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There is an argument that 
begins A. Ashtekar’s book 

“Lectures on Non-
Perturbative Canonical 

Gravity” that I’ve long found 
intriguing: 

Are there features of  classical 
GR that would indicate that 
non-perturbative quantum 

gravity is very different from 
perturbative quantum gravity? 
They proceed to a simple, but 

insightful computation:
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Consider the self-energy of  a shell of  charge  and 
uniform mass density as the radius, , goes to zero. 

Ignoring gravity, 

.

e
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For a Newtonian self  interaction 
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and in both cases the result diverges as . In GR 
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ϵ

m, e

Consider the self-energy of  a shell of  charge  and 
uniform mass density as the radius, , goes to zero.

e
ϵ

But, if  we expand around small  

  

Every term is divergent in the  limit.  
I take this cautionary tale seriously; beware of  over interpreting 
perturbative divergences! Today I want to take up, what is for 
me, a new theme:  

Perturbative divergences carry interesting information & 
structure      known as resurgence
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This Talk
Asymptotic resurgence is impressively broad and impactful. To the best 
of  my knowledge the perturbative/non-perturbative relations found in 
resurgence have yet to be applied to quantum gravity. 

I show that these tools shed light on the quantization of  the simplest 
grain of  space, a quantum tetrahedron. The talk has 3 parts:  
1. Resurgence and Perturbative/Non-Perturbative Relations               

(I draw heavily on the outstanding introductions by C. Howls,  A.O. 
Daalhuis, and G. Dunne from the ARA School) 

2. Grains of  Quantum Space: the area geometry of  tetrahedra, their 
classical phase space, and semiclassical quantization 

3. Perturbative/Non-Perturbative Relations in the Quantization of  
the Volume of  a Grain of  Space 

5



This Talk
Asymptotic resurgence is impressively broad and impactful. To the best 
of  my knowledge the perturbative/non-perturbative relations found in 
resurgence have yet to be applied to quantum gravity. 

I show that these tools shed light on the quantization of  the simplest 
grain of  space, a quantum tetrahedron. The talk has 3 parts:  
1. Resurgence and Perturbative/Non-Perturbative Relations               

(I draw heavily on the outstanding introductions by C. Howls,  A.O. 
Daalhuis, and G. Dunne from the ARA School) 

2. Grains of  Quantum Space: the area geometry of  tetrahedra, their 
classical phase space, and semiclassical quantization 

3. Perturbative/Non-Perturbative Relations in the Quantization of  
the Volume of  a Grain of  Space 

5



6

x(λ)

Two physical examples where Airy functions arise are quantum 
mechanics of  turning points and supernumerary rainbows
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The Schrödinger equation at the turning point is  

 

with .  

WKB theory suggests we introduce the action 

, 

and consider solutions  

. 

A recursion relation determines the (factorially divergent) : 

.

−
ℏ2

2m
d2ψ
dx2

+ (E + V′ (0)x)ψ = Eψ or
d2ψ
dx2

= α3xψ

α = ℏ−2/3[2mV′ (0)]1/3

a(x) = ± ∫ α3x dx = ± 2
3

α3/2x3/2

ψ(x) ≈ #
e−a(x)

a′ (x)
(1 + ⋯) ∼

e∓ 2
3 (αx)3/2
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∞
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{c+
0 , c+

1 , c+
2 , c+

3 , …}
The  are unexpectedly interesting 

. 

But, now consider the large  behavior of  the  

 

If  we organize this expansion in terms of  factorial growth… 

cn
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The  are unexpectedly interesting 

. 

But, now consider the large  behavior of  the  

 

If  we organize this expansion in terms of  factorial growth… 

 

…we see the same coefficients! The late orders of   are the 
early orders of  . 

Why?!
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The integral representation sheds light on this question: 

. 

For , the critical points are at .   

For  real and positive, i.e. , the integral is dominated by a 
single real critical point and exponentially decays. 

Ai(z) =
1

2πi ∫γ1

exp (−zt +
t3

3 ) dt

z = reiθ tc = ± z ∼ ± eiθ/2

z θ = 0

t

γ1
Shading shows the value of  the 

real part of  the exponent: 
Blue  decreasing real part 

Yellow  increasing real part
⇝

⇝
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x(λ)

Two physical examples where Airy functions arise are quantum 
mechanics of  turning points and supernumerary rainbows
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The integral representation sheds light on this question: 

. 

For , the normalized critical points are at .   
However, as we vary , the critical points and real-  landscape 
vary. At  the second critical point begins to contribute.

Ai(z) =
1

2πi ∫γ1

exp (−zt +
t3

3 ) dt

z = reiθ tc = ± eiθ/2

θ t
θ = 2π

3

t

γ1

t

γ1⇝

θ = 0 θ = 2π/3
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The integral representation sheds light on this question: 

. 

For , the normalized critical points are at .   
This change in dominance is quite clear in the Airy function:

Ai(z) =
1

2πi ∫γ1

exp (−zt +
t3

3 ) dt

z = reiθ tc = ± eiθ/2

t

γ1

z

θ = 2π
3

Re[Ai(z)]

θ = 2π/3
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The integral representation sheds light on this question: 

. 

 As we continue  further to , both critical points become 
purely imaginary and jointly lead to oscillatory behavior . 
This change of  1 crit. point into 2 is the Stokes’ phenomenon.

Ai(z) =
1

2πi ∫γ1

exp (−zt +
t3

3 ) dt

θ θ = π

t

γ1

t

⇝ γ1

θ = 0 θ = π
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x(λ)

Two physical examples where Airy functions arise are quantum 
mechanics of  turning points and supernumerary rainbows

ψ(x) ≈
e∓ 2

3 (αx)3/2

(αx)1
4

∞

∑
n=0

cn

[(αx)3/2]n
∼

1

2 π |x |1/4
e− 2

3 x3/2 (1 + ⋯) for x > 0

1

π |x |1/4
sin ( 2

3 |x |2/3 + π
4 ) (1 + ⋯) for x < 0
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The integral representation sheds light on this question: 

. 

 But still the question remains: why do both critical points 
contribute?  The answer is that both saddles were always 
contributing, it’s just that one was exponentially sub-dominant 

. 

We can understand that such connection formulae must exist 
from the differential equation: 

          , 

which only has two 
independent solutions.

Ai(z) =
1

2πi ∫γ1

exp (−zt +
t3

3 ) dt

Ai(e∓ 2πi
3 z) = 1

2 e± πi
6 Bi(z)+ 1

2 e∓ πi
3 Ai(z)

d2ψ
dx2

= α3xψ t

γ1

t

⇝ γ1

θ = 0 θ = π
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Gerald Dunne offers an elegant mnemonic image for these ideas: 
the wavelets surrounding droplets of  water

The expansion of  a quantity of  physical interest around one of  
its critical points has late term contributions arising from the 
near term contributions of  neighboring saddles.
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of  my knowledge the perturbative/non-perturbative relations found in 
resurgence have yet to be applied to quantum gravity. 
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Heron’s beautiful formula gives the area of  a triangle as a 
function of  its edge lengths 

. A2
t (l1, l2, l3) = 1

16 [l2
1 − (l2 − l3)2][(l2 + l3)2 − l2

1]

18

l1

l3

l2
t

Classical Area Geometry — Areas, instead of  lengths, can 
be used to describe all sorts of  familiar geometry. 

A classical theorem due to H. Minkowski gives 
a tetrahedron’s geometry via its area vectors: 

,  
where  is the unit normal to triangle .

⃗A t = At ̂nt

̂nt t
⃗A 2

⃗A 4

⃗A 3
⃗A 1 ⃗A 1 + ⃗A 2 + ⃗A 3 + ⃗A 4 = 0
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Indeed, we can make a rather profound change in perspective, 
and view  as elements of  the  Lie algebra⃗A t 𝔰𝔬(3) ≅ ℝ3

R(θ, ̂u) = eθ( ⃗A 1+ ⃗A 2+ ⃗A 3+ ⃗A 4)⋅ ̂u

With this choice, not only does the closure  
  

describe the tetrahedral geometry, but is also the diagonal 
generator of  overall rotations and expresses the invariance of  
the geometry under these rotations; this is the Gauss 
constraint of  discrete geometry. 

⃗A 1 + ⃗A 2 + ⃗A 3 + ⃗A 4 = 0

A⃗
2A⃗

4 A⃗
3

A⃗
1
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Counting edge lengths, we know that a tetrahedron has 6 
independent parameters. The 12 components  are 
clearly overkill, while the 4 magnitudes  are insufficient.  

Closure provides a way out of  this quandary. We seek 
rotational invariants to complete the characterization of  the 
tetrahedral geometry. We can work with any two of: 

the dot products 
,     or the same     

or the rotationally invariant triple products 
.  

It’s striking that the latter gives the  
volume squared of  the tetrahedron 

.

{ ⃗A t}4
t=1

{At}4
t=1

⃗A t ⋅ ⃗A t′ 
A2

tt′ 
= ( ⃗A t + ⃗A ′ t)2 = A2

t + A2
t′ 

+ 2 ⃗A t ⋅ ⃗A t′ 

⃗A t ⋅ ( ⃗A t′ 
× ⃗A t′ ′ 

)

Q ≡ V2
τ =

2
9

⃗A t ⋅ ( ⃗A t′ 
× ⃗A t′ ′ 

)

⃗A 2

⃗A 4

⃗A 3
⃗A 1
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In sum, we have a classical phase space for tetrahedra! 

We adopt canonical coordinates by rearranging closure as 
vector addition: 

Because we understand the vectors as elements of  , the  
coords are naturally equipped with a Poisson bracket and: 

.

𝔰𝔬(3)

{q, p} = {ϕ, A} = 1

⃗A 4
⃗A 1

⃗A 2
⃗A 3

q = ϕ

p = A = | ⃗A 1 + ⃗A 2 |
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In 2011, Eugenio Bianchi and I considered the evolution 
generated by , more precisely , on 
this space with fixed :  

             
                                     

 

V Q = V2 = 2
9

⃗A 1 ⋅ ( ⃗A 2 × ⃗A 3)
{A1, A2, A3, A4}

dϕ
dλ

= {ϕ, Q} and
dA
dλ

= {A, Q}

λ
 Q = V2 =

8
9

ΔΔ̄
A

sin ϕ

⃗A 4
⃗A 1

⃗A 2
⃗A 3AΔ

Δ̄
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In 2011, Eugenio Bianchi and I considered the evolution 
generated by the volume ; this evolution is integrable:  

             
                                     

 

The solutions, , are ratios of  Jacobi elliptic functions. 

V

dA2

dλ
=

1
9

(4Δ)2(4Δ̄)2 − A2(18Q)2

=
1
9

[A2 − r̄2
1][A

2 − r̄2
2][r̄

2
3 − A2][r̄2

4 − A2] − A2(18Q)2

A2(λ)

λ
 Q = V2 =

8
9

ΔΔ̄
A

sin ϕ

⃗A 4
⃗A 1

⃗A 2
⃗A 3AΔ

Δ̄

r̄2
1 = (A1 − A2)2

r̄2
2 = (A3 − A4)2

r̄2
3 = (A1 + A2)2

r̄2
4 = (A3 + A4)2



24

The flow along the curves of  constant  is integrable and 
describes a family of  tetrahedra with different shapes, but 
equal volumes  

             
                                     

At left: the phase space of  shapes with a constant volume 
contour; at right: two different views of  the same tetrahedron 
as it undergoes the volume flow (click to play)

V
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Our first result was a semiclassical quantization of  the volume 
eigenvalues:  

             
                                     

Here the Bohr-Sommerfeld values (solid dots) are compared 
to the numerical eigenvalues from a full quantum treatment 
(open circles). More on the quantum treatment below…

λ

0 2 4 6 8 10
0

2

4

6

8

10

12

14

a(Vn) = − ∮ ϕdA

= (n+ 1
2 ) 2πℏ



26

A new result that I can share with you today is that Antu and 
I have been able to find the WKB wave functions too 

             
                                     

 

where  

ψq(k) =
4A

gK(m)
η

| [(16ΔΔ̄)2 − (18AQ)2]1/4 |
cos ( 1

2 (ΔSq − ΔSA)− π
4 )

|ψq(k) |2

k

Numerical 
WKB

Sq,m = 18gq
λpm

9g
− ∑

i

r1

r1 − r̄i
λpm

−
r̄i(r2 − r1)

(r2 − r̄i)(r1 − r̄i)
Π α2

i , am (
λpm

9g
, m), m
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Results are detailed and explicit, but largely restricted to phase 
spaces representable by (genus 1) Riemann surfaces 

Canonical Example                         Volume Evolution Example 
 

 

V(q) = (2q2 − 1)2, p = 2m[E − V ]

p = 2m[E − (2q2 − 1)2]

28

Constructive Resurgence  — There is a remarkable second 
version of  resurgence, often called constructive resurgence

dA2

dλ
=

1
9

(4Δ)2(4Δ̄)2 − A2(18Q)2

=
1
9

[A2 − r̄2
1][A

2 − r̄2
2][r̄

2
3 − A2][r̄2

4 − A2] − A2(18Q)2

V

q

E

slope = (18Q)2

A2

P(A2, Q)

r̄2
4r̄2

3

r̄2
2

r̄2
1 r2

1
r2
2

r2
3

r2
4



In both examples we can view the phase space as a genus 1 
torus by complexifying variables and gluing along branch cuts 

Canonical Example                         Volume Evolution Example 
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p = 2m[E − (2q2 − 1)2]
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1
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(4Δ)2(4Δ̄)2 − A2(18Q)2
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1
9

[A2 − r̄2
1][A

2 − r̄2
2][r̄

2
3 − A2][r̄2

4 − A2] − A2(18Q)2

r2
1

r2
2

r2
3

r2
4

r2
1

r2
2

r2
3

r2
4

r2
1

r2
2

r2
3

r2
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In both examples we can view the phase space as a genus 1 
torus by complexifying variables and gluing along branch cuts 

Canonical Example                         Volume Evolution Example 
 

 

Bohr-Somm:  

Tunneling-splitting: 

V(q) = (2q2 − 1)2, p = 2m[E − V ]

p = 2m[E − (2q2 − 1)2]

a = ∮α
pdq = (n+ 1

2 ) 2πℏ

aD = ∮β
pdq

29

dA2

dλ
=

1
9

(4Δ)2(4Δ̄)2 − A2(18Q)2

=
1
9

[A2 − r̄2
1][A

2 − r̄2
2][r̄

2
3 − A2][r̄2

4 − A2] − A2(18Q)2

r2
1

r2
2

r2
3

r2
4

r2
1

r2
2

r2
3

r2
4

r2
1

r2
2

r2
3

r2
4

β

α



We can now borrow a nice result from algebraic topology: the 
# of  independent cycles = # of  independent 1-forms 

A 1D complex manifold with genus  and  punctures, has  
# indep cycles = . 

Independence is up to an exact form. Taking , let 
, 

then only  of   and  

,   

are independent. Express the dependency as ,  

   (Picard-Fuchs Eqn) 

g 𝔭
2g + 2𝔭 − 1

m = 1
θ(q, E) ≡ pdq = 2[E − V(q)]

2g + 2p − 1 θ

θ1 = ∂E pdq =
1

2[E − V(q)]
dq θ2 ≡ ∂2

E pdq, … , θk ≡ ∂k
E pdq

∑
k

ckθk(E) = df

∑
k

ck ∮γ
θk = ∮ df = 0 ⟹ ck∂k

Ea = 0

30



For the symmetric quartic well this Picard-Fuchs equation is  

. 

This equation captures the fact that as we vary , the turning 
points, and hence the actions, vary in a predictable way.  

Both  and , which only differ by their integration cycles, 
satisfy this equation. Further, it implies a Wronskian relation: 
    
or  
      . 

A connection formula  
between  and . 

E(1 − E)
d2a
dE2

−
3

16
a = 0

E

a aD

a∂EaD − aD∂Ea = 4
3 πi

a ωD − aDω = 4
3 πi

a aD

31

V

q

E



Antu and I have found an explicit 3rd order Picard-Fuchs 
equation for the volume evolution  

. 

Here  is the quartic discriminant, an 8th order 
polynomial in  that vanishes iff   coalesce and  and  are 
respectively of  10th and 12th order in Q. 

D(ri, Q)
d3a
dQ3

+ c2(ri, Q)
d2a
dQ2

+ c1(ri, Q)
da
dQ

= 0

D(ri, Q)
Q ri c1 c2

32

slope = (18Q)2

A2

P(A2, Q)

r̄2
4r̄2

3r̄2
2

r̄2
1 r2

1

r2
2

r2
3

r2
4

The evident constant 
solution has a nice 
explanation: it is due 
to punctures in the 
Riemann surface.



The Picard-Fuchs coefficients are below: here , 
 are symm root functions 

Qb = 18Q
s0 = r1r2r3r4, … , s3 = r1 + r2 + r3 + r4

33
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Why is, even such a messy, Picard-Fuchs equation of  interest?  

These equations allow us to express the all orders in  
quantization conditions of  a genus-1 phase space in terms of  the 
lowest order actions, i.e solutions of  the Picard-Fuchs eqn. 

The proof  is delicate, but quite elegant [Basar, Dunne, Ünsal]: 
1. The classical actions  and  are solutions to the Picard-
Fuchs equation. They are related via a Wronskian condition. 
Hence  only 1 indep classical action function on the torus. 

2. WKB analysis can be extended to all orders in : 

 

The integrands are rational functions of   and .

ℏ

a0 aD
0

∃

ℏ

a(E, ℏ) = 2 ∮α
E − Vdq −

ℏ2

26 ∮α

(V′ )2

(E − V )5/2
dq −

ℏ4

213 ∮α ( 49(V′ )4

(E − V )11/2
−

16V′ V′ ′ 

(E − V )7/2 ) + ⋯

q p = quartic

https://arxiv.org/abs/1701.06572
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These equations allow us to express the all orders in  
quantization conditions of  a genus-1 phase space in terms of  
the lowest order actions, i.e solutions of  the Picard-Fuchs eqn. 

The proof  is delicate, but quite elegant [Basar, Dunne, Ünsal]: 

2. WKB analysis can be extended to all orders in : 

 

The integrands are rational functions of   and . 

For genus 1 systems, the classical action and all higher order 
actions can be expressed in terms of  the complete elliptic 
integrals: , which are closed under differentiation.  

Hence the higher order actions , for some .

ℏ

ℏ

a(E, ℏ) = 2 ∮α
E − Vdq −

ℏ2

26 ∮α

(V′ )2

(E − V )5/2
dq −

ℏ4

213 ∮α ( 49(V′ )4

(E − V )11/2
−

16V′ V′ ′ 

(E − V )7/2 ) + ⋯

q p = quartic

𝕂, 𝔼, Π

aℓ(E) = 𝒟ℓ
Ea0(E) 𝒟ℓ

E

https://arxiv.org/abs/1701.06572
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These equations allow us to express the all orders in  
quantization conditions of  a genus-1 phase space in terms of  
the lowest order actions, i.e solutions of  the Picard-Fuchs eqn. 

The proof  is delicate, but quite elegant [Basar, Dunne, Ünsal]: 

2. WKB analysis can be extended to all orders in : 

 

The integrands are rational functions of   and . 
Hence the higher order actions , for some . 
Repeated use of  the Picard-Fuchs eqn allows us to reduce the 
order of  this differential operator until: 

ℏ

ℏ

a(E, ℏ) = 2 ∮α
E − Vdq −

ℏ2

26 ∮α

(V′ )2

(E − V )5/2
dq −

ℏ4

213 ∮α ( 49(V′ )4

(E − V )11/2
−

16V′ V′ ′ 

(E − V )7/2 ) + ⋯

q p = quartic
aℓ(E) = 𝒟ℓ

Ea0(E) 𝒟ℓ
E

aℓ(E) = f (2)
ℓ (E)

d2a0

dE2
+ f (1)

ℓ (E)
da0

dE
+ f (0)

ℓ (E)a0

https://arxiv.org/abs/1701.06572


The closed action integrals in the classically allowed region and the 
classically forbidden regions (  and ) are: 

 

 

 

Using   and  , one can show . 

A2 > r3 A2 < r2

a1 = 18gQ [1 −
4

∑
i=1

r1

r1 − r̄i ] K(m) −
4

∑
i=1 [ r2

r2 − r̄i
−

r1

r1 − r̄i ] Π(α2
i , m)

aD
2 =

18gQ
i [1 −

4

∑
i=1

r2

r2 − r̄i ] K(mf ) −
4

∑
i=1 [ r3

r3 − r̄i
−

r2

r2 − r̄i ] Π(α2
if , mf )

aD
3 =

18gQ
i [1 −

4

∑
i=1

r3

r3 − r̄i ] K(mf ) −
4

∑
i=1 [ r2

r2 − r̄i
−

r3

r3 − r̄i ] Π(α2
iF, mf )

α2
i =

(r3 − r2)(r1 − r̄i)
(r3 − r1)(r2 − r̄i)

; α2
if =

(r4 − r3)(r2 − r̄i)
(r4 − r2)(r3 − r̄i)

; α2
iF =

(r2 − r1)(r3 − r̄i)
(r3 − r1)(r2 − r̄i)

m =
(r3 − r2)(r4 − r1)
(r4 − r2)(r3 − r1)

; mf =
(r4 − r3)(r2 − r1)
(r4 − r2)(r3 − r1)

α2
if α

2
iF = mf Π(α2, m) = K(m) − Π(m /α2, m) aD

2 = aD
3
36

We have found explicit modular relations between the actions 
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Much still remains to be understood: the quantum equation underlying 
this geometry is rich, and differs from the Schrödinger equation (c.f. 
Bianchi, HMH 2011 for derivation) 

The matrix elements of  the  operator in a recoupling basis satisfy the 
recursion relation 

 
with 

 

This can be viewed as a difference equation, which in the semiclassical 
limit gives a differential equation  

. 

At lowest order this is in excellent agreement with , but 
both the coefficients and the wave function contribute at all orders in !

Q̂

ak+1⟨k + 1 |q⟩ − ak⟨k − 1 |q⟩ + iq⟨k |q⟩ = 0

ak =
1

8 k − 1
2 k + 1

2
( [( j1 + j2 + 1)2 − k2][k2 − ( j1 − j2)2] [( j3 + j4 + 1)2 − k2][k2 − ( j3 − j4)2]) .

Δ2Φq
k

Δk2
+ 2

ΔΦq
k

Δk
+

iqK
2Δ(K, J1, J2)Δ(K, J3, J4)

Φq
k = 0

a = − ∮ ϕdA

ℏ
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Quantization of  geometry provides a remarkable laboratory 
for understanding resurgent perturbative/non-perturbative 
relations and, due to the richness of  its underlying quantum 
structure, may even require extensions of  this formalism.



Thank you!


