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Divergences

“. . . no approach to quantum gravity can claim complete success
that does not explain in full and convincing detail the ultimate fate
of the divergences of perturbative quantum gravity." H. Nicolai

gr-qc/1301.5481

The mass of the LHC scalar boson (125 GeV) narrowly avoids
vacuum instability and the Landau pole of self-couplings:

Currently understood physics may hold up to the Planck scale!
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http://arxiv.org/abs/1301.5481


Volume gap

Well known area gap: Discrete volume spectrum:

Is there a volume gap?
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Volume gap

Number of intertwiners:

dim invH(j1,··· ,jN ) = 1
π

∫ 2π

0
dθ sin2 θ

2

N∏
a=1

sin
{

(2ja + 1) θ2
}

sin θ
2

For 5 spins (areas), all equal:

dim invH(j,j,j,j,j) = 5
2 j2+5

2 j+1.

Maximum classical volume:

Vmax ∼ j3/2

• Is a volume gap robust?
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Thermalization

What does it mean to thermalize geometry (gravity)?

Bekenstein (’81): Information transfer rates fundamentally bound

İ < E
~
,

E the total energy of the message. (Compare İ ∼ ∆E/~ ∼ kT/~.)
gr-qc/1302.0724

• Black holes saturate this bound.

Sekino and Susskind (’08, ’12): Call them fast scramblers.
hep-th/0808.2096
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Volume

Can the polyhedral volume (Bianchi, Doná and Speziale) lend
insight into these issues? gr-qc/1009.3402

V̂Pol = The volume of a quantum polyhedron
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http://arxiv.org/abs/1009.3402
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Minkowski’s theorem: polyhedra

The area vectors of a convex polyhedron determine its shape:

~A1 + · · ·+ ~An = 0.

Only an existence and uniqueness theorem.
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Volume of a pentahedron

A pentahedron can be completed to a tetrahedron
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Volume of a pentahedron

A pentahedron can be completed to a tetrahedron

α, β, γ > 1 found from,

α~A1 + β~A2 + γ~A3 + ~A4 = 0

e.g. =⇒ α = −~A4 · (~A2 × ~A3)/~A1 · (~A2 × ~A3)
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Volume of a pentahedron

A pentahedron can be completed to a tetrahedron

The volume of the pentahedron is then,

V =
√

2
3

(√
αβγ −

√
(α− 1)(β − 1)(γ − 1)

)√
~A1 · (~A2 × ~A3)
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Volume spectrum

That does it:

A 54-pentahedron

V =
√

2
3

(√
αβγ −

√
(α− 1)(β − 1)(γ − 1)

)√
~A1 · (~A2 × ~A3)

To study spectrum(V ) semiclassically:
• set H = V
• use Bohr-Sommerfeld condition  quantized values.
Won’t work!
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Adjacency and reconstruction

What’s most difficult about Minkowski reconstruction? Adjacency.

Remarkable side effect of introducing α, β and γ: they completely
solve the adjacency problem!
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Determining the adjacency

Let Wijk = ~Ai · (~Aj × ~Ak). Different closures imply,

Case 1: 54-pentahedron
α1~A1 + β1~A2 + γ1~A3 + ~A4 = 0,

γ1 = −W124
W123

Case 2: 53-pentahedron
α2~A1 + β2~A2 + ~A3 + γ2~A4 = 0,

γ2 = −W123
W124

= 1
γ1

Require α, β, γ > 1: They are mutually incompatible!
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EBK quantization

Sommerfeld and Epstein extended Bohr’s condition, L = n~,

S =
∫ T

0
pdq

dt dt = nh

and applied it to bounded, separable systems with f d.o.f,∫ Ti

0
pi

dqi
dt dt = nih, i = 1, . . . , f

Here the Ti are the periods of each of the coordinates.

Einstein(!) was not satisfied. These conditions are not invariant
under phase space changes of coordinates.
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EBK quantization II

Motivating example: central force problems

In configuration space trajectories cross;
momenta are distinct at such crossings
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EBK quantization II

Motivating example: central force problems

In phase space the distinct momenta lift to the two sheets of a torus
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EBK quantization III

Following Poincaré, Einstein suggested that we use the invariant

d∑
i=1

pidqi

to perform the quantization.

The topology of the torus remains under coordinate changes, and
so the quantization condition should be,

Si =
∮

Ci
~p · d~q = nih.
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Quantizing chaos

Einstein was completely correct. Quantizing (in the spectral sense)
classically chaotic systems is difficult.

That was how things remained until Wigner introduced Random
Matrix Theory (RMT) in the 60’s:

Idea — For complex interactions we should treat the Hamiltonian
as random and only subject to certain symmetries (Hermitian,
perhaps time reversal or parity invariant).
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6 spectra normalized to same mean level spacing, "unfolded"



Spectral statistics

Shifts focus from detailed spectral info onto spectral statistics:

Wigner’s surmise (chaos):

P(s) = π

2 s exp(−πs2/4)

Semiclassics (Integrable):

P(s) = e−s

Proof of BGS conjecture recently found semiclassically: nlin/0906.1960
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http://arxiv.org/abs/0906.1960
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Minkowski’s theorem: a tetrahdedron

Why discuss chaos? For fixed areas A1, . . . ,A4, tet has one d.o.f

p = |~A1 + ~A2| q = Angle of rotation generated by p:

{q, p} = 1
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Phase space of the pentahedron I

The pentahedron has two fundamental degrees of freedom,

The angles generated by p1 = |~A1 + ~A2| and p2 = |~A3 + ~A4|.

Generically systems of 2 or more d.o.f. are chaotic

24



Phase space of the pentahedron II

For fixed p1 and p2 these angles sweep out a torus.

The phase space consists of tori over a convex region of the
p1p2-plane.
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Volume is very nonlinear
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Recall:

α = −
~A4 · (~A2 × ~A3)
~A1 · (~A2 × ~A3)

,

similarly for β, γ.

Forced to integrate it
numerically.
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Volume dynamics: first results

A Schlegel diagram projects a 3D polyhedron into one of its faces:

Pachner moves generated by volume evolution connect adjacencies.
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Conjectures

Analytic and numerical findings led to conjectures [HMH PIRSA talk]:

Phase space is mixed containing
both stability and instability
In analogy with billiards,
adjacency changes should lead
to instability
Thermalization effectively erases
adjacency information

B. Müller’s Group at Duke simultaneously work on pentahedron:
• Coleman-Smith and Müller numerically study equi-area case
• Trouble w/ long-time trajectories  brilliant idea to focus on

local stability
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Equal Area Pentahedron

Coleman-Smith and Müller (CSM) [PRD, gr-qc/1212.1930]
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Volume contours:
� =small volume
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Color code adjacency: Local Lyapunov exp:
hot = unstable
cool = stable

29

http://arxiv.org/abs/1212.1930


Evidence for chaos

[CSM] Ensemble averaged intermediate Lyapunov exponents (ILE)
30

http://arxiv.org/abs/1212.1930


Is there a volume gap?

Chaos =⇒ level repulsion; that tells about the unfolded spectrum.
Is there a volume gap? Does “refolding" mess up repulsion?

Unfolding: tightly packed states are spread out to the average
spectral spacing and visa versa.

What is the density of states
at zero volume?

• Need phase space (call it Φ)
cells of volume VΦ ∼ ~2 to
support quantum states.

At small (physical) volume,
phase space volume → 0 =⇒
density of states goes to zero.
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Chaotic volume dynamics leads robustly to a volume gap!
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Volume gap previously

In a huge numerical effort Brunnemann and Rideout calculated
∼ 1012 e-values of the Ashtekar-Lewandowski volume for jmax = 22

gr-qc/0706.0469

VPent =
√

2
3

(√
αβγ

−
√

(ᾱ)(β̄)(γ̄)
)

×
√
|~A1 · (~A2 × ~A3)|

Why different results? Additivity of volume grains. Near integrability.
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http://arxiv.org/abs/0706.0469


Gravitational Divergences

Loop gravity continues to indicate physical cutoffs at the Planck
scale:

Robust volume gap due to: chaos & low density of states at
low volume

Meanwhile, Riello is finding divergences at large j (large distance)
are tamer than first indicated, only logarithmic: gr-qc/1302.1781

Loop gravity has a coherent and, so far, consistent view of
gravitational divergences.
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http://arxiv.org/abs/1302.1781


Thermalization

A generic consequence of chaos is efficient thermalization.

Pentahedral volume dynamics =⇒ eigenstates of quantum
volume are spread out over different adjacencies.
• Coherent states peaked around a particular volume will rapidly

transit through adjacency transition.
• Thus, thermalization of geometry, in this context is a rapid loss

of adjacency information.

Can this window into the thermalization of geometry lend new
insights into the extreme thermalization properties of black holes?
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Happy Chinese New Year!

Thank you!
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