Quantization of the Volume of the Simplest Grain of Space

Quantum Geometry, Picard-Fuchs Equations, and Perturbative/Non-Perturbative Relations

ILQGS October 19th, 2021

Hal M. Haggard, Bard College

Antu Santanu

Today's talk is based on unpublished work done in collaboration with Antu Santanu There is an argument that begins A. Ashtekar's book "Lectures on Non-Perturbative Canonical Gravity" that I've long found intriguing:

Are there features of classical GR that would indicate that non-perturbative quantum gravity is very different from perturbative quantum gravity? They proceed to a simple, but insightful computation:

Consider the self-energy of a shell of charge e and uniform mass density as the radius, ϵ , goes to zero.

Ignoring gravity,

$$m(\epsilon) = m_0 + \frac{e^2}{\epsilon}.$$

For a Newtonian self interaction

$$m(\epsilon) = m_0 + \frac{e^2}{\epsilon} - \frac{Gm_0^2}{\epsilon^2},$$

and in both cases the result diverges as $\epsilon \rightarrow 0$. In GR

$$m(\epsilon) = m_0 + \frac{e^2}{\epsilon} - \frac{G m^2(\epsilon)}{\epsilon^2} \implies m(\epsilon) = \frac{-\epsilon}{2G} + \sqrt{\frac{e^2}{G} + \frac{m_0}{G}\epsilon} + \frac{1}{4G^2}\epsilon^2$$

This has a finite limit as $\epsilon \to 0, \ m \to e/\sqrt{G}$!

Consider the self-energy of a shell of charge e and uniform mass density as the radius, ϵ , goes to zero.

But, if we expand around small G

$$m(\epsilon) = \frac{-\epsilon}{2G} + \frac{\epsilon}{2G} \sqrt{1 + \frac{4G}{\epsilon} \left(m_0 + \frac{e^2}{\epsilon}\right)}$$

$$= \left(m_0 + \frac{e^2}{\epsilon}\right) - \left(m_0 + \frac{e^2}{\epsilon}\right)^2 \frac{G}{\epsilon} + 2\left(m_0 + \frac{e^2}{\epsilon}\right)^3 \left(\frac{G}{\epsilon}\right)^2 + \cdots$$

Every term is divergent in the $\epsilon \rightarrow 0$ limit.

I take this cautionary tale seriously; beware of over interpreting perturbative divergences! Today I want to take up, what is for me, a new theme:

Perturbative divergences carry interesting information & structure \rightsquigarrow known as resurgence

m, e

This Talk

Asymptotic resurgence is impressively broad and impactful. To the best of my knowledge the perturbative/non-perturbative relations found in resurgence have yet to be applied to quantum gravity.

I show that these tools shed light on the quantization of the simplest grain of space, a quantum tetrahedron. The talk has 3 parts:

- Resurgence and Perturbative/Non-Perturbative Relations

 (I draw heavily on the outstanding introductions by C. Howls, A.O. Daalhuis, and G. Dunne from the ARA School)
- 2. Grains of Quantum Space: the area geometry of tetrahedra, their classical phase space, and semiclassical quantization
- 3. Perturbative/Non-Perturbative Relations in the Quantization of the Volume of a Grain of Space

This Talk

Asymptotic resurgence is impressively broad and impactful. To the best of my knowledge the perturbative/non-perturbative relations found in resurgence have yet to be applied to quantum gravity.

I show that these tools shed light on the quantization of the simplest grain of space, a quantum tetrahedron. The talk has 3 parts:

- Resurgence and Perturbative/Non-Perturbative Relations

 (I draw heavily on the outstanding introductions by C. Howls, A.O. Daalhuis, and G. Dunne from the ARA School)
- 2. Grains of Quantum Space: the area geometry of tetrahedra, their classical phase space, and semiclassical quantization
- 3. Perturbative/Non-Perturbative Relations in the Quantization of the Volume of a Grain of Space

Two physical examples where Airy functions arise are quantum mechanics of turning points and supernumerary rainbows

The Schrödinger equation at the turning point is

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + (E + V'(0)x)\psi = E\psi \quad \text{or} \quad \frac{d^2\psi}{dx^2} = \alpha^3 x\psi$$

with $\alpha = \hbar^{-2/3}[2mV'(0)]^{1/3}$.

WKB theory suggests we introduce the action

$$a(x) = \pm \int \sqrt{\alpha^3 x} \, dx = \pm \frac{2}{3} \alpha^{3/2} x^{3/2},$$

and consider solutions

$$\psi(x) \approx \# \frac{e^{-a(x)}}{\sqrt{a'(x)}} (1 + \cdots) \sim \frac{e^{\mp \frac{2}{3}(\alpha x)^{3/2}}}{(\alpha x)^{\frac{1}{4}}} \sum_{n=0}^{\infty} \frac{C_n}{[(\alpha x)^{3/2}]^n}.$$

A recursion relation determines the (factorially divergent) c_n :

$$c_n = (\mp 1)^n \frac{\Gamma\left(n + \frac{1}{6}\right)\Gamma\left(n + \frac{5}{6}\right)}{2\pi n! \left(\frac{4}{3}\right)^n}.$$

The c_n are unexpectedly interesting

$$c_n^{+} = \frac{\Gamma\left(n + \frac{1}{6}\right)\Gamma\left(n + \frac{5}{6}\right)}{2\pi n! \left(\frac{4}{3}\right)^n} \rightsquigarrow \begin{cases} c_0^{+}, c_1^{+}, c_2^{+}, c_3^{+}, \dots \\ 1, \frac{5}{48}, \frac{385}{4608}, \frac{85085}{663552}, \dots \end{cases}.$$

But, now consider the large *n* behavior of the c_n^+

$$c_n^+ \sim \frac{1}{2\pi} \frac{(n-1)!}{\left(\frac{4}{3}\right)^n} \left(1 - \frac{5}{36} \frac{1}{n} + \frac{25}{2592} \frac{1}{n^2} - \cdots\right)$$

If we organize this expansion in terms of factorial growth...

The c_n are unexpectedly interesting

$$c_n^{+} = \frac{\Gamma\left(n + \frac{1}{6}\right)\Gamma\left(n + \frac{5}{6}\right)}{2\pi n! \left(\frac{4}{3}\right)^n} \rightsquigarrow \begin{cases} c_0^{+}, c_1^{+}, c_2^{+}, c_3^{+}, \dots \\ 1, \frac{5}{48}, \frac{385}{4608}, \frac{85085}{663552}, \dots \end{cases}.$$

But, now consider the large *n* behavior of the c_n^+

$$c_n^+ \sim \frac{1}{2\pi} \frac{(n-1)!}{\left(\frac{4}{3}\right)^n} \left(1 - \frac{5}{36} \frac{1}{n} + \frac{25}{2592} \frac{1}{n^2} - \cdots\right)$$

If we organize this expansion in terms of factorial growth...

$$c_n^+ \sim \frac{(n-1)!}{2\pi \left(\frac{4}{3}\right)^n} \left(1 - \left(\frac{4}{3}\right) \frac{5}{48} \frac{1}{(n-1)} + \left(\frac{4}{3}\right)^2 \frac{385}{4608} \frac{1}{(n-1)(n-2)} - \cdots\right)^n \right)$$

...we see the same coefficients! The late orders of c_n^+ are the early orders of c_n^- .

$$\operatorname{Ai}(z) = \frac{1}{2\pi i} \int_{\gamma_1} \exp\left(-zt + \frac{t^3}{3}\right) dt.$$

For $z = re^{i\theta}$, the critical points are at $t_c = \pm \sqrt{z} \sim \pm e^{i\theta/2}$.

For z real and positive, i.e. $\theta = 0$, the integral is dominated by a single real critical point and exponentially decays.

Shading shows the value of the real part of the exponent: Blue ---> decreasing real part Yellow --> increasing real part Two physical examples where Airy functions arise are quantum mechanics of turning points and supernumerary rainbows

$$\operatorname{Ai}(z) = \frac{1}{2\pi i} \int_{\gamma_1} \exp\left(-zt + \frac{t^3}{3}\right) dt$$

For $z = re^{i\theta}$, the normalized critical points are at $t_c = \pm e^{i\theta/2}$.

However, as we vary θ , the critical points and real-*t* landscape vary. At $\theta = \frac{2\pi}{3}$ the second critical point begins to contribute.

11

$$\operatorname{Ai}(z) = \frac{1}{2\pi i} \int_{\gamma_1} \exp\left(-zt + \frac{t^3}{3}\right) dt$$

For $z = re^{i\theta}$, the normalized critical points are at $t_c = \pm e^{i\theta/2}$. This change in dominance is quite clear in the Airy function:

$$\operatorname{Ai}(z) = \frac{1}{2\pi i} \int_{\gamma_1} \exp\left(-zt + \frac{t^3}{3}\right) dt$$

As we continue θ further to $\theta = \pi$, both critical points become purely imaginary and jointly lead to oscillatory behavior.

This change of 1 crit. point into 2 is the Stokes' phenomenon.

13

Two physical examples where Airy functions arise are quantum mechanics of turning points and supernumerary rainbows

$$\operatorname{Ai}(z) = \frac{1}{2\pi i} \int_{\gamma_1} \exp\left(-zt + \frac{t^3}{3}\right) dt.$$

But still the question remains: why do both critical points contribute? The answer is that both saddles were always contributing, it's just that one was exponentially sub-dominant

$$\operatorname{Ai}(e^{\pm \frac{2\pi i}{3}}z) = \frac{1}{2}e^{\pm \frac{\pi i}{6}}\operatorname{Bi}(z) + \frac{1}{2}e^{\pm \frac{\pi i}{3}}\operatorname{Ai}(z).$$

We can understand that such connection formulae must exist from the differential equation:

$$\frac{d^2\psi}{dx^2} = \alpha^3 x\psi,$$

which only has two independent solutions.

Gerald Dunne offers an elegant mnemonic image for these ideas: the wavelets surrounding droplets of water

The expansion of a quantity of physical interest around one of its critical points has late term contributions arising from the near term contributions of neighboring saddles.

This Talk

Asymptotic resurgence is impressively broad and impactful. To the best of my knowledge the perturbative/non-perturbative relations found in resurgence have yet to be applied to quantum gravity.

I show that these tools shed light on the quantization of the simplest grain of space, a quantum tetrahedron. The talk has 3 parts:

- Resurgence and Perturbative/Non-Perturbative Relations

 (I draw heavily on the outstanding introductions by C. Howls, A.O. Daalhuis, and G. Dunne from the ARA School)
- 2. Grains of Quantum Space: the area geometry of tetrahedra, their classical phase space, and semiclassical quantization
- 3. Perturbative/Non-Perturbative Relations in the Quantization of the Volume of a Grain of Space

Classical Area Geometry — Areas, instead of lengths, can be used to describe all sorts of familiar geometry.

Heron's beautiful formula gives the area of a triangle as a function of its edge lengths

$$A_t^2(l_1, l_2, l_3) = \frac{1}{16} [l_1^2 - (l_2 - l_3)^2] [(l_2 + l_3)^2 - l_1^2].$$

A classical theorem due to H. Minkowski gives a tetrahedron's geometry via its area vectors:

$$\overrightarrow{A}_t = A_t \, \hat{n}_t,$$

where \hat{n}_t is the unit normal to triangle *t*.

$$\vec{A}_{2} \qquad \vec{A}_{3}$$

$$\vec{A}_{1} \qquad \vec{A}_{3} \qquad \longleftrightarrow \qquad \vec{A}_{1} + \vec{A}_{2} + \vec{A}_{3} + \vec{A}_{4} = 0$$

Indeed, we can make a rather profound change in perspective, and view \overrightarrow{A}_t as elements of the $\mathfrak{so}(3) \cong \mathbb{R}^3$ Lie algebra

$$R(\theta, \hat{u}) = e^{\theta(\vec{A}_1 + \vec{A}_2 + \vec{A}_3 + \vec{A}_4) \cdot \hat{u}}$$

With this choice, not only does the closure

$$\overrightarrow{A}_1 + \overrightarrow{A}_2 + \overrightarrow{A}_3 + \overrightarrow{A}_4 = 0$$

describe the tetrahedral geometry, but is also the diagonal generator of overall rotations and expresses the invariance of the geometry under these rotations; this is the Gauss constraint of discrete geometry. Counting edge lengths, we know that a tetrahedron has 6 independent parameters. The 12 components $\{\vec{A}_t\}_{t=1}^4$ are clearly overkill, while the 4 magnitudes $\{A_t\}_{t=1}^4$ are insufficient.

Closure provides a way out of this quandary. We seek rotational invariants to complete the characterization of the tetrahedral geometry. We can work with any two of:

the dot products

 $\overrightarrow{A}_{t} \cdot \overrightarrow{A}_{t'}$, or the same $A_{tt'}^{2} = (\overrightarrow{A}_{t} + \overrightarrow{A}_{t'})^{2} = A_{t}^{2} + A_{t'}^{2} + 2\overrightarrow{A}_{t} \cdot \overrightarrow{A}_{t'}$ or the rotationally invariant triple products

$$\overrightarrow{A}_{t} \cdot (\overrightarrow{A}_{t'} \times \overrightarrow{A}_{t''}).$$

It's striking that the latter gives the volume squared of the tetrahedron $Q \equiv V_{\tau}^2 = \frac{2}{9} \overrightarrow{A}_t \cdot (\overrightarrow{A}_{t'} \times \overrightarrow{A}_{t''}).$

$$\overrightarrow{A}_{1}$$

$$\overrightarrow{A}_{2}$$

$$\overrightarrow{A}_{1}$$

$$\overrightarrow{A}_{3}$$

$$\overrightarrow{A}_{4}$$

In sum, we have a classical phase space for tetrahedra!

We adopt canonical coordinates by rearranging closure as vector addition:

Because we understand the vectors as elements of $\mathfrak{so}(3)$, the coords are naturally equipped with a Poisson bracket and:

$$\{q, p\} = \{\phi, A\} = 1.$$

In 2011, Eugenio Bianchi and I considered the evolution generated by *V*, more precisely $Q = V^2 = \frac{2}{9}\vec{A_1} \cdot (\vec{A_2} \times \vec{A_3})$, on this space with fixed $\{A_1, A_2, A_3, A_4\}$:

In 2011, Eugenio Bianchi and I considered the evolution generated by the volume *V*; this evolution is integrable:

The flow along the curves of constant *V* is integrable and describes a family of tetrahedra with different shapes, but equal volumes

At left: the phase space of shapes with a constant volume contour; at right: two different views of the same tetrahedron as it undergoes the volume flow (click to play) Our first result was a semiclassical quantization of the volume eigenvalues: $V \downarrow V$

Here the Bohr-Sommerfeld values (solid dots) are compared to the numerical eigenvalues from a full quantum treatment (open circles). More on the quantum treatment below... A new result that I can share with you today is that Antu and I have been able to find the WKB wave functions too

$$\psi_q(k) = \sqrt{\frac{4A}{gK(m)}} \frac{\eta}{|[(16\Delta\bar{\Delta})^2 - (18AQ)^2]^{1/4}|} \cos\left(\frac{1}{2}(\Delta S_q - \Delta S_A) - \frac{\pi}{4}\right)$$

where

$$S_{q,m} = 18gq \left[\frac{\lambda_{p_m}}{9g} - \sum_i \left(\frac{r_1}{r_1 - \bar{r}_i} \lambda_{p_m} - \frac{\bar{r}_i(r_2 - r_1)}{(r_2 - \bar{r}_i)(r_1 - \bar{r}_i)} \Pi \left(\alpha_i^2, \operatorname{am} \left(\frac{\lambda_{p_m}}{9g}, m \right), m \right) \right) \right]$$

This Talk

Asymptotic resurgence is impressively broad and impactful. To the best of my knowledge the perturbative/non-perturbative relations found in resurgence have yet to be applied to quantum gravity.

I show that these tools shed light on the quantization of the simplest grain of space, a quantum tetrahedron. The talk has 3 parts:

- Resurgence and Perturbative/Non-Perturbative Relations

 (I draw heavily on the outstanding introductions by C. Howls, A.O. Daalhuis, and G. Dunne from the ARA School)
- 2. Grains of Quantum Space: the area geometry of tetrahedra, their classical phase space, and semiclassical quantization
- 3. Perturbative/Non-Perturbative Relations in the Quantization of the Volume of a Grain of Space

Constructive Resurgence — There is a remarkable second version of resurgence, often called constructive resurgence

Results are detailed and explicit, but largely restricted to phase spaces representable by (genus 1) Riemann surfaces

Canonical Example

$$V(q) = (2q^2 - 1)^2, \ p = \sqrt{2m[E - V]}$$

 $p = \sqrt{2m[E - (2q^2 - 1)^2]}$

Volume Evolution Example
 $\frac{dA^2}{d\lambda} = \frac{1}{9}\sqrt{(4\Delta)^2(4\bar{\Delta})^2 - A^2(18Q)^2}$
 $= \frac{1}{9}\sqrt{[A^2 - \bar{r}_1^2][A^2 - \bar{r}_2^2][\bar{r}_3^2 - A^2][\bar{r}_4^2 - A^2] - A^2(18Q)^2}$
 V^{15}

 $P(A^2, Q)$

 $P(A^2, Q)$

28

In both examples we can view the phase space as a genus 1 torus by complexifying variables and gluing along branch cuts

Canonical Example

$$V(q) = (2q^2 - 1)^2, \ p = \sqrt{2m[E - V]}$$
 $\frac{dA^2}{d\lambda} = \frac{1}{9}\sqrt{(4\Delta)^2(4\bar{\Delta})^2 - A^2(18Q)^2}$
 $p = \sqrt{2m[E - (2q^2 - 1)^2]}$ $= \frac{1}{9}\sqrt{[A^2 - \bar{r}_1^2][A^2 - \bar{r}_2^2][\bar{r}_3^2 - A^2][\bar{r}_4^2 - A^2] - A^2(18Q)^2}$

In both examples we can view the phase space as a genus 1 torus by complexifying variables and gluing along branch cuts

Canonical Example

$$V(q) = (2q^2 - 1)^2, \ p = \sqrt{2m[E - V]}$$
 $\frac{dA^2}{d\lambda} = \frac{1}{9}\sqrt{(4\Delta)^2(4\bar{\Delta})^2 - A^2(18Q)^2}$
 $p = \sqrt{2m[E - (2q^2 - 1)^2]}$ $= \frac{1}{9}\sqrt{[A^2 - \bar{r}_1^2][A^2 - \bar{r}_2^2][\bar{r}_3^2 - A^2][\bar{r}_4^2 - A^2] - A^2(18Q)^2}$

We can now borrow a nice result from algebraic topology: the # of independent cycles = # of independent 1-forms

A 1D complex manifold with genus g and p punctures, has # indep cycles = 2g + 2p - 1.

Independence is up to an exact form. Taking m = 1, let

$$\theta(q, E) \equiv pdq = \sqrt{2[E - V(q)]},$$

then only 2g + 2p - 1 of θ and

$$\theta_1 = \partial_E p dq = \frac{1}{\sqrt{2[E - V(q)]}} dq, \ \theta_2 \equiv \partial_E^2 p dq, \ \dots, \ \theta_k \equiv \partial_E^k p dq$$

are independent. Express the dependency as $\sum c_k \theta_k(E) = df$,

$$\sum_{k} c_k \oint_{\gamma} \theta_k = \oint df = 0 \implies c_k \partial_E^k a = 0 \quad (\text{Picard-Fuchs Eqn})$$

For the symmetric quartic well this Picard-Fuchs equation is

$$E(1-E)\frac{d^2a}{dE^2} - \frac{3}{16}a = 0.$$

This equation captures the fact that as we vary E, the turning points, and hence the actions, vary in a predictable way.

Both a and a^D , which only differ by their integration cycles, satisfy this equation. Further, it implies a Wronskian relation:

$$a\partial_{E}a^{D} - a^{D}\partial_{E}a = \frac{4}{3}\pi i$$

or
$$a\omega^{D} - a^{D}\omega = \frac{4}{3}\pi i.$$

A connection formula between a and a^{D} .

Antu and I have found an explicit 3rd order Picard-Fuchs equation for the volume evolution

$$D(r_i, Q)\frac{d^3a}{dQ^3} + c_2(r_i, Q)\frac{d^2a}{dQ^2} + c_1(r_i, Q)\frac{da}{dQ} = 0.$$

Here $D(r_i, Q)$ is the quartic discriminant, an 8th order polynomial in Q that vanishes iff r_i coalesce and c_1 and c_2 are respectively of 10th and 12th order in Q.

The evident constant solution has a nice explanation: it is due to punctures in the Riemann surface.

The Picard-Fuchs coefficients are below: here
$$Q_b = 18Q$$
,
 $s_0 = r_1 r_2 r_3 r_4, \dots, s_3 = r_1 + r_2 + r_3 + r_4$ are symm root functions
 $P = (4 (w^{b} - s1) (12 s0 + s2^2) + (2 (w^{b} - s1)^2 + 22 s0 s2) s3 + (-w^{b} + s1) s2 s2^2 - 9 s0 s3^2)$
 $(27 w^{b} - 256 s^{b} - 108 w^{b} s1 + 152 w^{b} s1^2 - 108 w^{b} s1^3 + 27 s1^4 - 144 w^{b} s0 s2 + 288 w^{b} s1 s2 - 144 s0 s1^2 s2 + 128 s0^2 s2^2 + 4 w^{b} s2^2 - 8 w^{b} s1 s2^2 + 4 s1^2 s2^2 - 158 s0s^4 + 2 (w^{b} - s1) (9 (w^{b} - s1)^2 s2 - 8 s0 (12 s0 + 5 s2^2)) s3 + (6s (w^{b} - s1)^2 - 144 s0^2 s2 - (w^{b} - s1)^2 (2 (w^{b} - s1)^2 - 9 s0 s2) s3^3 + 27 s0^2 s3^4)$
 $(6s (w^{b} - s1)^2 - 144 s0^2 s2 - (w^{b} - s1) (9 (w^{b} - s1)^2 s2 - 8 s0 (12 s0 + 5 s2^2)) s3 + (26 s0 s) s2^2 - 4 s2^2) s3^2 + 128 s0^4 s2^4 + 48^2 s2^3) + (9 (w^{b} - s1)^2 - 124 s0 s2^2 - s2^2) - 378 s1 s3 - 27 s2 s3^2 - 4 s3^4)$
 $3 y b^4 (-6644 s1 (12 s0 + s2^2) + (675 s1^2 + 8074 s0 s2 + 68 s2^2) s3 + 117 s1 s2 s2^3 - 3 (255 s0 + 11 s2^2) s3^3 + 128 s0 s0 s0^2 - 297 s1^2 s2 + 188 s0 s0 s0^2 + 4 s2^4) s3^2 + 4 s1 (12 s0 + s2^2) (185 s1^2 + 72 s0 s2 + 2 s2^2) s1 s1 (135 s1^4 + 8 (1822 s0^4 + 291 s0 s0^2 + 297 s1^2 s2 + 188 s0 s0 s0^2 + 4 s2^4) s3^2 + 4 s1 (12 s0 + s2^2) (185 s1^2 + 72 s0 s2 s2 + 2 s2^2) s3^4 - 2 (2817 s0 s1^2 - 27 s0 s0^2 + 2 s3^2) + 2 s2^3 (4 s2 - s3^2) + 18 s0 s0^2) s3^2 - s1 (24 s1^2 - 294 s0 s2 s1 s3^2 s1^2 + 33 (-65 s0 s1^2 s2 - 118 s0 s0^2) + 2 s1^2 (24 s1^2 - 294 s0 s2 s1 s3 s1^3 + 3 (8 s1^2 s2 + 3 s0 (-65 s0 s1 s2^2) s3^3 + 2 2 s3^3 + 2 s3 (-40 s2 + 9 s3^2))) = s1^2 (12 s2^2 - s1^2 + s2^2 (4 s2 - s3^2) + s1 s2 s3 (-40 s2 + 9 s3^2)) + s1^2 (12 s2 s1^2 + s2^2 (-48 s2 s1 s2^3 + 38 s1 s3^2 + s2 s1 (28 s2^2 - 21 s2 s3^2 + 48 s1 s3^4)) + s1^2 (12 s2^2 + 12 s2^3 + 54 s1 s2 s3 (-40 s2 + 9 s3^2))) + s1^2 (12 s2^2 + s2^2 (4 s2 - s3^2) + s1 s2 s3 (-40 s2 + 9 s3^2)) + s1^2 (12 s2 - s1^2 + s2^2 (-48 s2^2 + s3^2 + 8 s0 s2 s3^2 + s5 s3^2) + s1^2 s2^2 (-48 s2^2 + 23 s3^2 + s3 s1 s3^4)) + s1^2 (12 s2^2 - 21 s2 s3^2 + 48 s1 s3^4)) + s1^2 (12 s2 + s2^2 + 12 s2 s2^2 + s2 s3^2 +$

Why is, even such a messy, Picard-Fuchs equation of interest?

These equations allow us to express the all orders in \hbar quantization conditions of a genus-1 phase space in terms of the lowest order actions, i.e solutions of the Picard-Fuchs eqn.

The proof is delicate, but quite elegant [Basar, Dunne, Ünsal]: 1. The classical actions a_0 and a_0^D are solutions to the Picard-Fuchs equation. They are related via a Wronskian condition. Hence \exists only 1 indep classical action function on the torus.

2. WKB analysis can be extended to all orders in \hbar : $a(E,\hbar) = \sqrt{2} \left(\oint_{\alpha} \sqrt{E - V} dq - \frac{\hbar^2}{2^6} \oint_{\alpha} \frac{(V')^2}{(E - V)^{5/2}} dq - \frac{\hbar^4}{2^{13}} \oint_{\alpha} \left(\frac{49(V')^4}{(E - V)^{11/2}} - \frac{16V'V''}{(E - V)^{7/2}} \right) \right) + \cdots$ The integrands are rational functions of q and $p = \sqrt{\text{quartic.}}$ These equations allow us to express the all orders in \hbar quantization conditions of a genus-1 phase space in terms of the lowest order actions, i.e solutions of the Picard-Fuchs eqn.

The proof is delicate, but quite elegant [Basar, Dunne, Ünsal]:

2. WKB analysis can be extended to all orders in \hbar :

$$a(E,\hbar) = \sqrt{2} \left(\oint_{\alpha} \sqrt{E - V} dq - \frac{\hbar^2}{2^6} \oint_{\alpha} \frac{(V')^2}{(E - V)^{5/2}} dq - \frac{\hbar^4}{2^{13}} \oint_{\alpha} \left(\frac{49(V')^4}{(E - V)^{11/2}} - \frac{16V'V''}{(E - V)^{7/2}} \right) \right) + \cdots$$

The integrands are rational functions of q and $p = \sqrt{q}$ quartic.

For genus 1 systems, the classical action and all higher order actions can be expressed in terms of the complete elliptic integrals: \mathbb{K} , \mathbb{E} , Π , which are closed under differentiation.

Hence the higher order actions $a_{\ell}(E) = \mathscr{D}_{E}^{\ell} a_{0}(E)$, for some \mathscr{D}_{E}^{ℓ} .

These equations allow us to express the all orders in \hbar quantization conditions of a genus-1 phase space in terms of the lowest order actions, i.e solutions of the Picard-Fuchs eqn.

The proof is delicate, but quite elegant [Basar, Dunne, Ünsal]:

2. WKB analysis can be extended to all orders in \hbar :

$$a(E,\hbar) = \sqrt{2} \left(\oint_{\alpha} \sqrt{E - V} dq - \frac{\hbar^2}{2^6} \oint_{\alpha} \frac{(V')^2}{(E - V)^{5/2}} dq - \frac{\hbar^4}{2^{13}} \oint_{\alpha} \left(\frac{49(V')^4}{(E - V)^{11/2}} - \frac{16V'V''}{(E - V)^{7/2}} \right) \right) + \cdots$$

The integrands are rational functions of q and $p = \sqrt{\text{quartic.}}$ Hence the higher order actions $a_{\ell}(E) = \mathscr{D}_{E}^{\ell} a_{0}(E)$, for some \mathscr{D}_{E}^{ℓ} . Repeated use of the Picard-Fuchs eqn allows us to reduce the order of this differential operator until:

$$a_{\ell}(E) = f_{\ell}^{(2)}(E) \frac{d^2 a_0}{dE^2} + f_{\ell}^{(1)}(E) \frac{da_0}{dE} + f_{\ell}^{(0)}(E) a_0$$

We have found explicit modular relations between the actions

The closed action integrals in the classically allowed region and the classically forbidden regions ($A^2 > r_3$ and $A^2 < r_2$) are:

$$a_{1} = 18gQ\left(\left[1 - \sum_{i=1}^{4} \frac{r_{1}}{r_{1} - \bar{r}_{i}}\right] K(m) - \sum_{i=1}^{4} \left[\frac{r_{2}}{r_{2} - \bar{r}_{i}} - \frac{r_{1}}{r_{1} - \bar{r}_{i}}\right] \Pi(\alpha_{i}^{2}, m)\right)$$

$$a_{2}^{D} = \frac{18gQ}{i} \left(\left[1 - \sum_{i=1}^{4} \frac{r_{2}}{r_{2} - \bar{r}_{i}}\right] K(m_{f}) - \sum_{i=1}^{4} \left[\frac{r_{3}}{r_{3} - \bar{r}_{i}} - \frac{r_{2}}{r_{2} - \bar{r}_{i}}\right] \Pi(\alpha_{if}^{2}, m_{f})\right)$$

$$a_{3}^{D} = \frac{18gQ}{i} \left(\left[1 - \sum_{i=1}^{4} \frac{r_{3}}{r_{3} - \bar{r}_{i}}\right] K(m_{f}) - \sum_{i=1}^{4} \left[\frac{r_{2}}{r_{2} - \bar{r}_{i}} - \frac{r_{3}}{r_{3} - \bar{r}_{i}}\right] \Pi(\alpha_{if}^{2}, m_{f})\right)$$

$$\alpha_i^2 = \frac{(r_3 - r_2)(r_1 - \bar{r}_i)}{(r_3 - r_1)(r_2 - \bar{r}_i)}; \qquad \alpha_{if}^2 = \frac{(r_4 - r_3)(r_2 - \bar{r}_i)}{(r_4 - r_2)(r_3 - \bar{r}_i)}; \qquad \alpha_{iF}^2 = \frac{(r_2 - r_1)(r_3 - \bar{r}_i)}{(r_3 - r_1)(r_2 - \bar{r}_i)}; \qquad m_f = \frac{(r_3 - r_2)(r_4 - r_1)}{(r_4 - r_2)(r_3 - r_1)}; \qquad m_f = \frac{(r_4 - r_3)(r_2 - r_1)}{(r_4 - r_2)(r_3 - r_1)};$$

Using $\alpha_{if}^2 \alpha_{iF}^2 = m_f$ and $\Pi(\alpha^2, m) = K(m) - \Pi(m/\alpha^2, m)$, one can show $a_2^D = a_3^D$.

Much still remains to be understood: the quantum equation underlying this geometry is rich, and differs from the Schrödinger equation (c.f. Bianchi, HMH 2011 for derivation)

The matrix elements of the \hat{Q} operator in a recoupling basis satisfy the recursion relation

$$a_{k+1}\langle k+1 | q \rangle - a_k\langle k-1 | q \rangle + iq\langle k | q \rangle = 0$$

with

$$a_{k} = \frac{1}{8\sqrt{k - \frac{1}{2}}\sqrt{k + \frac{1}{2}}} \left(\sqrt{\left[(j_{1} + j_{2} + 1)^{2} - k^{2}\right]\left[k^{2} - (j_{1} - j_{2})^{2}\right]}\sqrt{\left[(j_{3} + j_{4} + 1)^{2} - k^{2}\right]\left[k^{2} - (j_{3} - j_{4})^{2}\right]}\right)$$

This can be viewed as a difference equation, which in the semiclassical limit gives a differential equation

$$\frac{\Delta^2 \Phi_k^q}{\Delta k^2} + 2 \frac{\Delta \Phi_k^q}{\Delta k} + \frac{iqK}{2\Delta(K, J_1, J_2)\Delta(K, J_3, J_4)} \Phi_k^q = 0.$$

At lowest order this is in excellent agreement with $a = -\oint \phi dA$, but both the coefficients and the wave function contribute at all orders in \hbar ! Quantization of geometry provides a remarkable laboratory for understanding resurgent perturbative/non-perturbative relations and, due to the richness of its underlying quantum structure, may even require extensions of this formalism.

