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If spacetime is quantum then it fluctuates, and a Schwarzschild
black hole is an ensemble average over rotating black holes

But, then a puzzle arises...
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Is the average of timelike singularities really spacelike?
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The Kerr metric

ds2
Kerr = −ρ

2∆
Σ c2dt2 + Σ

ρ2 sin2 θ(dφ− ωdt)2 + ρ2

∆ dr2 + ρ2dθ2,

is intricate:

ρ2 ≡ r2 +a2 cos2 θ, ∆ ≡ r2−rSr+a2, & Σ ≡ ρ4∆− a2r2
Sr

2s2θ

(ρ2 − rSr)
.

Horizons at ∆ = 0, i.e. r± ≡
rS
2

[
1±

√
1− (2a/rS)2

]
.

But, the parameter space is just
the mass M and angular mom. J
or, equivalently, two length scales:
the Schw. radius rS = 2GM/c2

and the Kerr parameter a = J/Mc.
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To assess the role of quantum gravity, consider curvature invariants

vacuum soln: W ≡ (Cµνρσ + i ∗Cµνρσ)Cµνρσ

with ∗Cµνρσ ≡ 1
2ε
αβ
ρσCµναβ . Each term oscillates, but

|W | =
12r2

S

(r2 + a2 cos2 θ)3
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No matter the theory, the common expectation is that quantum
gravitational phenomena are significant at Planckian curvatures.

So we define the onset of quantum gravity as the surface on which
the curvature first becomes Planckian, or, the

Planckian curvature radius r∗ by |W (r∗, π/2)| = 1/`4P .

A mechanism: the inner horizon
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Our result: the onset of quantum gravity is always spacelike.

E. Bianchi & HMH arXiv:1803.10858

The J resulting from quantum fluctuations (black contours) are
hidden in the quantum fog of high curvatures; resolves our puzzle.
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https://arxiv.org/abs/1803.10858


How did we do this calculation? It is based on two assumptions:

(i) that quantum black holes fluctuate according to a probability
distribution determined by the Bekenstein-Hawking entropy, &

(ii) that Planckian values for any curvature invariant lead to
quantum gravity.

The first leads to

PM ( ~J) = e
A(M,J)

4`2
P

/∫
e

A(M,J)
4`2

P d ~J,

which should be read as a the conditional probability of ~J given a
black hole of mass M in the microcanonical ensemble.

Contours above were constructed by scanning through M and
identifying the value of J for which the indicated fraction of the
distribution is achieved.
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The microcanon ensemble PM ( ~J) applies to primordial black holes.
Gravitatnl waves may allow us to probe PM ( ~J) and through it (i).

E. Berti & M. Volonteri arXiv:0802.0025

The prior on the spins of such a population would be different from
the usual uniform prior. This would be an exciting opportunity to
get an experimental glimpse of the Bekenstein-Hawking result.
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https://arxiv.org/abs/0802.0025v2


The onset of quantum gravity should always be spacelike...

...but, astrophys’l BHs reside outside the domain of our argument.
Penrose, Poisson & Israel, Flanagan, Marolf & Ori all suggest that
non-perturbative effects leave the conclusion intact.

What happens after the onset of quantum gravity?
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.41.1796
https://arxiv.org/abs/gr-qc/9711066
https://arxiv.org/abs/1109.5139
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Tunneling of geometry allows a black to white hole transition.
Evolution of the interior provides long final white hole lifetime.

White holes realize the long-lived remnant scenario and provide a
resolution to the black hole information paradox. arXiv:1802.04264
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https://arxiv.org/abs/1802.04264


Three desiderata we require of a remnant resolution of the info prb

Let S be the (renormalized) entanglement entropy of a quantum
field evolving on a black hole background. Then:

(a) The remnant has to store info with entropy S ∼M2
0 /~, where

M0 is the initial mass of the black hole before evaporation. This is
needed to purify Hawking radiation.

(b) Because of its small mass, the remnant can release the inside
information only slowly—hence it must be long-lived. Unitarity and
energy considerations impose that its lifetime be equal to or larger
than τR ∼M4

0 /~3/2.

(c) The remnant metric has to be stable under perturbations, so as
to guarantee that information can be released.
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There are two distinct regions where we expect GR to break down:
(A) at high curvatures and (B) after sufficiently long times

A B

Σ S

v

Distinguishing old from young black holes is a large interior vol V
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u(r, n }=e
(2.4)

In
terms

ofthese
fields

the
Lagrangian

is

S=f & —g
[ —

u R+2u
(Ba) —4(Bu) —

2u
e

+Que
(2.5)

The
equations

of motion
forthis

Lagrangian
are

given
in

Appendix
A.

Ofcourse,
to

find
interior

solutions
with

zero
magnetic

field
to
match

onto
the

exterior
extremal

dilaton
solution,

we setQ =0
inthe

above
equation.

The
power

series
for

the
fields

o
and

(t, expanding
from

the
shell towards

the
interior,

is

2

u(r, n) =R
(~) 1—

R
(~)

[1+f, (r)n +f2(r)n
~

+f3(r)n
+

],
o(r, n

) =
[ln(R

(r)}+d, (r)n +d2(~)n
+d3(~)n

+
],

(2.6)

(2.7)

h(r, n)=1+h&(r)n+h2(r)n
+h3(r)n

+
g(r, n)=1+g,(r)n+g2(r)n

+g3(r)n
+

(2.8)

(2.9)

The
equations

that
we

have
to
describe

this
system

now
consistofthe

equations
for

u
and

o., and
the

stress
tensor

equation.
Atthe

boundary
ofthe

collapsing
shellthere

is
a nontrivial

matching
equation

forthe
stress

tensor
com-

ponent
Too.

W
e
will

assume
that

the
classical

Lagrangian
for

the
matter

thatconstitutes
the

shell
isofthe

form

S =f &
gu'[ —(a~)— '—m'~'+

].
(2.10)

That
is, the

matter
in
the

collapsing
shell

couples
to
the

dilaton
like

some
massive

mode
ofthe

string.
In
the

rest
frame

of
the

collapsing
shell,

the
matching

equation
readsMu(r,0) =f

Tor, dn
E

which
becomes

2
1/2

(2. 11)

where
the

coefficients
ofthe

leading
terms

are
determined

by
continuity

ofP
and

cracross
the

shell.
The

metric
is

g&
=diag[ —

h(r,n),g(r, n)], and
the

coefficients
have

the
expansion,

tion,
but

here
the

dilaton
dynamics

gives
rise

to
an

infinite
set

of
spherically

symmetric
solutions

of
the

source
free

field
equations

in
a
finite

region.
W
e
have

tried
to
restrict

the
solution

by
assuming

acosmological
form

for
the

metric
ds = —dH+a(r)

(dr+r
dQ

) in-
side

the
shell,

but
this

isinconsistent
with

the
field

equa-
tions.

Similarly,
an

attempt
to

keep
the

three-
dimensionally

conformally
Oatform

ofthe
metric,

with
conformal

factor
tied

to
the

dilaton,
isinconsistent.

W
e

have
not

been
able

to
come

up
with

a
natural

ansatz.
Nonetheless,

we
believe

that
smooth

solutions
exist.

There
are

many
smooth

solutions
of the

vacuum
field

equations
restricted

to
a
manifold

with
the

topology
ofa

hemi-three-sphere
cross

time.
Our

matching
conditions

fix
only

the
values

ofthe
metric

functions
and

dilaton
along

the
timelike

world
lineofthe

collapsing
shell,

leav-
ing

their
normal

derivatives
undetermined.

Thus
there

seems
to
be

plenty
ofroom

forpatching
in
anonsingular

vacuum
solution.

To
obtain

some
feeling

forthe
motion

ofthe
collapsing

shell
we

have
made

the
fairly

arbitrary
assumption

that

a
fi(r)—

(2.13)

This
gives

us
a
single

first-order
ordinary

differential
equation

for
R(r).

The
solution

so
obtained

behaves
likeR(r)=Q+e

r',
as ~~oo.

W
e
can

then
use

this
solution

to
check

that
the

other
coefficient

functions,
to

leading
order,

are
well

behaved
for

all
finite

values
of~.

W
e
can

continue
this

procedure
perturbatively,

to
verify

that
the

coefficients
in
the

expansion
in
powers

ofn
are

smooth
functions

of~.Ofcourse, this
demonstration

ofa
smooth

perturbation
expansion

around
the

shell, doesnot
guarantee

the
existence

ofan
everywhere

smooth
solu-

tion.
W
econtinue

to
search

fora sensible
ansatz

that
will

enable
us

to
demonstrate

explicitly
the

existence
of

a
smooth

collapsing
solution,

but
we

feel
confident

that
such

a solution
exists.

The
collapsing

solution
that

we
have

described,
begins

asadimple
on

Aatspace.
Atany

finite
time

after
its for-

mation,
it
will

have
the

geometry
shown

in
Fig. 2.

W
e

will
refer

to
such

an
object

as
a
finite

volume
cornu-

copion.
Itisasolution

ofthe
field

equations
that

isstatic
over

mostofspace.
The

time
dependence

occurs
only

in
the

tip ofthe
horn.

Mu(r, 0) =R
1—

2R
R
+

1 —
—R

(2. 12)

Atthis
point

we
must

be more
specific

about
the

fields
on

the
interior

ofthe
shell.

In
Einstein

stheory,
there

is
aunique

spherically
symmetric

nonsingular
vacuum

solu-

FIG.2.Instantaneous
snapshot

ofacollapsing
cornucopion.

7SeeAppendix
8
fordetails.

8The
fulldetails

ofthe
derivation

are
in
Appendix

B.
9Appendix

C.
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acosmological

form
forthe

metric
ds = —dH+a(r)

(dr+rdQ
) in-

sidethe
shell, butthisisinconsistent

with
the

field
equa-

tions.
Similarly,

an
attempt

to
keep

the
three-

dimensionally
conformally

Oatform
ofthe

metric,
with

conformal
factortiedtothedilaton,

isinconsistent.
We

have
notbeen

able
to
come

up
with

anatural
ansatz.

Nonetheless,
we

believe
that

smooth
solutions

exist.
There

are
many

smooth
solutions

of the
vacuum

field
equations

restricted
toa manifold

with
thetopology

ofa
hemi-three-sphere

crosstime.
Our

matching
conditions

fix
only

the
values

ofthe
metric

functions
and

dilaton
along

the timelike
world

lineofthecollapsing
shell, leav-

ing
their

normal
derivatives

undetermined.
Thus

there
seemstobeplenty

ofroom
forpatching

inanonsingular
vacuum

solution.
Toobtain

somefeeling
forthemotion

ofthecollapsing
shellwe havemade

thefairly
arbitrary

assumption
that

a
fi(r)—

(2.13)

This
gives

us
a
single

first-order
ordinary

differential
equation

forR(r).
The

solution
so

obtained
behaves

likeR(r)=Q+e
r',as ~~oo.

We
can

then
use

this
solution

tocheck
thattheother

coefficient
functions,

to
leading

order, are
wellbehaved

forallfinite
valuesof~.

Wecan
continue

thisprocedure
perturbatively,

to
verify

thatthe
coefficients

inthe
expansion

inpowers
ofnare

smooth
functions

of~.Ofcourse, thisdemonstration
ofa

smooth
perturbation

expansion
around

theshell, doesnot
guarantee

the
existence

ofan
everywhere

smooth
solu-

tion.Wecontinue
tosearch

fora sensible
ansatz

thatwill
enable

us
to

demonstrate
explicitly

the
existence

ofa
smooth

collapsing
solution,

but
we

feelconfident
that

sucha solution
exists.

Thecollapsing
solution

thatwehave
described,

begins
asadimple

on
Aatspace. Atany

finite
timeafterits for-

mation,
itwillhave

the
geometry

shown
inFig. 2.We

willrefer
to

such
an

object
asa

finite
volume

cornu-
copion. Itisasolution

ofthefieldequations
thatisstatic

overmostofspace. Thetime
dependence

occurs
only

in
thetip ofthehorn.

Mu(r, 0) =R
1—2R

R
+

1 ——R

(2. 12)

Atthispoint we mustbe more
specific aboutthe

fields
ontheinterioroftheshell.

InEinstein
stheory, there

is
aunique

spherically
symmetric

nonsingular
vacuum

solu-

FIG.2.Instantaneous
snapshot ofacollapsing

cornucopion.

7SeeAppendix 8fordetails.
8Thefulldetailsofthe derivation

are inAppendix
B.

9Appendix
C.

V ∼ 3
√

3M2v
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First region A: There is support for good evolution through the
singularity from a number of directions.

This is a Kontowski-Sachs geometry and a bounce is plausible. In
fact, change vars to gττ = N2a/b, gxx = b/a and gθθ = a2 sol is

ds2 = − 4τ4

2M − τ2dτ
2 + 2M − τ2

τ2 dx2 + τ4dΩ2,

and Synge [’56] noticed no trouble with evolution through the
singularity: ∂τ (ȧ/N) = ∂τ (ḃ/N) = 0, and ȧḃ+N2 = 0, give

a(τ) = τ2, b(τ) = 2M − τ2, & N2 = 4a(τ).

15



This is Schw. interior with t = x, r = τ2 and for −
√

2M < τ < 0,

but can be continued (τ <
√

2M) into the interior of a white hole.

Large curvatures near τ = 0 will modify evolution, e.g.,

ds2 = −4(τ2 + `)2

2M − τ2 dτ
2 + 2M − τ2

τ2 + `
dx2 + (τ2 + `)2dΩ2, (1)

where ` is an effective parameter that bounds the curvature. For
large masses

K(τ) ≡ RµνρσRµνρσ ≈
9`2 − 24`τ2 + 48τ4

(`+ τ2)8 M2

and has a finite max K(0) = 9M2/`6.
16



A large black hole region goes over into a large white hole region.
Evolution of latter tube provides long final white hole lifetime.

B

Using amp ∼ e−M2/m2
P and imposing volume of the tubes equal

across the transition we will estimate the time scales.
17



The metric around the B region is constructed out of two copies of
Kruskal:

A concrete proposal for the B region metric has not been made yet.
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Surroundings of the B region in more detail:

Duration: ∆τ = v+ − v− = u+ − u−
take∼
√
~

u+v+ = u−v− ≡
(
1− rP

2M
)
e

rP
2M

u− = −v+

u−v+ ≡
(
1− rm

2M
)
e

rm
2M

B

bl
ac

k 
ho

le
w

hi
te

 h
ol

e
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Using the effective metric of Eq. (1), ds2
3 = 2M

` dx
2 + `2dΩ2 at

τ = 0 transition, and

V = 4π`2
√

2M
`

(xmax − xmin).

The ‘duration’ is given by x = t, with the latter the Schw. time.

Take Planckian curvature K ∼ 1/~2 to determine ` ∼ (M0~)1/3,
x = t of order evaporation time to get ∆x ∼M3

0 /~, and find

Vbh(final) ∼M4
0 /
√
~.

The white hole begins life Planckian, ` ∼ mP =
√
~, and so

Vwh(initial) ∼ ~τwh.

Setting Vbh = Vwh gives τwh ∼M4
0 /~3/2, a long-lived remnant.

20



We have shown that this model satisfies the desideratum (b), what
about (a) and (c)?

(a) Plenty of room to store information. No event horizons, only
apparent horizons—entropy is not just the horizon states.

(c) Planck-sized white hole. No tranplanckian perturbations means
no white hole instability.

21



Outline
I. Is the average of timelike singularities really spacelike?

II. The White Hole Remnant Scenario

III. Quantum Gravity Inside and Out
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Naive causal isolation might lead one to neglect the inner lives of
black holes, but this would be a mistake. There’s much to be done.

Interesting connections to the recent ‘No Transmission Principle’ in
gauge/gravity due to Engelhardt & Horowitz arXiv:1509.07509

23

https://arxiv.org/abs/1509.07509


A year ago, P. Singh reported on canonical BH to WH bounces.
With A. Corichi they had found “The final white hole mass is
approximately a quartic power of the initial black hole mass.”

arXiv:1707.07333

He also discussed work with J.Olmedo and S. Saini which led to
symmetric mass bounce. Recently, with A. Ashtekar they have
found a consistent quantization prescription of BH to WH bounces
which leads to a symmetric bounce and resolves previous problems.

24

https://arxiv.org/abs/1707.07333


Christodoulou, D’Ambrosio, Rovelli, Speziale, Vilensky ’16-’18

D’Ambrosio & Rovelli ’18 Rovelli & Martin-Dussaud ’18
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https://arxiv.org/abs/1605.05268
https://arxiv.org/abs/1801.03027
https://arxiv.org/abs/1803.05015
https://arxiv.org/abs/1803.06330


Our metric sets up the classical b.c.s needed to do a complex
spacetime tunneling calculation for a black to white hole transition.

see HMH PI QG Seminar

I am involved in using a midisuperspace approach á la Kuchař...
...I expect ∼ e−ηA/m2

Pl ∼ e−M2/m2
Pl .

Tackling BTZ w K. Clements, M. Dupuis, F. Girelli, & A. Osumanu
26

https://www.perimeterinstitute.ca/fr/videos/complex-quantum-tunneling-picard-lefschetz-theory-and-decay-black-holes


Life would be so much more dull without wonderful collaborators:

Eugenio Bianchi & Victoria Chayes

Marios Christodoulou, Fabio D’Ambrosio, & Carlo Rovelli
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