Guzzo, de Holanda, Olíveíra 2016]; [Gomes, Forero, Guzzo, de Holanda, Olíveíra 2019]]

However: microscopic derivation shows Lindblad needs several assumption -Born approximation: initial separation $\rho(0) = \rho_S(0) \otimes \rho_\varepsilon(0)$ for t > 0 $\rho(t) \simeq \rho_S(t) \otimes \rho_\varepsilon(0)$ stationary state $[H_\varepsilon, \rho_\varepsilon] = 0$ -(i). Markov approx: $\int_0^t ds \mathcal{K}(t,s)\tilde{\rho}(s) \cong \int_0^t ds \mathcal{K}(t,s)\tilde{\rho}(t)$ tilde refers to interaction picture -(ii). Markov approx: $t \to \infty$ $C_{\alpha\beta}(\xi)$ peaked Born-Redfield equation $\frac{d}{dt}\rho_S(t) = -i[H, \rho_S(t)] - \sum_{\alpha} ([S_\alpha, B_\alpha(t, t_0) \rho_S(t)] + [\rho_S(t)C_\alpha(t, t_0), S_\alpha])$ $B_\alpha(t, t_0) := \alpha^2 \int_0^{t-t_0} d\xi \sum_{\beta} C_{\alpha\beta}(\xi)S_\beta(-\xi) - C_\alpha(t, t_0) := \alpha^2 \int_0^{t-t_0} d\xi \sum_{\beta} C_{\alpha\beta}(-\xi)S_\beta(-\xi)$ - Often also rotating wave approx: $\sum_{\omega\omega'} e^{i(\omega-\omega')t}f(\omega,\omega') \simeq \sum_{\omega} f(\omega,\omega)$

Gravitationally induced decoherence II

Microscopic derivation: First steps in a given model

Existing work in ADM variables: [[Anastopoulos, Hu 2013]; [Blencowe 2013]; [Oniga, Wang 2016]; [Lagouvardos, Anastopoulos 2021]; [Asprea 2021]]

Scalar field coupled linearised gravity in Ashtekar variables

Need true Hamiltonian system: reduced quantisation, geometrical clocks, classical dynamical reference frame

system : ϕ^{GI}, π^{GI} environment : $\delta \mathcal{A}_a^i, \delta \mathcal{E}_i^a$ In field theory interaction given $\frac{\kappa}{2} \int_M d^4 x \delta h^{\mu\nu} T_{\mu\nu}[\Phi, \eta]$

Physical Hamiltonian: Fock quantisation

$$H = \int_{\mathbb{R}^3} d^3k \left\{ \omega_k a_k^{\dagger} a_k + \Omega_k \left[\left(b_k^{\dagger} \right)^{\dagger} b_k^{\dagger} + \left(b_k^{-} \right)^{\dagger} b_k^{-} \right] \right\} + \sqrt{\frac{\kappa}{2}} \int d^3k \frac{1}{\sqrt{\Omega_k}} \sum_{r \in \{\pm\}} \left[b_k^r J_r^{\dagger}(\vec{k}) + \left(b_k^r \right)^{\dagger} J_r(\vec{k}) \right]$$

 $1+\kappa U\otimes 1_arepsilon$ U self-interaction term scalar field

Gravitationally induced decoherence III

Microscopic derivation: First steps in a given model

Assumptions of the model ^[Max Fahn, K.q., Michael Kobler '22] [[Nakajima 1958]; [Zwanzig 1960]; [Shibata, Takahashi, Hashitsume 1977]; [Chaturvedi, Shibata 1979]] Starting point: Time-ConvolutionLess (TCL) equation truncated at second oder Can be derived from Nakajima-Zwanzig equation, time-local, can involve non-Markovian processes

Assume thermal state for the gravitational environment

Resulting master equation

$$\frac{\partial}{\partial t}\rho_{S}(t) = -i\left[H_{S} + \kappa U + \kappa H_{LS}, \rho_{S}(t)\right] + \mathcal{D}_{\text{first}} \left[\rho_{S}\right]$$

$$\mathcal{D}_{\text{first}} \left[\rho_{S}\right] := \frac{\kappa}{2} \int \frac{d^{3}k d^{3}p d^{3}l}{(2\pi)^{\frac{6}{2}}} \sum_{r;ab} R_{ab}(\vec{p}, \vec{l}; \vec{k}, t) \left(j_{r}^{b}(\vec{k}, \vec{l})\rho_{S}(t)j_{r}^{a}(\vec{k}, \vec{p})^{\dagger} - \frac{1}{2} \left\{j_{r}^{a}(\vec{k}, \vec{p})^{\dagger}j_{r}^{b}(\vec{k}, \vec{l}), \rho_{S}(t)\right\}\right)^{\Box}$$

not of Lindblad type,

[Partially confirm results of [Oniga, Wang 2016], [Anastopoulos, Hu 2013] and [Lagouvardos, Anastopoulos 2021]]

Gravitationally induced decoherence IV

Next steps: work in progress

Final master equation still very complicated

Strategy: projection on the 1-particle case

Already here renormalisation necessary, before or after rotating wave approx? Modell of AHB: 1 particle case non-relativistic limit, 1 dim [Anastopoulos, Hu 2013]; [Blencowe 2013]

$$\frac{\partial}{\partial t}\rho = \frac{1}{i\hbar}[H,\rho] + \tau \left(H\rho H - \frac{1}{2}\left\{H^2,\rho\right\}\right) \quad H = \frac{p^2}{2m} \quad \tau = \frac{32\pi Gk_B T_{grav}}{9}$$

[first steps in confirming same result in NR limit]

Why interesting in QG in a broader context:

Allows different perspective to QG effects in open quantum systems Interesting in the context of matter interactions where gravity is weak Consider loop quantisation of decoherence models [Feller, Livine '16] [K.q., Michael Kobler '22] If we construct LQG inspired models do they have characteristic properties?

Thank You!