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Why study Bianchi models?

Anisotropic spacetime introduces more degrees of freedom
compared to isotropic spacetime

Much richer physics due to non-vanishing Weyl scalar

Classically the anisotropic shear scalar in Bianchi-I model varies
as σ2 ∝ a−6. Singularity can also take place due to diverging
anisotropic shear as a→ 0

According to Belinskii-Khalatnikov-Lifshitz (BKL) behavior,
during a generic approach to a spacelike singularity, each point
transits from one Bianchi-I type universe to another Bianchi-I
type (Kasner transition), giving rise to Mixmaster behavior
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Loop quantum cosmology of Bianchi-I spacetime

ds2 = −dt2 + a21 dx
2 + a22 dy

2 + a23 dz
2

In the classical theory, approach to singularity can be classified as
(Doroshkevich, Ellis, Jacobs, MacCallum, Thorne ...)

Point or Isotropic singularity: a1, a2, a3 → 0.
Barrel: a1 → const, a2, a3 → 0
Pancake: a1 → 0, a2, a3 → const
Cigar: a1 →∞, a2, a3 → 0

Quantization performed by (Ashtekar, Wilson-Ewing(09)). Earlier
approaches to quantization developed by Bojowald, Chiou, Date,

Martin-Benito, Mena Marugan, Pawlowski, Szulc, Vandersloot

Classical singularity resolved
Resolution of all physical singularities studied in the effective
dynamics (Singh (11))
Physics of effective dynamics studied: big bang is replaced by
bounce (Artymowski, Cailleteau, Chiou, Lalak, Maartens, Singh,

Vandersloot)
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Questions:

Kasner Transitions:

What is the relation between the geometrical nature of
spacetime in pre and post bounce regime?

Are there transitions from one type to other?

Are some transitions favored over others? If yes, depending on
what?

Inflation:

Does anisotropy prevent inflation?

How does LQC modify the dynamics and the amount of
inflation?

How is the amount of inflation affected as compared to the
isotropic spacetime?
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Main results:

Kasner Transitions:

Kasner transitions are seen in Bianchi-I spacetime for the first
time, a feature not present in classical theory

Transitions are not random, there turns out to be a “selection
rule”

Depending on the anisotropy and matter content some
transitions are favored over others

Inflation:

Inflation takes place irrespective of the initial anisotropic shear

Non-trivial dependence of amount of inflation on the initial shear
scalar

Modification in the initial value of inflaton field as compared to
isotropic spacetime to generate a given amount of inflation
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Plan of the talk:

Review of Kasner solution

Review of effective dynamics of Bianchi-I

Kasner transitions with perfect fluid with P = ρ

Inflation in Bianchi-I spacetime with quadratic potential
V (φ) = m2φ2/2
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Kasner solution: classical theory

Vacuum:

ai ∝ tki such that k1 + k2 + k3 = 1; k2
1 + k2

2 + k2
3 = 1 (1)

Stiff matter, w = P/ρ = 1:

ai ∝ tki such that k1 + k2 + k3 = 1; k2
1 + k2

2 + k2
3 = 1− k2 (2)

where ki are Kasner exponents and k is a constant.

Point k1, k2, k3 > 0
Barrel k1 = 0, k2, k3 > 0

Pancake k1, k2 = 0, k3 > 0
Cigar k1 < 0, k2, k3 > 0

0 ≤ w < 1:

Close to singularity, behaves like vacuum for all 0 ≤ w < 1

In the future asymptotic limit

ai ∝ t2/3 for Dust (w = 0)
ai ∝ t1/2 for Radiation (w = 1/3)
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Bianchi-I: Effective dynamics

Effective Hamiltonian: (Chiou, Vandersloot; Ashtekar, Wilson-Ewing)

Heff = − 1

8πγ2V

(
sin(µ̄1c1)

µ̄1

sin(µ̄2c2)

µ̄2
p1p2 + cyclic terms

)
+Hmatt , (1)

where
µ̄1 = λ

√
p2p3
p1

, µ̄2 = λ

√
p1p3
p2

µ̄3 = λ

√
p2p1
p3

and λ2 = 4
√

3πγ`2Pl

.
triad and connection: p1 = a2a3 & classically, c1 = γȧ1 (2)

Hamilton’s equation of motion: ṗ1
p1

= 1
γλ

[
sin(µ̄2c2) + sin(µ̄3c3)

]
cos(µ̄1c1) (3)

Energy Density: vanishing of the Hamiltonian constraint gives:

ρ = 1
8πGγ2λ2

[
sin(µ̄1c1) sin(µ̄2c2) + cyclic terms

]
≤ ρcrit = 0.41ρPl (4)

Expansion scalar:
θ =

1

2

(
ṗ1
p1

+
ṗ2
p2

+
ṗ3
p3

)
≤ θmax =

3

2γλ
(5)

Shear scalar:
σ2

max =
10.125

γ2λ2
=

11.57

`2Pl

(6)
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Kasner transition: Stiff matter, P = ρ

Classical trajectory
undergoes singularity

The mean scale factor
a = (a1a2a3)1/3 in LQC
bounces.
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Stiff matter, w = 1

CigarBarrel
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Kasner transition for w = 1
0 < |δ| < 1

2
|δ| = 1

2
1
2
< |δ| < 1√

3
|δ| = 1√

3
1√
3
< |δ| < 1

P ↔ P P ↔ P P ↔ P P = P P = P
B = P B ↔ P B ↔ P B = P B = P
C = P C = P C ↔ P C ↔ P C ↔ P
B = B B = B B = B B ↔ B B = B
B = C B = C B = C B = C B ↔ C
C = C C = C C = C C = C C ↔ C

where |δ| =
√

3σ2

2θ2
.

Depending on the value of δ some transitions are favored over
others.

In the low anisotropy regime only Point-Point transition takes
place

Cigar-Cigar transition only happens in the large anisotropy
regime.
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Inflation

Inflation: a phase of accelerated expansion in the early universe
Widely studied and explored in the classical theory. (Albrecht, Barrow,

Guth, Linde, Rothman, Steinhardt, Steigman, Turner...)

Does anisotropy prevent inflation? Barrow and Turner (81); Steigman

and Turner (83)

Quantum theory of gravity is required (Rothman & Madsen (85),

Rothman & Ellis(86)); Anisotropy helps attain more inflation
(Maartens, Sahni and Saini (01))

Inflation in LQC in isotropic spacetime...(Ashtekar, Pawlowski, Singh

to appear)

Isotropic inflation in effective theory studied in detail by Ashtekar

& Sloan (09) establishing its inevitability (99.99%); other aspects
also studied by Corichi & Karami (10)
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Inflation in Bianchi-I spacetime

Generalized Friedmann equation: H2 =
(
ȧ
a

)2
= 8πG

3
ρ+1

6
σ2 (1)

Raychaudhuri equation: ä
a

= −4πG
3

(ρ + 3P)−1
3
σ2 (2)

where a is the mean scale factor.

Conservation equation: φ̈ + 3Hφ̇ = −V ′(φ) (3)

ρ = φ̇2/2 + V , P = φ̇2/2− V , V = m2φ2/2 (4)

ä

a
= −8πG

3

(
φ̇2 − V (φ)

)
−1

3
σ2 (5)

V(  )

φ

φ

Slow-roll:V (φ)� φ̇2

ä > 0

Anisotropy ⇒ Enhanced Hubble friction ⇒ Fast KE decay ⇒ Arrival of slow roll
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Amount of inflation: Classical theory

Number of efoldings: N = ln
(

atoff
aton

)
∝ φ2on

|φ̇(0)| = (2 · 10−5, 2 · 10−3, 2 · 10−2, 0.1)m2
Pl, φ(0) = 3.14mPl and ε2J = σ2/4πGρ
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Depending on the initial condition on φ̇ non-zero anisotropy, monotonically,

either enhances or reduces N in the classical theory.
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Bianchi-I inflation in LQC: amount of inflation
Hubble rate:
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Maximum number of e-foldings (N) for φ(0) = 3.14mPl various φ̇(0)

φ̇(0) −0.2 −0.02 −0.002
N 42.7503 60.3810 62.3939

φ̇(0) 0.2 0.02 0.002
N 71.8433 65.0221 62.8843

Isotropic LQC: ρbounce = ρcrit ⇒ φ̇(0) = −0.905m2
Pl

Niso = 3.12 for φ(0) = 3.14mPl (1)

In comparison to the isotropic spacetime, Bianchi-I spacetime
generates more e-foldings for the same initial value of the inflaton at

the bounce.

In the isotropic spacetime, for N ≈ 60, φ(0) ≈ 5.50mPl for an inflaton
which is rolling down.
Bianchi-I spacetime widens the window of value of φ(0) to generate a

given number of e-foldings.
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Phase portrait: LQC

All trajectories meet the slow roll curve in their future evolution.

Slow-roll is an attractor for all these solutions in Bianchi-I spacetime.
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Summary

There are Kasner transitions across the bounce in Bianchi-I
spacetime

These transitions follow a pattern and depending on anisotropy
and matter content some of them are favored- “selection rule”

Inflation takes place irrespective of the initial anisotropic shear

Anisotropy may enhance or reduce the amount of inflation
depending on the initial conditions on the inflaton velocity

Bianchi-I spacetime widens the window of the value of inflaton
at the bounce, for a given number of e-foldings
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