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T'here 1s an argument that
begins A. Ashtekar’s book
“Lectures on Non-
Perturbative Ganonical
Gravity” that I’'ve long found
Intriguing:

Are there features ot classical
GR that would indicate that
non-perturbative quantum
gravity 1s very ditterent from
perturbative quantum gravity?
They proceed to a simple bl
insighttul computation:

Advarced Series I Axbrophytics and Conmulegy = V. §
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Consider the self-energy of a shell of charge e and
uniform mass density as the radius, €, goes to zero.

Ignoring gravity,
o2 HL, €

m(e) = my+ —.
€

For a Newtonian self interaction

o7 Gmp

m(e) = my

2

€ €2
and 1n both cases the result diverges as € — 0. In GR

e  Gm?(e) —€ . m =

mle) = e — s E N = ;
S el L T

This has a finite limit as € — 0, m — e¢/y/G !




Consider the selt-energy of a shell of charge e and
uniform mass density as the radius, €, goes to zero.

But, 1t we expand around small G
©) s i 4G = e’
mie) = | hee -
2626\ T ¢ L

2 3
< ez) ( 82) G ( ez) <G>2
— m0+— =% m0+_ _+2 m0+_ T it
€ € € € €

Every term 1s divergent in the € — 0 limat.

I take this cautionary tale seriously; beware of over interpreting
perturbative divergences! 'loday 1 want to take up, what 1s for
ITiE, o e Chcrc;

Perturbative divergences carry interesting information &
structure ~ known as resurgence



1 lus ‘lalk

Asymptotic resurgence 1s impressively broad and impacttul. 1o the best
of my knowledge the perturbative/non-perturbative relations found in
resurgence have yet to be applied to quantum gravity.

I show that these tools shed light on the quantization of the simplest
orain of space, a quantum tetrahedron. The talk has 3 parts:

1. Resurgence and Perturbative/Non-Perturbative Relations
(I draw heavily on the outstanding introductions by CG. Howls, A.O.

Daalhuis, and G. Dunne

from the ARA School)

2. Grains of Quantum Space: the area geometry of tetrahedra, their

classical phase space, and

| semiclassical quantization

3. Perturbative/Non-Perturbative Relations in the Quantization ot
the Volume of a Grain of Space
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Iwo physical examples where Airy functions arise are quantum
mechanics of turning points and supernumerary rainbows
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'T'’he Schrodinger equation at the turning point 1s
h2 dzl// dzl//
F(E+V'(IOx)w =E or  —— = g
e ( Oy = Ey - W

with a = A= 23[2mV'(0)]'-.

WKB theory suggests we introduce the action

: 2
Gt g e §a3/2x3/2,

and consider solutions

¢%(a,x)3/2 o0

—a(x) e c.

~ ] e .
w(x) /—a,(x)( e (ax)% o [(ax)3/2]"

A recursion relation determines the (factorially divergent) c,:

1 5

4 n

c, = (F1D)



The ¢, are unexpectedly interesting
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But, now consider the large n behavior of the ¢
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It we organize this expansion in terms of factorial growth...




The ¢, are unexpectedly interesting

1 5 e c’ =
+ F(“E)F(“E) { 5 385 85085 }
A :

C.p = ’ ’ ’ P
: 2M,<i>” 48’ 4608 663552
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But, now consider the large n behavior of the ¢

1 mn—1)! 3l 25 |
ch o~ 1 |
27 <i>" 36 n 2592 n2
3

It we organize this expansion in terms of factorial growth...

e (4) 51 (4)2 385 1
e 1= +( = i
2 (4) 3) 48 (n—1)  \3) 4608 (n— 1)(n—2)

3

...we see the same coefficients! The late orders of ¢ are the
carly orders of ¢

Why?!



T'he integral representation sheds light on this question:

For z = re®, the critical points are at f, = +4/z ~ +

Nl = —

f3
ex — 7t dt.
> 'L L

JTl

816)/2.

For z real and positive, 1.e. 8 = 0, the integral 1s dominated by a
single real critical point and exponentially decays.

2 | o

Shading shows the value ot the
real part of the exponent:

B!
Yel

ue w decreasing real part

low w 1ncreasing real part



'Iwo physical examples where Airy -
mechanics of turning points and supernumerary rainbows
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T'he integral representation sheds light on this question:

, 1 ;
Al =1 expl —f dt.
27l . 3

For z = re”®, the normalized critical points are at ¢, = & ¢'%°,

However, as %E vary 0, the critical points and real-f landscape
Vary A= the second critical point begins to contribute.

2_




T'he integral representation sheds light on this question:

, 1 ;
Al =1 expl —f dt.
27l . 3

For z = re', the normalized critical points are at ¢z, = £ '*2,

T'his change 1n dominance 1s quite clear in the Airy function:

12



T'he integral representation sheds light on this question:

, ] ;
All7) = —J exp <—zt ) dr.
2 - 3

JTl

As we continue 6 further to 8 = z, both critical points become

purely imaginary and jointly lead to oscillatory behavior .

This change of 1 crit. point into 2 1s t!

e Stokes’ phenomenon.
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Iwo physical examples where Airy functions arise are quantum
mechanics of turning points and supernumerary rainbows
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T'he integral representation sheds light on this question:

Ail(z) = 1 J r + 2 dt
1 cX = — z
- 27l P . 3

it

But still the question remains: why do both critical points
contribute? T'he answer 1s that both saddles were always
contributing; 1t’s just that one was exponentially sub-dominant

Sl by k]

Aile oiz) = —e G BI(Z) et3 A1(2).

We can understand that such connection formulae must exist
from the differential equation:
2
dx?

which only has two

independent solutions.




Gerald Dunne offers an elegant mnemonic 1image tfor these 1deas:
the wavelets surrounding droplets of water

The expansion of a quantity of physical interest around one of
1ts critical points has late term contributions arising from the
near term contributions of neighboring saddles.
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1 lus ‘lalk

Asymptotic resurgence 1s impressively broad and impacttul. 1o the best
of my knowledge the perturbative/non-perturbative relations found in
resurgence have yet to be applied to quantum gravity.
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orain of space, a quantum tetrahedron. The talk has 3 parts:
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Classical Area Geometry — Areas, instead of lengths, can
be used to describe all sorts of familiar geometry.

Heron’s beautiful formula gives the area of a triangle as a
function ot 1ts edge lengths

AL, b, 1) = —[12 = (= B[, + B)* — 121,

A classical theorem due to H. Minkowski gives
a tetrahedron’s geometry via its area vectors: f

—

A=A,
where 7, 1s the unit normal to triangle .
A2
1 A3 . S =

A

18



Indeed, we can make a rather protound Change N perspective,
and view A as elements of the 80(3) & R Lie algebra

€ > R(H, ﬁ) — e@(A 1+A2+A3+A4)‘M

With this choice, not only does the closure
A +A tA <4, =0

describe the tetrahedral geometry, but 1s also the diagonal
generator of overall rotations and expresses the invariance ot
the geometry under these rotations; this 1s the Gauss
constraint of discrete geometry.

19



Counting edge lengths, we know that a tetrahedron has 6
independent parameters. 1he 12 Components {At} 5 aie
clearly overkill, while the 4 magnitudes {A, } i aie 1nsufﬁc1ent

Closure provides a way out ot this quandary. We seek
rotational invariants to complete the characterization of the
tetrahedral geometry. We can work with any two of:

the dot products

Xt- Xt,, or the same AZ = (Xt+ X;)z = A= AL 2Xt- Xt,

or the rotationally invariant triple products
Xt : (Z}x Z},).

[t’s striking that the latter gives the A Aj
volume squared of the tetrahedron

VT L oA A,l
0= t 0 (AyX Ap).

Az

!

20



In sum, we have a classical phase space for tetrahedra!

We adopt canonical coordinates by rearranging closure as

vector addition:

P=A=|A1 A2|

Because we understand t

Phase b
space *

ne vectors as elements of 80(3), the

coords are naturally equi

oped with a Poisson bracket and:

av =0 ] = 1

21



In 2011, Eugenio Bianchi and I considered the evolution
senerated by V. more precisely @ = V- = %Al (A, X A3), on

this space with fixed {A;, A,, A3, A, }:




In 2011, Eugenio Bianchi and I considered the evolution
generated by the volume V; this evolution 1s integrable:

’7% = —A2)2
’7% = (43 =)

dA? 73 = (A + 4y

1 =
i 3\/ (4A)*(4A)° — AX(18Q)’ 7= (s + A

G é\/ [A% = FJIA® = R][75 — A%][Fy — A] — A%(180)°

The solutions, A%(1), are ratios of Jacobi elliptic functions.
23



T'he flow along the curves of constant V 1s integra

ble and

describes a family of tetrahedra with different sha
equal volumes

bes, but

At left: the phase space of shapes with a constant volume
contour; at right: two difterent views of the same tetrahedron

as 1t undergoes the volume flow (click to play)

24



Our first result was a semiclassical quantization of the volume
eigenvalues:

v

1
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Here the Bohr-Sommerteld values (solid dots) are compared
to the numerical eigenvalues from a full quantum treatment
(open circles). More on the quantum treatment below...



A new result that I can share with you today 1s that Antu and
I have been able to find the WKB wave functions too

010

lw,(k)]° @ Numerical

~ WKB

0.08 -

A,
‘ 0061
Ay ' 0041
‘Vl 002} -
/ i |
o I T (i, (S P | 1 A [0 VMY IR Sl ¥ R S VO -
- 30 40 50 60 70 K

w, (k) = i 2 cos <1(AS — AS )_£>
: gK(m) |[(16AA)2 — (18AQ)?]4| ey

where - ; .
: N
Sem = 1884 @ = ! e in—n) I1|a? am @ m |, m
= e \rl_f’ w6 - w7 )
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Constructive Resurgence — There is a remarkable second
version of resurgence, often called constructive resurgence

Results are detailed and explicit, but largely restricted to phase
spaces representable by (genus 1) Riemann surtaces

Canonical Example Volume Evolution Example
Vig)=2¢" =17, p=2mE-V] 24 _1L js5asy—asor
o
L= \/ 2mlE — 29" - 1)°] = /02 = BIA” = I - )7 - A”] - A%(180)
Vv 1.5} - 5
P(42,0)
0} slope = (18Q)*

. TN

M1 1 1 1 1 1 1 1 S L1 1 1N L (=L (| (] 1 1 | L1 1 1 |
2 2 3 4 5 6
B A )
q -20 -
1 1 | |

-1.0



In both examples we can view the phase space as a genus 1
torus by complexitying variables and gluing along branch cuts

Canonical Example Volume Evolution Example
2
V(g) = g%~ 12 p=/2m[E— V] - =2\[@areay - a21s07
= \/ e g 1y = 5\/ [A% — F[A? - F2I[72 — A2][72 — A%] — AX(18Q)?

Im(q)
: / 5 Relq) l.\_ g Re(qJ
Im(q)
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In both examples we can view the phase space as a genus 1
torus by complexitying variables and gluing along branch cuts

Canonical Example Volume Evolution Example
2
V(@) = 2¢° — 1), p = /2m[E — V] di = —\/ (40)*(4A)* — AX(180)
= \/ e g 1y = 3\/ [A2 — P[A? — F2][F3 — A2][F3 — A%] — AX(180)?

Im(q)
: / "f Relq) I‘\_ g Re(qJ
Im(q)

Bohr-Somm: a = pdq = < ;) 2rh ﬁ

a

Tunneling-splitting: a® = §|A> pdq
p

27



We can now borrow a nice result from algebraic topology: the
# of independent cycles = # of independent 1-forms

A 1D complex manifold with genus g and p punctures, has

# indep cycles = 2g +2p — 1.
Independence 1s up to an exact form. laking m = 1, let
0(q,E) = pdq =+/2[E — V(g)],
then only 2¢g + 2p — 1 of 8 and

1
0, = dppdq = dg t = (%pdq, 0 — a’lfjpdq
v 2[E Vg

are independent. Express the dependency as Z c.0(FE) = df,
k
Z O —ddi—0 = — ey Pleard uchs Eqn
F :

30



For the symmetric quartic well this Picard-Fuchs equation 1s

E(1 - E) &
— a I
db- 16
T'his equation captures the fact that as we vary E, the turning

points, and hence the actions, vary in a predictable way.

Both a and a”, which only differ by their integration cycles,
satisty this equation. Further, it implies a Wronskian relation:
AT 1.5

D D
adid — 0 d:d = —T7l v
E £ 3 |

N
aw —a o= =7l E /

or

D D 4
3

05

A connection formula

between a and a”.

-1.0

1.0 >



Antu and I have found an explicit 3rd order Picard-Fuchs
equation for the volume evolution
DO O + i1, V22 + 6,7, 02
l dQ3 % sz 1 Q
Here D(r;, Q) 1s the quartic discriminant, an 3th order
polynomial 1n Q that vanishes it 7, coalesce and ¢; and ¢, are

respectively of 10th and 12th order in Q.

P(A%,0) )

| = (1 2
The evident constant slope = (18Q)

solution has a nice
explanation: 1t 1s due

to punctures 1n the
Riemann surtace.

32



T'he Picard-Fuchs coethicients are below: here O, = 180,
Sg = Filotsty, ... ,83 =11+ 1y, + 3 + r, are symm root functions

D= (4 (Qb®-s1) (1250 +5s2%) + (3 (Qb? -s1)? +325052) s3+ (-Qb® +s1) s2 3% - 950 53°)
(27 Qb® - 256 s0° - 108 Qb°® s1 + 162Qb* s1? - 108 Qb* s1° + 27 s1° - 144Qb* 50 52 + 288 Qb* 50 s1 52 - 14450 517 52 + 128 50” 527 + 4Qb* 52° -
8Qb* s1s2% +451%s2° - 16 50 2% + 2 (Qb? - s1) (9 (Qb? - s1)*s2 -850 (1250 + 552%)) s3 +
(650 (Qb* - s1)? - 144 50% s2 - (Qb* - s1)2 52 + 450 52°) s3? - 2 (Qb* - s1) (2 (Qb* - s1)? - 950 52) s3% + 27 s0% 53*%)

c2 =
(18 (243Qb™* s3 +3Qb™® (180 (1250 + s2?) - 3785153 - 27 52 53* - 453%) +

3Qb® (-684s1 (120 +s2%) + (67551% + 302450 52 + 68 52%) s3 +117s15253% -3 (25550 + 1152%) s3° + 1251537 + 4523°) +

Qb® (-8 (1250 +s2%) (-35151% + 725052 -252°) - 1251 (13551% + 2160 50 52 + 44 52°) 53 + 2 (1008 s0° - 297 s1” 52 + 1860 50 52% - 452%) 53 +
4s1 (161750 + 65 s2%) s3% + (-2451% - 161850 52 + 52%) s3% - 325152 53° + 18050 53°) +

Qb* (-8s1 (1250 +s2?) (189s1% - 725052 +252%) + (40551% + 8 (163250° + 2916 50 s1% 52 - 1392 50% 52% + 4551% 52° + 11850 52%) ) s3 +
251 (24351% 52 +4 (-54050% - 87350 52 + 52%)) s3? - 2 (2817 50 1% - 2784 507 52 + 93 51% 52° + 208 50 52°) s3° -
s1 (24 s1% - 29945052 +52°) s3* +3 (851?52 +350 (-6350+552%)) s3° - 32450 s153°%) -

(s0 (48 s1-325253+953%) -s1 (3s1s3+s2(-4s2+5s3%)))

(256 50° - s0” (12852% + 1925153 - 14452 53% + 27 53%) + 250 (s1® (7252-353%) +252° (452-53%) +s15253 (-4052+95s3%)) +

s1? (-27s1% +s2® (-4s2+5s3%) +251 (9s2s3-25s3%))) +

Qb? (36864 50" - 48 s0° (320 52° + 48051 53 - 28852 53% +4553°%) +
s1? (162s1° s3 + 125152 s3 (452 -53%) -52° (-452+53%)% +95s1? (1252% - 2152537 +4s3%)) +
s0? (864s1” (852 +35s3%) + 1851 (12852% s3 - 19252 53° +3353%) + 52 (76852° - 1024 52% s3% + 54052 53" - 8153°)) +
250 (648s1® + 652" (452 +53%)% +s1° (-259252 53 +52253%) +s152% s3 (-59252° + 25652 53° - 27s3%) +

3s1? (6452 +46852% s3% - 1895253 +1853°%)))))

cl=
(972Qb? (80 (Qb* - s1)® (1250 + s2?) + 8 (128s0° + 3 (Qb”? - s1)* + 16850 (Qb* - s1)? 52 - 64 50” 52% + 2 (Qb” - s1)? s2° + 850 52°) s3 -
8 (Qb* - s1) (-24s0% +3 (Qb* - s1)? s2 - 50 s0 s2?) s3% - 8 (4250 (Qb? - s1)* -3250% s2+ (Qb* - s1)? s2% + 450 52%) s3% +
(Qb? - s1) ((Qb*-s1)?-1845052) s3* + ((Qb® -s1)?s2+ 450 (-650+5s2?)) s3° + 2150 (Qb? - s1) s3°)) /
((4 (Qb* - s1) (1250 +s2?) + (3 (Qb* - s1)? + 3250 52) s3 + (-Qb” + s1) 5253 - 950 53°)
(27 Qb® - 256 s0° - 108 Qb°® s1 + 162Qb* s1% - 108 Qb? s1° + 27 s1* - 144 Qb* 50 52 + 288 Qb” 50 152 - 144 50 s1% 52 + 128 50° 527 +
4Qb* s2° - 8Qb? s152% +451% 52% - 16 50 52% +2 (Qb? - s1) (9 (Qb® -s1)?s2 -850 (1250 +5522)) s3 +
(650 (Qb* - s1)2 - 14450 s2 - (Qb® - s1)? s2? + 450 52%) 3% - 2 (Qb® - s1) (2 (Qb® - s1)? - 950 52) s3° + 27 50% 53%))



Why 1s, even such a messy, Picard-Fuchs equation of interest?

T'hese equations allow us to express the all orders in 7
quantization conditions of a genus-1 phase space in terms of the
lowest order actions, 1.e solutions of the Picard-Fuchs eqn.

The proof is delicate, but quite elegant [Basar, Dunne, Unsal]:

I. The classical actions g, and gy’ are solutions to the Picard-

Fuchs equation. They are related via a Wronskian condition.
Hence 3 only 1 indep classical action function on the torus.

2. WKB analysis can be extended to all orders in #:
: 2 N2 -+ n4 ! )

A(E, By = /2 ﬂE e L ( =0 oy > =
o /

26 J (E— V)2 =i T O

The integrands are rational functions of g and p = \/ quartic.
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T'hese equations allow us to express the all orders in 7
quantization conditions of a genus-1 phase space 1n terms of
the lowest order actions, 1.e solutions ot the Picard-Fuchs eqn.

The proof is delicate, but quite elegant [Basar, Dunne, Unsal]:

2. WKB analysis can be extended to all orders 1n #:
‘ 2 N2 B n4 ! !

a(E, By = \/2 aﬂ ey V) < 49(V) oV > e
\ a

26 ] (E— V)2 = o : o e T )

T'he integrands are rational functions ot g and p = \/ quartic.

For genus 1 systems, the classical action and all higher order
actions can be expressed 1n terms of the complete elliptic
integrals: K, E, I, which are closed under differentiation.

Hence the higher order actions a,(E) = @éaO(E), for some @l”;.
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T'hese equations allow us to express the all orders 1n 7
quantization conditions of a genus-1 phase space 1n terms of
the lowest order actions, 1.e solutions of the Picard-Fuchs eqn.

The proof is delicate, but quite elegant [Basar, Dunne, Unsal]:

2. WKB analysis can be extended to all orders in #:

( \
h> TE n* 49(V')"* 16V'V"
a(E, h) = /2 ﬂE\/E_qu__ ) dq < ) > =
\ a

26 ] (E— V)2 e . o i) Bl e ol :

The integrands are rational functions of g and p = \/ quartic.

Hence the higher order actions a,(E) = 2%a,(E), for some 27,

Repeated use of the Picard-Fuchs eqn allows us to reduce the
order of this differential operator until:
2

d“a da
afE) = fPE)— + 1 E)— + [ Eag
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We have tound explicit modular relations between the actions

The closed action integrals 1n the classically allowed region and the
classically forbidden regions (A% > r; and A? < r,) are:

4 4
8 &) "
a, =18g0| |1 - z' —| K(m) — z' = — | (a7, m)
sl 1 : b=t 1
E =1 < = B 4
18¢g _ e el g
D 2 3 2 5
e — 1 — E K(m;) — E — I(a;, m
2 [ et rz—Fi ( f) o V3—fi VZ_Fi ( : f)
18g _ e _ = 7y I3 :
D 2
qd .= 1 — E — | K(m,) — E — — — | (o, my)
l T e / k= oo P
> ) > 00T > U
9> = ' Air = ; L=

(r3—r)(r,— 7)) (ry —1r)(rz — ) e rnte7)
. L ) : (rd —r3)r2 —rl)

’ mf:
i =1 e v G =)
D D

Using agpal% = my; and II(a?, m) = K(m) — II(m/a?, m), one can show a, =as.
36
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Much still remains to be understood: the quantum equation underlying
this geometry 1s rich, and difters from the Schrodinger equation (c.i.

Bianchi, HMH 2011 for derivation)

The matrix elements of the Q operator in a recoupling basis satisfy the
recursion relation

e fk+1|q) —alk—1|q) +iglklq) =0
with

a —

T'his can be viewed as a difference equation, which 1n the semiclassical
limit gives a differential equation

A*D] 7 AD? > igK
Ak2 Ak ZAR L LHAK T L)

VG 2+ 1P = R = Giy = 2 1+ + 12 = K302 = G —j4>2]> .

g -
D = 0.

At lowest order this 1s 1n excellent agreement with a = — <Jg¢dA, but

both the coeflicients and the wave function contribute at all orders 1n %!
ST



(Quantization of geometry provides a remarkable laboratory
for understanding resurgent perturbative/non-perturbative
relations and, due to the richness ot its underlying quantum
structure, may even require extensions of this formalism.
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T'hank you!



