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Discrete Areas & 
Geometrical Path 
Integrals

In Regge Calculus we 
approximate spacetime by a 
triangulation of  flat pieces glued 
together to give curvature. 

This cuts the degrees of  
freedom of  gravity down to a 
finite number and eases study.  

It is also essential for doing 
numerics.
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A dimensional ladder helps to illustrate some salient aspects of  
Regge Calculus

In 2D it is clear how curvature 
becomes concentrated on the 

-dimensional ‘bones’. 

In 3D we see an intriguing 
alignment between the metrical 
and symplectic aspects: the bones 
are 1D edges, whose lengths 
give the metric;  
meanwhile the conjugate 
curvature angle is compact and 
leads to quantization of  lengths

(d − 2)
2D

3D
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A dimensional ladder helps to illustrate some salient aspects of  
Regge Calculus and 4D is particularly rich

In 4D the bones are 2D triangles .  

One is forced to choose between: 
the apparent metrical length 
variables , with a complicated 
conjugate variable 

or 
The curvature angle around the 
bone, which is conjugate to the 
area of  the triangle . Again as the 
curvature angle is compact, the 
areas are quantized. 

t

l

t

The 2nd choice is harmonious with LQG.
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Our motivations for investigating a new spin foam model

▲ Our aim is to build the simplest possible quantum gravity 
amplitudes that incorporate the (LQG) discrete area spectrum: 

,   with  . 

▲ To this end we cast the action in terms of  area variables 

▲ The unconstrained action has only flat classical solutions, which 
leads us to impose constraints on the theory 

a( j) = γℓ2
P j( j + 1) ∼ γℓ2

P( j + 1/2) ℓP = 8πℏG/c3

▲ However, our choice of  discrete 
area spectrum disallows strong 
imposition of  these constraints; we 
investigate the strongest possible 
(weak) imposition consistent with 
the area spectrum

▲ What results is a remarkably accessible and computable model
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 is the Barbero-Immirzi parameterγ



Defining the Model: an Outline of  the talk

To understand the ingredients of  the model we will: 
1. See how area variables lead to flat classical solutions in the 

unconstrained theory. 
2. Study constraints that can be imposed on a classical theory cast in 

these variables and discover why they can only be imposed weakly 
in the quantum theory. 

3.  Define the (Euclidean signature) model. This model has the 
structure of  a standard spin foam with weights defined on triangles 
and 4-simplices with the addition of  a particular constraint on the 
tetrahedra along which two 4-simplices are glued. 

With the model in hand, I will report on numerical investigations we 
have performed on two different triangulations. In both cases we find, 
in a particular limit, good agreement with the classical solutions 
imposed by the boundary data.

6



In standard Regge Calculus we treat the lengths of  edges as 
vars, while in Area Regge Calculus it’s the areas of  triangles

The Regge Action for a 4D triangulation  is  
 , 

where  
. 

In Length Regge Calculus (LRC) we take  
   and  

Δ

SRegge = ∑
t

At ϵt

ϵt = 2π − ∑
σ⊃t

θσ
t

At = At(l) θσ
t = θσ

t (l)

and varying  w.r.t. the bulk lengths  gives the eqs. of  motion  

,   which limit, for finer & finer , to the Einstein eqs.

SLRC l

∑
t⊃e

∂At

∂le
ϵt(l) = 0 Δ

t
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In standard Regge Calculus we treat the lengths of  edges as 
vars, while in Area Regge Calculus it’s the areas of  triangles

A 4-simplex has ten edges and ten faces. 
Locally the functions  can be inverted 
to give edge lengths . 

Considering areas  as variables we can 
define Area Regge Calculus (ARC) via the 
action  

 .

At(l)
Lσ

e (a)

a

SARC = ∑
t

at ϵt(a)

The dihedral and deficit angles are obtained using . 
Strikingly, variation of  this action gives eqs. of  motion 

,   which impose flatness on .

θσ
t (a) = θσ

t (Lσ(a))

δSARC = ϵt(a) + ∑
t

atδϵt = ϵt(a) = 0 Δ
0  (due to the Schläfli identity)

t
Lσ

e

8



Adding Constraints to the Theory

We can understand this difference in eqs. 
of  motion between ARC and LRC as due 
to a differing # of  degrees of  freedom. 

Gluing along the tetrahedron with orange 
vertices, 6 edge lengths are matched, but 
only 4 areas. 

Φτ,σ
e

This mismatch can be resolved by introducing  
3D dihedral angles: 

 is the dihedral angle around edge  in tet . 
Two neighboring simplices , glued along , will have the same 
lengths in  if  the constraints 

 are imposed on non-opposite edges .

Φτ,σ
e (a) = Φτ

e(Lσ(a)) e τ

{σ, σ′ } τ
τ

Φτ,σ
ei

(a) − Φτ,σ′ 
ei

(a) = 0, i = 1,2 ei
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Adding Constraints to the Theory
We can localize these constraints to a single 
4-simplex by introducing two additional 
variables  per  to our theory and 
imposing 

. 

The advantage of  these localized 
constraints is that they preserve additive 
factorization of  the Regge action and allow 
us to write the path integral in a product 
factorized form.  

ϕτ
ei

τ

ϕτ
ei

− Φτ,σ
ei

(a) = 0, i = 1,2

Dihedral angles at a pair of  non-opposite edges  do not commute. 
Instead 

,   with  the angle between .

(e1, e2)

ℏ{ϕτ
e1

, ϕτ
e2

} = ℓ2
Pγ

sin αt,τ
v

at
=

sin αt,τ
v

(jt + 1
2 )

αt,τ
v (e1, e2)

Φτ,σ
e
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Adding Constraints to the Theory

2nd class 
constraints Φτ,σ

e

We can localize these constraints to a single 
4-simplex by introducing two additional 
variables  per  to our theory and 
imposing 

. 

The advantage of  these localized 
constraints is that they preserve additive 
factorization of  the Regge action and allow 
us to write the path integral in a product 
factorized form.  

ϕτ
ei

τ

ϕτ
ei

− Φτ,σ
ei

(a) = 0, i = 1,2

Dihedral angles at a pair of  non-opposite edges  do not commute. 
Instead 

,   with  the angle between .

(e1, e2)

ℏ{ϕτ
e1

, ϕτ
e2

} = ℓ2
Pγ

sin αt,τ
v

at
=

sin αt,τ
v

(jt + 1
2 )

αt,τ
v (e1, e2)
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The Area Regge action factorizes additively. Boundaries of  the 
triangulation  are readily included.Δ

From the definition of  the deficit angle 
, 

we see that the area Regge action factorizes   

. 

The last equality defines the triangle and simplex actions 
   and   . 

Here the index  allows for triangulations with boundary: 
it is 1 for triangles on the boundary and 2 for triangles in the bulk.

ϵt = 2π − ∑
σ⊃t

θσ
t

SARC = ∑
t

at ϵt = ∑
t

ntπat − ∑
σ

∑
t⊃σ

atθσ
t (a) ≡ ∑

t

Sa
t (a) + ∑

σ

Sa
σ(a)

Sa
t = ntπat Sa

σ(a) = − ∑
t⊃σ

atθa
t (Lσ(a))

nt ∈ {1,2}
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Defining our model
In this context we can define the spin foam  

, 

with 

       and       . 
In practice, for our numerics we take  for spins satisfying the 
constraints, but this deserves future study. (We could use a cosine too, 
a quite mild complication of  our numerics; we focused on flatness.) 

The factors  implement the constraints: imposing these sharply, 
with  if  satisfied and 0 else, leads to diophantine eqs. for the 
constraints that will only be satisfied for rare and special labels ; 

the key fact that  weak imposition of  the constraints

𝒵 = ∑
{jt}

μ( j)∏
t

𝒜t( j)∏
σ

𝒜σ( j) ∏
τ∈blk

Gσ,σ′ 
τ ( j)

𝒜t = eiγntπ( jt+ 1
2 ) 𝒜σ = e−iγ∑t⊃σ ( jt+ 1

2 )θσ
t ( j)

μ( j) = 1

Gσ,σ′ 
τ

Gσ,σ′ 
τ = 1

{jt}

⇝
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We are forced to navigate between Scylla—reducing too much 
the density of  states—and Charybdis—imposing dynamics that 
does not match GR

We implement the constraints with  
.Gσ,σ′ 

τ ( j) = ⟨𝒦τ( ⋅ ; Φτ,σ
ei

( j)) |𝒦τ( ⋅ ; Φτ,σ′ 

ei
( j))⟩

Coherent state 
peaked on ’sΦ
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Before proceeding to numerics, it’s useful to note that, like 
other spin foams, this model can be derived from a constrained 
topological theory for GR—in this case a higher gauge theory

In this sense, this model is a fundamental spin foam. 

 Our calling these ‘effective spin foams’ is intended both to indicate 
the fact that with different  a variety of  spin foams could be studied 
along these lines and to indicate these models’ numerical efficiency. 

The derivation from the BFCG higher gauge theory, shows that the 
amplitude factors 

       and       , 
can be thought of  as higher gauge recoupling coefficients; contrast 
the more familiar Wigner -symbols. This also exposes close 
connections with the Korepenov-Baratin-Freidel (KBF) model.

G

𝒜t = eiγntπ( jt+ 1
2 ) 𝒜σ = e−iγ∑t⊃σ ( jt+ 1

2 )θσ
t ( j)

3nj

c.f  Asante, Dittrich, Girelli, Riello, Tsimiklis; Korepenov; Baratin, Freidel; Mikovic, Oliveira, Vojinovic [1908.05970, 0211165, 0611042, 1508.05635] 
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Inputs and Approximations for the Numerics

The spin foam  
, 

with , 

       and       . 

To keep the numerics tractable we will: 

▲ consider symmetry reduced triangulations 

▲ approximate the coherent inner products by real gaussians with widths 

determined by the  commutation relations 

▲ We will also consider scaling with both  and .

𝒵 = ∑
{jt}

μ( j)∏
t

𝒜t( j)∏
σ

𝒜σ( j) ∏
τ∈blk

Gσ,σ′ 
τ ( j)

μ( j) = 1

𝒜t = eiγntπ( jt+ 1
2 ) 𝒜σ = e−iγ∑t⊃σ ( jt+ 1

2 )θσ
t ( j)

ℏ{ϕτ
e1

, ϕτ
e2

} = sin αt,τ
v (jt+

1
2 )

−1

j γ
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Symmetry reduced numerical triangulation 1: 
 contains three 4-simplices and one bulk triangleΔ

x x

x

y

y
y

zz

z

z z

z
zz

z

There are three 4-simplices: 
(12345), (12356), and (13456). 

These share triangle (135). 

There are three independent lengths 
      with    

    with   
,  all bndry  have dihedral . 

x = lij i, j = 1,3,5

y = lmn m, n = 2,4,6

z = lim z ϕz

Three independent areas: 2 bndry: , and , 
and 1 blk: , which we sum over to get      

b = A(x, z, z) c = A(y, z, z)

a = A(x, x, x) ⟶ ϵa(b, c, ϕz)

a

b

c

Same  independently studied in  BF theory in recent paper by Donà, Gozzini, Sarno [2004.12911]Δ SU(2)
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Numerical results on triangulation 1: Gluing two such  along 
their bndrys we get a triangulation of  the boundary-less 

Δ
S4

Let  be the bulk area of  the first copy 
and  that of  the second. Fix .  
Compute: 

 

with 

 

a
a′ a′ , b, c

⟨ϵa⟩(a′ , b, c) =
1
𝒵 ∑

ja

ϵaG(a, a′ )∏
t

𝒜t∏
σ

𝒜σ

G = exp {−
9

2σ(Φ)2 [Φz(a, b, c) − Φz(a′ , b, c)]2}

x x

x

y

y
y

zz

z

z z

z
zz

z

and 

,   . σ2(Φ) =
1
2

sin α(a, b, c)

(jb + 1
2 )

+
1
2

sin α(a′ , b, c)

(jb + 1
2 )

sin α(a, b, c) =
2b

z2(a, b, c)

a

b

c
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Numerical results on triangulation 1: The ’s oscillate, the  
are gaussian—need gradual oscillations to not kill  constraints

𝒜 G
G

Compute: 
⟨ϵa⟩(a′ , b, c) =

1
𝒵 ∑

ja

ϵaG∏
t

𝒜t∏
σ

𝒜σ

j = 99.5 j = 999.5

Boundary induces classical (LRC) value of  ϵa ≈ 0.5
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It may come as a surprise that a good semiclassical geometry is 
achieved for large  and small —a scaling argument illustrates why j γ

An important input for us is that  
determines the width of  :  

. 

Consider  to have nearly equal bndry areas , hence . 
Then scaling wise, we have  

 , 

. 

Can peak on ,  large , summation range grows & need to require  

.

ℏ{ϕτ
e1

, ϕτ
e2

} = sin αt,τ
v (jt+

1
2 )

−1

G

σ(Φ) ∼ 1/ j

Δ a ∼ γℓ2
P j ablk ∼ a

σ( jblk) ∼ [ ∂Φ( jblk)
∂jblk ]

−1
× σ(Φ) ∼ j ×

1
j

= j

σ(ϵ) ∼ [ ∂ϵ( jblk)
∂jblk ] × σ( jblk) ∼

1
j

× j =
1

j

ϵ ≠ 0 ⇝ j

σ ( SARC

ℓ2
P ) =

1
ℓ2

P

∂SARC

∂jblk
× σ( jblk) ∼ γϵ j ≲ 𝒪(1)

C.f. Han 
[1304.5628]
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Symmetry reduced numerical triangulation 2: 
 consists of  6 simplices around one edgeΔ

We apply a certain symmetry reduction, so that there are only       
3 bndry and 3 bulk areas (4 bndry lengths and 1 bulk length).   

There are 3 simplices of  type 1 and three simplices of  type 2. In 
each type, all simplices have the same geometry. 

The path integral involves 1 bulk variable in LRC and 3 area 
variables in (constrained) ARC. However, making use of  the fall 
off  of  the  functions, we can significantly reduce the summation 
range and gain time savings in the numerics.

G
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Symmetry reduced numerical triangulation 2: 
 consists of  6 simplices around one edgeΔ

For completeness, here is the definition of  this : Δ

vertices: m,n=0,1;   i,j=2,3,4 k=5,5’
simplices: (0,1,2,3,5) (01,2,3,5’)

(0,1,2,4,5) (0,1,2,4,5’)
(0,1,3,4,5) (0,1,3,4,5’)

lengths:            blk            blk 

areas:
             blk              blk

             blk                blk

l01 = t l01 = t

lmi = lik ≡ x lmi = lik ≡ x

lij ≡ y lij ≡ y

lm5 ≡ z lm5′ ≡ z′ 

A(x, x, y) A(x, x, y)

A(x, x, t) A(x, x, t)

A(x, x, z) A(x, x, z′ )

A(z, z, t) A(z′ , z′ , t)
22



A set of  generalized triangle inequalities restricts the bulk areas 
of  this  to particular rangesΔ

A(x, x, t)

A(z, z, t)

A(z′ , z′ , t)

Within the triangle 
allowed region, only a 
small part of  the 
parameter space has non-
negligible values of  . 

In this numerical 
example, it is the portion 
at the lower left of  the 
figure. 

G
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Indeed, the region of  non-negligible  is even smallerG

A(x, x, t)

A(z, z, t)Within the blue region the 
(generalized) triangle 
inequalities are satisfied. 

Within the gold strip the 
value of   is greater than 

. 

These dual conditions 
greatly restrict the range 
of  summation and 
increase the speed of  the 
numerics.

G
10−10
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On our methodology: amongst the three bulk areas, there is a 
combination of  variations consistent with the constraints

There are 3 bndry and 3 bulk areas (4 bndry and 1 bulk length).   

In effect, the  limit us to the swath of  parameter space around the 
bulk length variation by keeping us near to shape matched configs.  

So far through expectation values, we investigate whether, for large 
, there is a value of   that gives us expectation values consistent 

with LRC.  

If  we were doing a saddle point analysis, approximating sums by 
integrals, these would be saddles of  the ARC action but only along 
the  constraint directions. Perhaps it is useful to call these semi-
saddles. By construction these semi-saddles agree with the LRC 
saddles as well as the (weak) constraints allow.

G

j γ
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An example of  a triangulation of  this sort, call it Δ1

Fix the three bndry areas to have values: 

  =456,      =456,       =443 
The nearest LRC solution has bulk areas given by  

=463.07,    =673.47,    =607.08

A(x, x, y) A(x, x, z) A(x, x, z′ )

A(x, x, t) A(z, z, t) A(z′ , z′ , t)

ℜ[A(x, x, t)]

ℑ[A(x, x, t)]

γ
γ0
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An example of  a triangulation of  this sort, call it Δ1

Fix the three bndry areas to have values: 

  =456,      =456,       =443 
The nearest LRC solution has bulk areas given by  

=463.07,    =673.47,    =607.08

A(x, x, y) A(x, x, z) A(x, x, z′ )

A(x, x, t) A(z, z, t) A(z′ , z′ , t)

ℜ[A(z, z, t)]

ℑ[A(z, z, t)]

γ γ
0
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An example of  a triangulation of  this sort, call it Δ1

Fix the three bndry areas to have values: 

  =456,      =456,       =443 
The nearest LRC solution has bulk areas given by  

=463.07,    =673.47,    =607.08

A(x, x, y) A(x, x, z) A(x, x, z′ )

A(x, x, t) A(z, z, t) A(z′ , z′ , t)

ℜ[ϵ (A(x, x, t))]
ℑ[ϵ (A(x, x, t))]

γ

γ0

28

LRC value 
ϵ (A(x, x, t)) = 3.22



A 2nd example of  a triangulation of  this sort, call it Δ2

Fix the three bndry areas to have values: 

  =912,      =912,       =886 
The nearest LRC solution has bulk areas given by  

=926.13,    =1346.94,    =1214.15

A(x, x, y) A(x, x, z) A(x, x, z′ )

A(x, x, t) A(z, z, t) A(z′ , z′ , t)

ℜ[A(x, x, t)]

ℑ[A(x, x, t)]

γ
γ

0
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A 2nd example of  a triangulation of  this sort, call it Δ2

Fix the three bndry areas to have values: 

  =912,      =912,       =886 
The nearest LRC solution has bulk areas given by  

=926.13,    =1346.94,    =1214.15

A(x, x, y) A(x, x, z) A(x, x, z′ )

A(x, x, t) A(z, z, t) A(z′ , z′ , t)

ℑ[A(x, x, t)]

γ

γ0
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ℜ[A(z, z, t)]

ℑ[A(z, z, t)]



A 2nd example of  a triangulation of  this sort, call it Δ2

Fix the three bndry areas to have values: 

  =912,      =912,       =886 
The nearest LRC solution has bulk areas given by  

=926.13,    =1346.94,    =1214.15

A(x, x, y) A(x, x, z) A(x, x, z′ )

A(x, x, t) A(z, z, t) A(z′ , z′ , t)

γ
γ0
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ℜ[ϵ (A(z′ , z′ , t))]

ℑ[ϵ (A(z′ , z′ , t))]

LRC value 
ϵ (A(z′ , z′ , t)) = − 0.61



We also studied a 3rd example with bndry values  . 
Here are comparisons of  all 3 exs. rescaled by LRC values:

Δ3 = 3 ⋅ Δ1

γ1

32

ℜ[A(x, x, t)/LRC(A(x, x, t))]

blue  
orange  
green

= Δ1

= Δ2

= Δ3



We also studied a 3rd example with bndry values  . 
Here is a comparison of  the deficit around :

Δ3 = 3 ⋅ Δ1
A(x, x, t)

γ

33

blue  
orange  
green

= Δ1

= Δ2

= Δ3

LRC value 
ϵ (A(x, x, t)) = 3.22

ℜ[ϵ (A(x, x, t))]



All computations were performed on laptops using 
Mathematica. In each run we computed 6 expectation values 
for 40 different values of  , for a total of  240 spin foam sumsγ

A table of  the time to make one such run. This depends on the 
values of  the boundary spins, which determine the range of  bulk 

spins that one must sum over. 

This computational framework is remarkably fast and allows 
numerical exploration of  many interesting questions.
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Expectations/Conjectures from steepest descent and Picard-
Lefschetz Theory

We have not yet explored complex values for our parameters. 
Hence, what appears here should be viewed as conjectures only. 

In both examples presented here, the 3 simplices with a bulk 
triangle and 6 simplices with an inner edge, we found complex 
expectation values for the deficit angles around bulk triangles.  

We conjecture that these complex expectation values are from 
saddles that are slightly off  in the complex plane. We believe we 
may have identified a regime in which a saddle moves close to the 
real axis. This may be one characterization of  what is desirable 
about our conditions on  & . γ j
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Expectations/Conjectures from steepest descent and Picard-
Lefschetz Theory

The picture that we have in mind is like that of  Picard-Lefschetz 
theory, where an initial contour is deformed onto the steepest 
descent contour and the integral can be well approximated 
asymptotically by its value at the complex saddle. 
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This model illustrates that spin foams can avoid the flatness 
problem in a range of  spin  and Barbero-Immirzi parameter j γ

γ

37

blue  
orange  
green

= Δ1

= Δ2

= Δ3

LRC value 
ϵ (A(x, x, t)) = 3.22

ℜ[ϵ (A(x, x, t))]

E.g. at , for  we have  
     ,    , and 

γ = 0.1 Δ3

ϵ(A(x, x, t)) = 3.19 − 0.20i ϵ(A(z, z, t)) = − 1.32 + 0.18i

ϵ(A(z′ , z′ , t)) = − 0.59 + 0.07i

Compare the LRC 
values:

 
 

and 

ϵ(A(x, x, t)) = 3.22

ϵ(A(z, z, t)) = − 1.36

ϵ(A(z′ , z′ , t)) = − 0.607
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Conclusions
We have introduced a new spin foam model  

, 

with             and       . 
The functions  implement the second class constraints coming from 
shape matching in a manner consistent with the LQG Hilbert space.  

▲ Constrained theories with discrete geometric spectra can suffer 
from too low a density of  states: diophantine conditions arising from 
the discreteness make strong imposition a stringent requirement 

▲ Nonetheless weak imposition of  the constraints can be consistent 
with the dynamics of  General Relativity, as indicated by our numerics 

▲ This model allows for rapid numerical simulation and the 
exploration of  a landscape of  interesting questions in spin foams 

𝒵 = ∑
{jt}

μ( j)∏
t

𝒜t( j)∏
σ

𝒜σ( j) ∏
τ∈blk

Gσ,σ′ 
τ ( j)

𝒜t = eiγntπ( jt+ 1
2 ) 𝒜σ = e−iγ∑t⊃σ ( jt+ 1

2 )θσ
t ( j)

G



Thank you!


