Quantum Curves

Knot Theory

Loop Quantum Gravity

Chern-Simons Theory

Low-dimensional Topology

Supersymmetric Gauge Theory

String/M-Theory

Muxin Han

with Hal M. Haggard, Aldo Riello, Wojciech Kaminski, Roland van der Veen
Warm up: Harmonic Oscillator

\[\omega = dp \wedge dq \]

\[L_A : \frac{1}{2}(p^2 + q^2) - E = 0 \]

Quantization

\[q \mapsto \hat{q} \]
\[p \mapsto \hat{p} = -i\hbar \partial_q \]
\[\hat{H} = \frac{1}{2}(\hat{p}^2 + \hat{q}^2) \]

\[\hat{H}\psi(q) = E\psi(q) \]

\[\left[\frac{1}{2}(\hat{p}^2 + \hat{q}^2) - E \right] \psi(q) = 0 \]

Quantized Circle

WKB solution:

\[\psi^{(\pm)}(q) = \exp \left[\frac{i}{\hbar} \int_{q_0}^{q} p(q') dq' + o(\log \hbar) \right] \]

\[= \exp \left[\frac{i}{\hbar} \int_{q_0}^{q} \pm \sqrt{2E - q'^2} \ dq' + o(\log \hbar) \right] \]
Quantum Curve

Complex symplectic manifold: \((M, \omega, J)\) \hspace{1cm} \dim_{\mathbb{C}} M = 2N

holomorphic symplectic structure \hspace{1cm} complex structure

Holomorphic coordinates:
\[
\omega = \sum_{m=1}^{2N} dv_m \wedge du_m
\]

Holomorphic Lagrangian submanifold (Classical curve): \(L_A\)

\[
\omega|_{L_A} = 0 \hspace{1cm} \dim_{\mathbb{C}} L_A = N
\]

Holomorphic: polynomial eqns \(A_m(e^u, e^v) = 0, \ m = 1, \cdots, N\)

Quantization:
\[
[\hat{u}_m, \hat{v}_n] = i\hbar \delta_{m,n}, \quad \hat{u}_m f(u) = u f(u), \quad \hat{v}_m f(u) = -i\hbar \partial_{u_m} f(u)
\]

Quantization of \(L_A\):
\[
\hat{A}_m(e^{\hat{u}}, e^{\hat{v}}, \hbar) Z(u) = 0, \ m = 1, \cdots, N
\]

The goal: find the holomorphic solution \(Z(u)\).
Quantum Curves

- Loop Quantum Gravity
- Chern-Simons Theory
- Supersymmetric Gauge Theory
- String/M-Theory
- Low-dimensional Topology
- Knot Theory
Moduli space of flat connections on 2-surface

Closed 2-surface \(\Sigma_g \)
e.g.

with a set of closed curves \(\{ c \} \)

s.t. \(\Sigma_g \setminus \{ c \} = \) a set of \(n \)-holed spheres

Complex symplectic manifold: \(\mathcal{M} = \mathcal{M}_{flat}(\Sigma_g, SL(2, \mathbb{C})) \) \((A \text{ s.t. } F_A = 0) \)

- Hyper-Kahler: complex structures \(i, j, k = ij \)

from 2-surface from complex group

- Symplectic structure: \(\omega \sim \int_{\Sigma_g} \text{tr} [\delta A \wedge \delta A] \) (Atiyah-Bott-Goldman)
Holomorphic coordinates (w.r.t j)

Closed 2-surface \sum_g with the set of closed curves $\{ c \}$

Complex Fenchel-Nielsen (FN) coordinates: $c \mapsto (x_c, y_c) \in (\mathbb{C}^*)^2$

FN length: x_c holonomy eigenvalue along the curve c

FN twist: y_c “conjugate momenta”

Holomorphic symplectic structure: $\omega = \sum_c d \ln y_c \wedge d \ln x_c + \omega_{n\text{-holed sphere}}$

$\dim_{\mathbb{C}} \mathcal{M}_{\text{flat}}(\Sigma_g, \text{SL}(2, \mathbb{C})) = 6g - 6$

e.g.

$g = 6$

\[\dim = 30 = 2 \times 10 + 2 \times 5 \]

$\dim_{\text{2-holed sphere}} = 2$
Holomorphic Lagrangian submanifold

For a 3-manifold M_3 s.t. $\partial M_3 = \Sigma_g$

$\mathcal{M}_{flat}(M_3, \text{SL}(2, \mathbb{C})) \simeq \mathcal{L}_A \hookrightarrow \mathcal{M}_{flat}(\Sigma_g, \text{SL}(2, \mathbb{C}))$

Holomorphic polynomial eqns $A_m(x_c, y_c; \cdots) = 0, \ m = 1, \cdots, 3g - 3$

We focus on graph complement 3-manifold in 3-sphere: removing a tubular open neighborhood of a graph embedded in 3-sphere.

$M_3 = S^3 \setminus N(\Gamma) \equiv S^3 \setminus \Gamma$

$\partial M_3 = \Sigma_g = 6$
Quantization of flat connections on 3-manifold

\[\mathcal{M} = \mathcal{M}_{\text{flat}}(\Sigma_g, \text{SL}(2, \mathbb{C})) \quad \omega = \sum_c d \ln y_c \wedge d \ln x_c + \omega_{n\text{-holed sphere}} \]

Holomorphic symplectic coordinates

\[u_c = \ln x_c, \quad v_c = \ln y_c, \quad \cdots \]

\[\hat{u}_c f(u, \cdots) = u_c f(u, \cdots), \quad \hat{v}_c f(u, \cdots) = -i\hbar \partial_{u_c} f(u, \cdots) \]

Quantization of

\[\mathcal{M}_{\text{flat}}(M_3, \text{SL}(2, \mathbb{C})) \cong \mathcal{L}_A \hookrightarrow \mathcal{M}_{\text{flat}}(\Sigma_g, \text{SL}(2, \mathbb{C})) \]

\[\hat{A}_m(e^{\hat{u}}, e^{\hat{v}}, \cdots, \hbar) Z(u, \cdots) = 0, \quad m = 1, \cdots, 3g - 3 \]

The holomorphic solutions \(Z(u, \cdots) \) are the physical states for quantum flat connections on 3-manifold, which quantizes SL(2,C) Chern-Simons theory on 3-manifold.

Dimofte, Gukov, Lenells, Zagier 2009
Dimofte 2011
Gukov, Sułkowski 2011
Gukov, Saberi 2012
Flat Connections in 3d v.s. Simplicial Geometry in 4d

A class of $\text{SL}(2, \mathbb{C})$ flat connection on $S^3 \setminus \Gamma_5$

\[\partial \mathcal{M}_3 = \sum_{g=6} \mathcal{G} \]

= Lorentzian 4-simplex geometries with constant curvature Λ

The class of flat connections is specified by the boundary condition

Haggard, MH, Kamiński, Riello 2014
Boundary condition on $\mathcal{M}_{flat} \left(\sum_{g=6}, \text{SL}(2, \mathbb{C}) \right)$

- We consider the SL(2, C) flat connections on $\Sigma_{g=6}$ that reduce to SU(2) on each 4-holed sphere

- We associate each 4-holed sphere with an SU(2) subgroup of SL(2, C)

- We consider the SL(2, C) flat connections on $\Sigma_{g=6}$ that reduce to SU(2) on each 4-holed sphere

- Relates to the simplicity constraint in LQG
Flat Connections in d-1 v.s. Discrete Geometry in d

\[\pi_1(M_{d-1}) \]
Fundamental group of a \((d-1)\)-manifold \(M_{d-1}\)
(defected \(S^{d-1}\))

\[\pi_1(\text{sk}(M_d)) \]
Fundamental group of the 1-skeleton of a \(d\)-dim polyhedron \(M_d\)

\[S \]

\[\omega_{flat} \]

\[\omega_{spin} \]

\[\text{SO}(d) \text{ or } \text{SO}(d - 1, 1) \]

modulo gauge

\[\omega_{spin} = \omega_{flat} \circ S \]
4-holed sphere v.s. tetrahedron

\[\pi_1(4\text{-}\text{holed sphere}) = \langle l_1, \cdots, l_4 \mid l_4 l_3 l_2 l_1 = e \rangle \]

\[\pi_1(\text{sk(Tetra)}) \cong \langle p_1, \cdots, p_4 \mid p_4 p_3 p_2 p_1 = e \rangle \]

\[\omega_{\text{flat}} \]

\[\langle H_1, \cdots, H_4 \in \text{SO}(3) \mid H_4 H_3 H_2 H_1 = 1 \rangle / \text{conjugation} \]
\[\Gamma_5 \text{ graph complement v.s. 4-simplex} \]

\[S^3 \xrightarrow{\Gamma_5} S^3 \backslash \Gamma_5 \]

vertex 1: \[I_{14} I_{13}^{(1)} I_{12} I_{15} = 1, \]
vertex 2: \[I_{12} I_{24} I_{23} I_{25} = 1, \]
vertex 3: \[I_{23}^{-1} (I_{13}^{(2)})^{-1} I_{34} I_{35} = 1, \]
vertex 4: \[I_{34}^{-1} I_{24}^{-1} I_{14} I_{45} = 1, \]
vertex 5: \[I_{25}^{-1} I_{35}^{-1} I_{45}^{-1} I_{15}^{-1} = 1, \]
crossing: \[I_{13}^{(1)} = I_{24} I_{13}^{(2)} I_{24}^{-1}. \]

tetra 1: \[p_{14} p_{13}^{(1)} p_{12} p_{15} = 1, \]
tetra 2: \[p_{12}^{-1} p_{24} p_{23} p_{25} = 1, \]
tetra 3: \[p_{23}^{-1} (p_{13}^{(2)})^{-1} p_{34} p_{35} = 1, \]
tetra 4: \[p_{34}^{-1} p_{24}^{-1} p_{14}^{-1} p_{45} = 1, \]
tetra 5: \[p_{25}^{-1} p_{35}^{-1} p_{45}^{-1} p_{15}^{-1} = 1, \]
“crossing”: \[p_{13}^{(1)} = p_{24} p_{13}^{(2)} p_{24}^{-1}. \]

\[\omega_{\text{flat}} \]
\[\omega_{\text{spin}} \]

\[\langle H_{ab} \in SO(3, 1) | \ldots \rangle / \text{conjugation} \]
\[\omega_{spin} = \omega_{flat} \circ S \] are a set of holonomies along closed paths on 1-skeleton

How much do they know about the geometry?

In general they know very little.

But for constant curvature simplex, whose 2-faces are flatly embedded surfaces:

Lemma: Given 2-surface flatly embedded \((K=0)\) in constant curvature space, the holonomy of spin connection along the boundary of surface:

\[
h_{\partial f}(\omega_{spin}) = \exp \left[-i \frac{\Lambda}{6} a_f \hat{n}_f \cdot \vec{\sigma} \right] \]

in 3d space

replaced by normal bivector in 4d spacetime

Area and normal data determine the simplex geometry
Theorem: There is 1-to-1 correspondence between

\[A \in \mathcal{M}_{flat}(4\text{-holed sphere, PSU}(2)) \longleftrightarrow \text{A convex constant curvature tetrahedron geometry with } \Lambda > 0 \text{ or } \Lambda < 0 \]

Remark: The above statements hold as far as the geometry is nondegenerate.

Remark: Flat conn holonomy around defect = Spin conn holonomy around face.

Theorem: There is 1-to-1 correspondence between

\[A \in \mathcal{M}_{flat}(S^3 \setminus \Gamma_5, PSL(2, \mathbb{C})) \text{ satisfying the boundary condition} \longleftrightarrow \text{A convex constant curvature 4-simplex geometry with } \Lambda > 0 \text{ or } \Lambda < 0 \text{ (Lorentzian)} \]

\[S^3 \setminus \Gamma_5 \]

Remark: The above statements hold as far as the geometry is nondegenerate.
Dictionary between coordinates

Flat connection

$S^3 \setminus \Gamma_5$

4-simplex geometry

FN length: $x_{ab} = \pm \exp \left(-i \frac{\Lambda}{6} a_{ab} \right)$ \hspace{1cm} \text{triangle area}

FN twist: $y_{ab} = \pm \exp \left(-\frac{1}{2} \Theta^\Lambda_{ab} \right)$ \hspace{1cm} \text{4d dihedral angle}

4-holed sphere: $(x_a, y_a) = \text{shape of tetrahedron}$
Parity Pair

Given a flat connection \(A \in \mathcal{M}_\text{flat}(S^3 \setminus \Gamma_5, \text{SL}(2, \mathbb{C})) \) satisfying boundary condition, it associates a unique \(\tilde{A} \in \mathcal{M}_\text{flat}(S^3 \setminus \Gamma_5, \text{SL}(2, \mathbb{C})) \) satisfying boundary condition, with the same boundary data: \((x_{ab}; x_a, y_a) \)

but with different twist variable:

\[
y_{ab} = \pm \exp \left[-\frac{1}{2} \Theta^\Lambda_{ab} \right], \quad \tilde{y}_{ab} = \pm \exp \left[\frac{1}{2} \Theta^\Lambda_{ab} \right]
\]

\(\mathcal{M}_\text{flat}(\Sigma_{g=6}, \text{SL}(2, \mathbb{C})) \)

2 constant curvature 4-simplex with the same geometry but with opposite 4d orientations
Quantum Theory

Flat connection on $S^3 \setminus \Gamma_5 = \text{4-simplex geometry}$

Quantum flat connection on $S^3 \setminus \Gamma_5 = \text{Quantum 4-simplex geometry}$

Quantization of 4d geometry

Quantization of flat connection on 3-manifold

(Quantization of holomorphic Lagrangian submanifold)
Quantization of flat connections on 3-manifold

\[\mathcal{M} = \mathcal{M}_{\text{flat}}(\Sigma_g, \text{SL}(2, \mathbb{C})) \quad \omega = \sum_c \text{d} \ln y_c \wedge \text{d} \ln x_c + \omega_{n\text{-holed sphere}} \]

Holomorphic symplectic coordinates

\[u_c = \ln x_c, \quad v_c = \ln y_c, \quad \cdots \]

\[\hat{u}_c f(u, \cdots) = u_c f(u, \cdots), \quad \hat{v}_c f(u, \cdots) = -i\hbar \partial_{u_c} f(u, \cdots) \]

Quantization of \(\mathcal{M}_{\text{flat}}(M_3, \text{SL}(2, \mathbb{C})) \cong \mathcal{L}_A \rightarrow \mathcal{M}_{\text{flat}}(\Sigma_g, \text{SL}(2, \mathbb{C})) \)

\[\hat{A}_m(e^{\hat{u}}, e^{\hat{v}}, \cdots, \hbar) Z(u, \cdots) = 0, \quad m = 1, \cdots, 3g - 3 \]

The holomorphic solutions \(Z(u, \cdots) \) are the physical states for quantum flat connections on 3-manifold, which quantizes SL(2,\mathbb{C}) Chern-Simons theory on 3-manifold.
\[A_m(x_c, y_c; \cdots) = 0, \quad m = 1, \cdots, 3g - 3 \]

\[\hat{A}_m(e^{\hat{u}}, e^{\hat{v}}, \cdots, \hat{h}) Z(u, \cdots) = 0, \quad m = 1, \cdots, 3g - 3 \]

WKB solutions: holomorphic 3d block

\[
Z^{(\alpha)}(M_3 | u) = \exp \left[\frac{i}{\hbar} \int_{(u_0, v_0)}^{(u, v^{(\alpha)})} \vartheta + o(\log \hbar) \right]
\]

\(\alpha \) labels the branches of Lagrangian submanifold. Thus \((u, \alpha)\) corresponds to a unique SL(2,C) flat connection on \(M_3 \)

\[
Z^{(\alpha)}(M_3 | u) \text{ has ambiguities: (1) } Z^{(\alpha)}(M_3 | u) \mapsto Z^{(\alpha)}(M_3 | u) \exp \left(-\frac{2\pi i}{\hbar} u \right) \quad (v \sim v + 2\pi i)
\]

(2) starting point of contour \(\mapsto \) overall phase.
Wave function of 4-geometry

- Quantize $\mathcal{L}_A \approx \mathcal{M}_{\text{flat}}(S^3 \setminus \Gamma_5, \text{SL}(2, \mathbb{C}))$

- Impose the boundary condition

- Consider the branch α s.t. (u, α) corresponds to a constant curvature 4-simplex geometry

- α associates with its parity partner $\tilde{\alpha}$ s.t. (u, α) and $(u, \tilde{\alpha})$ are parity pair

Holomorphic 3d block defined at branch α with the reference at branch $\tilde{\alpha}$ is a state for quantum 4-simplex geometry

\[
Z^{(\alpha)}(S^3 \setminus \Gamma_5|u) = \exp \left[\frac{i}{\hbar} \int (u, v^{(\alpha)}) \vartheta + o(\log \hbar) \right]
\]

Where $\mathcal{M}_{\text{flat}}(\Sigma_{g=6}, \text{SL}(2, \mathbb{C}))$
Quantum Geometry = Quantum Gravity

Semiclassical limit of \[Z^{(\alpha)} \left(S^3 \setminus \Gamma_5 \right| u \right) \longrightarrow \text{Discrete Einstein gravity in 4d} \]

Semiclassical limit \(\hbar \to 0 \)

\[
Z^{(\alpha)} \left(S^3 \setminus \Gamma_5 \right| u \right) \sim \exp \left[\frac{i}{\hbar} S^\Lambda_{\text{Regge}} + o(\log \hbar) \right]
\]

Discrete 4d Einstein-Hilbert action on a constant curvature 4-simplex:

\[
S^\Lambda_{\text{Regge}} = \sum_{a < b} a_{ab} \Theta^\Lambda_{ab} - \Lambda \text{Vol}_4^\Lambda
\]
Variation of boundary data

\[
[u_{ab}, u_a, v_a] \mapsto [u_{ab} + \delta u_{ab}, u_a + \delta u_a, v_a + \delta v_a]
\]

\[
\delta I^\alpha_{\tilde{\alpha}} = \int_{c \cup \tilde{c}} \sum_{a < b} v_{ab} du_{ab} \sim \text{“symplectic area of the square”}
\]

\[
= \delta u_{ab} [v_{ab} - \tilde{v}_{ab}] + o\left((\delta u)^2\right)
\]

\[
I^\alpha_{\tilde{\alpha}} = \int \sum_{a < b} v_{ab} du_{ab}
\]

\[
Z^{(\alpha)}(S^3 \setminus \Gamma_5|u) = \exp\left[\frac{i}{\hbar} I^\alpha_{\tilde{\alpha}} + o(\log \hbar)\right]
\]

Variation of boundary data
Dictionary between coordinates

Flat connection

\[S^3 \setminus \Gamma_5 \]

4-simplex geometry

FN length: \[x_{ab} = e^{u_{ab}} = \pm \exp \left[-i \frac{\Lambda}{6} a_{ab} \right] \]

FN twist: \[y_{ab} = e^{-2\pi i v_{ab}} = \pm \exp \left[-\frac{1}{2} \Theta^\Lambda_{ab} \right] \]

\[\tilde{y}_{ab} = e^{-2\pi i \tilde{v}_{ab}} = \pm \exp \left[+\frac{1}{2} \Theta^\Lambda_{ab} \right] \]

\(t \) is CS coupling
Integrate by using Schafli identity
\[
\sum_{a<b} a_{ab} \delta \Theta_{ab} = \Lambda \delta \text{Vol}_4^A
\]

\[
\delta I_{\tilde{\alpha}} = \left(\frac{\Lambda t}{12\pi i} \right) \sum_{a<b} \delta a_{ab} \Theta_{ab} + \left(\frac{\Lambda t}{6} \right) \sum_{a<b} \delta a_{ab}
\]

Lorentzian Regge action in 4d

\[
Z^{(\alpha)}\left(S^3 \setminus \Gamma_5 \mid u\right) = \exp \left[\frac{i}{\hbar} \left(\frac{\Lambda t}{12\pi i} \right) \left(\sum_{a<b} a_{ab} \Theta_{ab} - \Lambda \text{Vol}_4^A + C_{\tilde{\alpha}}^{\alpha} + \frac{i}{\hbar} \left(\frac{\Lambda t}{6} \right) \sum_{a<b} a_{ab} + \cdots \right) \right]
\]

Integration const.

To obtain an oscillatory phase: consider full SL(2,C) Chern-Simons theory with both holomorphic and anti-holomorphic contribution

\[
Z^{(\alpha)}\left(S^3 \setminus \Gamma_5 \mid u\right) Z^{(\overline{\alpha})}\left(S^3 \setminus \Gamma_5 \mid \bar{u}\right) = \exp \left[\frac{i}{\hbar} 2 \text{Re} \left(\frac{\Lambda t}{12\pi i} \right) \left(\sum_{a<b} a_{ab} \Theta_{ab} - \Lambda \text{Vol}_4^A \right) + C_{\tilde{\alpha}}^{\alpha} + \frac{i}{\hbar} 2 \text{Re} \left(\frac{\Lambda t}{6} \right) \sum_{a<b} a_{ab} + \cdots \right]
\]

- **Gravitational coupling:** \(G_N = \left| \frac{3}{2 \text{Im}(i) \Lambda} \right| \) \(t \) is CS coupling
- **Independent of ambiguity:** \(2 \text{Re} \left(\frac{\Lambda t}{6} \right) \sum_{a<b} a_{ab} \in 2\pi \hbar \mathbb{Z} \) fulfilled by LQG \(a \sim j \)

Interesting: \(t \in i\mathbb{R} \) no quantization condition needed

In LQG, corresponding to the limit: Barbero-Immirzi parameter \(\rightarrow \) infinity
Relation with Loop Quantum Gravity

SL(2,C) CS theory on S^3 with certain Wilson graph operator

$$Z_{\Gamma_5} = \int [DAD\bar{A}] e^{iCS[S^3|A,\bar{A}]_{\Gamma_5}[A, \bar{A}]}$$

Wilson graph operator imposes the right boundary condition on $\partial(S^3 \setminus \Gamma_5) = \Sigma_{g=6}$

$$x_{ab} = \exp \left[\frac{2\pi i\hbar}{t} (1 + i\gamma) j_{ab} \right], \quad \gamma = \frac{\text{Im}(t)}{\text{Re}(t)}, \quad j_{ab} \in \mathbb{Z}/2$$

Barbero-Immirzi parameter

- **semiclassical limit = double-scaling limit** $j \to \infty, \hbar \to 0, \ j\hbar$ fixed

- Z_{Γ_5} has the same semiclassical limit as the 3d block

$$Z_{\Gamma_5} \sim Z^{(\alpha)} \left(S^3 \setminus \Gamma_5 \left| u \right. \right) Z^{(\bar{\alpha})} \left(S^3 \setminus \Gamma_5 \left| \bar{u} \right. \right)$$

gives classical Einstein-Regge action as the leading order.
Deformation of EPRL Spinfoam Amplitude

\[Z_{\Gamma_5} \xrightarrow{\hbar \to 0, \ j \to \infty, \ j\hbar \ \text{fixed}} \; e^{\frac{i}{\ell_P} S_{\text{Regge}}} + e^{-\frac{i}{\ell_P} S_{\text{Regge}}} \]

\[Z_{\text{EPRL}} \xrightarrow{j \to \infty} \; e^{\frac{i}{\ell_P} S_{\text{Regge}}} + e^{-\frac{i}{\ell_P} S_{\text{Regge}}} \]

Promote CS 3d block to be a wave-function/spinfoam-amplitude of 4d LQG

\[Z^{(\alpha)} \left(S^3 \setminus \Gamma_5 \big| u \right) Z^{(\alpha)} \left(S^3 \setminus \Gamma_5 \big| \bar{u} \right) \]

Finiteness

Identify/generalize spin-network data to flat connection data on closed 2-surface + the quantization condition

relate to Rovelli, Vidotto 2015
Generalize to 4d Simplicial Complex

3-manifold obtained from gluing graph complements through 4-holed sphere

Flat connections on 3-manifold = Simplicial geometry on 4-manifold

\[Z^{(\alpha)}(M_3\mid u) \sim \exp \left[\frac{i}{\hbar} S_{\text{Regge}}^\wedge + o(\log \hbar) \right] \]

Einstein-Regge action on the entire simplicial complex
Quantum Curves

\[Z^{(\alpha)}(M_3|u) \]

- Loop Quantum Gravity
- Knot Theory
- Chern-Simons Theory
- Supersymmetric Gauge Theory
- Low-dimensional Topology
- String/M-Theory
3d-3d correspondence

M-theory in 11d:

M5-brane \(\rightarrow\) IR dynamics: 6d SCFT with gauge group \(G\)

(6-dim) \[16\] supercharges (maximal SUSY)

Compactify M5 on \(M_3 \times S^3_b\)

3d ellipsoid

(or \(S^2 \times_q S^1\) or \(\mathbb{R}^2 \times_q S^1\))

\(G_C\) CS on \(M_3\)

\(\Leftrightarrow\) 3d \(\mathcal{N} = 2\) SUSY gauge theory \(T_{M_3}\)

(SCFT with 4 Q’s)

- \(Z_{CS}(M_3) = Z_{T_{M_3}}^{N=2}(S^3_b)\)

- \(\mathcal{M}_{flat}(M_3, G_C) \simeq \mathcal{M}_{SUSY}(T_{M_3})\)

- \(Z^{(\alpha)}(M_3) = Z_{T_{M_3}}^{N=2}(\mathbb{R}^2 \times_q S^1)\) with boundary SUSY ground state \(\alpha\)

Dimofte, Gaiotto, Gukov 2011
C. Beem, T. Dimofte, S. Pasquetti 2012
Cordova, Jafferis 2013
Lee, Yamazaki 2013
Chung, Dimofte, Gukov, Sułkowski 2014
Dimofte-Gaiotto-Gukov (DGG) Construction

\[T_{DGG,M_3} \quad 3d \mathcal{N} = 2 \text{ SCFT with Abelian gauge group } U(1)^n \]

\[(\text{Gauge theories labelled by 3-manifolds}) \]

\[M_3 \quad \text{Ideal triangulation} \rightarrow \{ \} \]

\[T_\Delta = 3d \mathcal{N} = 2 \text{ chiral multiplet} ; \quad \text{gluing} \rightarrow \text{gauging} + \text{superpotential} \]

\[\rightarrow \quad \text{Pachner move} = 3d \text{ mirror symmetry} \]

\[\mathcal{M}_{flat}(M_3, SL(2, \mathbb{C})) \leftrightarrow \mathcal{M}_{SUSY}(T_{DGG,M_3}) \]

\[Z'_{CS}(M_3) = Z_{DGG,M_3}(S^3_b) \]

\[Z^{(\alpha)}(M_3) = Z_{DGG,M_3}(\mathbb{R}^2 \times_q S^1) \text{ with boundary SUSY ground state } \alpha \]
4d LQG and 3d SCFT

LQG vacua = Simplicial geometries = Flat conn on M_3 = SUSY vacua in T_{M_3}

LQG partition function = CS partition function of M_3 = SUSY partition function of T_{M_3}
(Spinfoam Amplitude)

\[\sim \exp \left[i S_{\text{Regge}}^{\Lambda} + \cdots \right] \]
4d LQG and 3d SCFT

LQG vacua = Simplicial geometries = Flat conn on $M_3 = \text{SUSY vacua in } T_{M_3}$

LQG partition function = CS partition function of $M_3 = \text{SUSY partition function of } T_{M_3}$
(Scinfoam Amplitude)

$$\sim \exp \left[i S^\Lambda_{\text{Regge}} + \cdots \right]$$

The end

Thanks for your attention!