Quantum theory from information inference principles

Philipp Höhn
Perimeter Institute

ILQGS
11 November 2014

> based on:
> PH (to appear hopefully soon)
> PH, C. Wever (to appear hopefully soon too)

Physics and information theory

Tools from information theory proved useful in concrete physical situation to help understand and interpret physical phenomena

- BH entropy
- thermalization

■ quantum information

Can apply tools to given theories/problems \Rightarrow growing number of applications
But: can concepts from information theory tell us something deeper about the structure of physical theories? Can they be used in the architecture of physical theories?
idea:
(im-)possibility of information theoretic tasks \Leftrightarrow particular structure of theory

Operational approaches and information theory

Shall follow an operational approach to physics
\Rightarrow consider relations among systems and observers
advantage: only speak about what an observer has access to and not about how the universe 'really' is (relations among observers)
disadvantage: unobservable 'realist' structure can facilitate global description (spacetime)
\Rightarrow old and ubiquitous debate 'operationalism vs realism' in physics
\Rightarrow clearly, no resolution here, but ask:

> How much can an operational and information theoretic approach teach us about physics?

Which structures can we deduce?

Operational implications: from single to many observers

Operational implications: from single to many observers

Operational implications: from single to many observers

Operational implications: from single to many observers

from information inference to quantum theory \Rightarrow THIS TALK!

Operational implications: from single to many observers

from information inference to quantum theory \Rightarrow THIS TALK!

Disclaimer

Limits to operational information theoretic approach:

1 finite systems, finitely many observers, clear separation between observers and systems \Rightarrow approximation

2 will only obtain 'skeleton' of theories (state spaces, transformations), but not the 'flesh' (concrete Hamiltonian, action, etc) rendering it a 'living' theory.

Nevertheless: novel perspective on architecture of physical theories

What is a (re-)construction of QT?

axiomatization of QT with some basic set of postulates

1 define landscape \mathcal{L} of theories within which axioms can be formulated

2 which physical statements characterize QT within \mathcal{L} ?
\Rightarrow derive quantum state spaces, operations,...

usually: $\mathcal{L}=$ 'generalized probability theories' (GPT)

- operational axioms, but primacy on probability and info inference not explicit

Why a (re-)construction of QT?

1 Give operational sense to usual textbook axioms (why $\mathcal{H}, \otimes, \mathbb{C}, \ldots$?)
2 Better understand QT within larger context
3 why or why not QT in its present form a fundamental theory
4 Often voiced: will clarify interpretation of QT [Rovelli, Fuchs,...] \Rightarrow hope thus far not realized (e.g., GPTs interpretationally neutral)

Why another (re-)construction of QT?

QT as framework for information inference [Rovelli, Zeilinger, Brukner, Fuchs, Spekkens,......] \Rightarrow derive with primacy on information inference
advantage: 1. 'simpler' axioms on relation between O and S
2. emphasizes information inference and close to Relational

QM [for RQM see Rovelli, Smerlak]
disadvantage: landscape \mathcal{L} smaller than for GPTs
\Rightarrow novel perspective, new 'coordinates' on theory space

Outline for the remainder

[^0]
Specifying the landscape of inference theories

Observer O interrogating system S with binary questions $Q_{i}, i=1, \ldots$

- each Q_{i} non-trivial 1-bit question (info measure later)
- O has tested identical S sufficiently often to 'know' set Σ of all possible answer statistics
- Bayesian viewpoint: for specific S, O assigns probabilities p_{i} to Q_{i} accord. to his info about
1Σ
2 particular S
- p_{i} encode all O can say about $S \Rightarrow$ state of S (rel. to O): collection of p_{i} \Rightarrow state space: Σ (to be convex)

Specifying the landscape of inference theories

■ assume: \exists state of 'no information' $p_{i}=\frac{1}{2} \forall i \Rightarrow$ call totally mixed state

- Q_{i}, Q_{j} are:
independent if, relative to totally mixed state of S, answer to only Q_{i} gives
O no information about answer to Q_{j} (and vice versa)
$\Rightarrow p\left(Q_{i}, Q_{j}\right)=p_{i} \cdot p_{j}$ factorizes
compatible if O may know answers to both simultaneously $\Rightarrow p_{i}, p_{j}$ can be simultaneously 0,1
complementary if knowledge of Q_{i} disallows O to know Q_{j} at the same time (and vice versa) $\Rightarrow p_{i}=0,1$, then $p_{j}=1 / 2$

■ assumption: state parametrized by max. set of pairwise indep. Q_{i}

$$
\vec{P}_{O \rightarrow S}=\left(\begin{array}{c}
p_{1} \\
\vdots \\
p_{D_{N}}
\end{array}\right), \quad p_{i} \text { prob. that } Q_{i}=1
$$

■ Specker's principle: $n Q_{i}$ pairwise compatible \Rightarrow mutually compatible

LI: (limited information) " O can acquire maximally $N \in \mathbb{N}$ independent bits of information about S at the same time." $\exists Q_{i}, i=1, \ldots, N$ (mutually) independent compatible
C: (complementarity) " O can always get up to N new (independent) bits of information about S. Whenever O asks a new question he experiences no net loss of information." $\exists Q_{i}^{\prime}, i=1, \ldots, N$ independent compatible but $Q_{i}, Q_{j=i}^{\prime}$ complementary

CO: (completeness) Any $\vec{P}_{O \rightarrow S}$ permissible, s.t. info in $\vec{P}_{O \rightarrow S}$ compatible with LI and C

P: (preservation) "O's total amount of information about S preserved between interrogations".
T: (time evolution) Time evolution of $\vec{P}_{O \rightarrow S}$ continuous
LO: (locality) "Info inference is local: O can determine $\vec{P}_{O \rightarrow S}$ for a composite system by asking only questions to its components."

Claim: Σ is space of $2^{N} \times 2^{N}$ density matrices over $\left(\mathbb{C}^{2}\right)^{\otimes N}$ and states evolve unitarily

Strategy

Compatibility and independence structure of questions

$$
N=1: \text { only individual } Q_{i}, i=1, \ldots, D_{1} \Rightarrow D_{1}=?\left(\text { know } D_{1} \geq 2\right)
$$

$N=2: 2 D_{1}$ individual Q_{i}
system
Q_{1}
vertex: individual question Q_{i}

$$
Q_{2}
$$

Q3
$Q_{D_{1}}$

Compatibility and independence structure of questions

$$
\begin{aligned}
& N=1: \text { only individual } Q_{i}, i=1, \ldots, D_{1} \Rightarrow D_{1}=?\left(\text { know } D_{1} \geq 2\right) \\
& N=2: 2 D_{1} \text { individual } Q_{i}
\end{aligned}
$$

system 1
Q_{1}
vertex: individual question Q_{i}, Q_{j}^{\prime}
Q_{2}

Q3
\vdots
$Q_{D_{1}}$

-
Q_{1}^{\prime}

Compatibility and independence structure of questions

$$
N=1: \text { only individual } Q_{i}, i=1, \ldots, D_{1} \Rightarrow D_{1}=?\left(\text { know } D_{1} \geq 2\right)
$$

$N=2: 2 D_{1}$ individual $Q_{i}+D_{1}^{2}$ composite questions: $Q_{i j}:=Q_{i} \leftrightarrow Q_{j}^{\prime}$ "Are answers to Q_{i} and Q_{j}^{\prime} the same?" + ???

vertex: individual question Q_{i}, Q_{j}^{\prime}
edge: composite question $Q_{i j}$
$Q_{2} \bullet \quad \bullet \quad Q_{2}^{\prime}$

$Q_{D_{1}}$
-
$Q_{D_{1}}^{\prime}$

Compatibility and independence structure of questions

$N=1$: only individual $Q_{i}, i=1, \ldots, D_{1} \Rightarrow D_{1}=$? (know $D_{1} \geq 2$)
$N=2: 2 D_{1}$ individual $Q_{i}+D_{1}^{2}$ composite questions: $Q_{i j}:=Q_{i} \leftrightarrow Q_{j}^{\prime}$ "Are answers to Q_{i} and Q_{j}^{\prime} the same?" + ???
vertex: individual question Q_{i}, Q_{j}^{\prime}
edge: composite question $Q_{i j}$
show: $Q_{i j}$
1 pairwise indep.
2 complementary if corresp. edges intersect (e.g., Q_{11}, Q_{31})
3 compatible if corresp. edges non-intersecting (e.g., Q_{11}, Q_{22})
\Rightarrow entanglement: >1 bit in $Q_{i j}$
[see also Brukner, Zeilinger]
system 1
system 2

What is the dimension of the Bloch sphere?

Logical argument from $N=2$ case:
■ $Q_{i i}, i=\ldots, D_{1}$ pairwise independent, compatible

- O can acquire answers to all D_{1} composites $Q_{i i}$ simultaneously (Specker)
- LI: O cannot know more than $N=2$ independent bits about S
\Rightarrow answers to any two $Q_{i i}$ determine answers to all other $Q_{j j}$

■ e.g., truth table for any three $Q_{i i}(a \neq b)$: $\Rightarrow Q_{33}=Q_{11} \leftrightarrow Q_{22}$ or $\neg\left(Q_{11} \leftrightarrow Q_{22}\right)$
\Rightarrow holds for all compatible sets of $Q_{i j}$: $2 \leq D_{1} \leq 3$
\Rightarrow \# DoFs: 15 if $D_{1}=3 ; 9$ if $D_{1}=2$

$Q_{D_{1} D_{1}}$

Q_{11}	Q_{22}	Q_{33}
0	1	a
1	0	a
1	1	b
0	0	b

Correlation structure for qubits ($N=2$ and $D_{1}=3$)

Compatibility structure of $Q s \Rightarrow$ correlation structure for 2 qubits in QT
Q, Q^{\prime} compatible if connected by edge, otherwise complementary

\Leftrightarrow odd correlation
$A=\neg(B \leftrightarrow C)$, etc...

\Leftrightarrow even correlation
$A=B \leftrightarrow C$,
etc...

Correlation structure for rebits ($N=2$ and $D_{1}=2$)

similarly for 2 rebits

\Leftrightarrow odd correlation
$A=\neg(B \leftrightarrow C)$, etc...
key difference rebits vs. qubits:
$\overline{Q_{33}}=\neg\left(Q_{11} \leftrightarrow Q_{22}\right)$
■ non-local $\left(\nexists Q_{3}, Q_{3}^{\prime}\right)$

\Rightarrow violates locality
\Rightarrow henceforth: $D_{1}=3$

$$
\begin{aligned}
& \Leftrightarrow \text { even correlation } \\
& A=B \leftrightarrow C \\
& \text { etc... }
\end{aligned}
$$

Information measure

recall: state of S relative to O :

$$
\vec{P}_{O \rightarrow S}=\left(\begin{array}{c}
p_{1} \\
\vdots \\
p_{D_{N}}
\end{array}\right), \quad p_{i} \text { prob. that } Q_{i}=1, Q_{i} \text { indep. }
$$

preservation and time evolution (+ operational cond.) imply:
1 reversible time evolution $T \in$ some 1-param. group

$$
\begin{equation*}
\vec{P}_{O \rightarrow S}(t)=T(t) \cdot \vec{P}_{O \rightarrow S}(0) \tag{1}
\end{equation*}
$$

2. O's info about $Q_{i} \alpha_{i}=\left(2 p_{i}-1\right)^{2} \Rightarrow O$'s total info about S :

$$
\begin{equation*}
I_{O \rightarrow S}=\left\|2 \vec{P}_{O \rightarrow S}-\overrightarrow{1}\right\|^{2}=\sum_{i=1}^{D_{N}}\left(2 p_{i}-1\right)^{2} \tag{2}
\end{equation*}
$$

[from different perspective also proposed by Brukner, Zeilinger]
3 \{all possible time evolutions $\} \subset \mathrm{SO}\left(\mathrm{D}_{\mathrm{N}}\right)$
\Rightarrow info $I_{O \rightarrow S}$ 'conserved charge' of time evol.

$N=1$ and the Bloch ball

argued before: $D_{1}=3 \Rightarrow$ have: $\vec{P}_{O \rightarrow s}=\left(\begin{array}{l}p_{1} \\ p_{2} \\ p_{3}\end{array}\right)$

- pure states:

$$
\begin{equation*}
I_{O \rightarrow s}=\left(2 p_{1}-1\right)^{2}+\left(2 p_{2}-1\right)^{2}+\left(2 p_{3}-1\right)^{2}=1 \mathrm{bit} \tag{3}
\end{equation*}
$$

- mixed states:

$$
\begin{equation*}
0 \mathrm{bit}<\left(2 p_{1}-1\right)^{2}+\left(2 p_{2}-1\right)^{2}+\left(2 p_{3}-1\right)^{2}<1 \mathrm{bit} \tag{4}
\end{equation*}
$$

- completely mixed state:

$$
\begin{equation*}
\left(2 p_{1}-1\right)^{2}+\left(2 p_{2}-1\right)^{2}+\left(2 p_{3}-1\right)^{2}=0 \mathrm{bit} \tag{5}
\end{equation*}
$$

using completeness axiom:
1 Bloch sphere \checkmark

- $\{$ all time evolutions $T\}=\mathrm{SO}(3) \checkmark$
completely mixed state

$N=2$: time evol. group $\operatorname{PSU}(4)$ and $\mathbb{C} P^{3}$ (very non-trivial!!!) [with c. wever]

$$
\text { from before: } D_{2}=15
$$

- $\exists 6$ max. complementary sets of 5 Qs, e.g.

- 'conserved info charges' for pure states:

$$
I_{O \rightarrow \boldsymbol{s}}(\text { Pent } 1)=\alpha_{x x}+\alpha_{x y}+\alpha_{x z}+\alpha_{y_{1}}+\alpha_{z_{1}}=1
$$

■ e.g., info swap Pent $1 \leftrightarrow$ Pent 2 leaves 'charges' invar.

115 such swaps \Rightarrow define the 15 generators of $\mathfrak{s u}(4) \simeq \mathfrak{s o}(6) \simeq \mathfrak{p s u}(4)$
2 get: evol. group $\operatorname{PSU}(4)$ as in QT $\left(\rho_{4 \times 4} \mapsto U \rho_{4 \times 4} U^{\dagger}, U \in \mathrm{SU}(4)\right) \boldsymbol{\checkmark}$
3 get: space of pure states $\mathbb{C} P^{3} \Rightarrow$ all states cone over $\mathbb{C} P^{3}$ as in QT \checkmark
easier!!! $\Rightarrow N=2$ case contains non-trivial part
permit: group of time evol. contains pairwise qubit unitaries
get:
1 time evol. group $\operatorname{PSU}\left(2^{\mathrm{N}}\right)$ as in QT (pairwise unitaries generate all unitaries [Harrow]) \checkmark
2 pure quantum state space $\mathbb{C} P^{2^{N}-1}$ contained in pure state space permitted by axioms \downarrow
still show: other 'solutions' to axioms are diff., but equiv. reps of QT

Conclusions

quantum theory is a framework for information inference
quantum theory is beautiful!

An operational alternative to the 'wave function of the universe'
quantum state as state of information also in cosmology/gravity?

■ no absolute observer
■ universe as information exchange network of subsystems/subregions
■ each subsystem assigns state to rest of network, but absence of a global state ('self-reference problem')
■ realized in concrete toy model: elliptic-dS [Hackl, Neiman '14]

[^0]: Table of contents
 1 Landscape of information inference theories and tool box
 [2 Postulates
 3 Strategy
 4 Summary of reconstruction steps
 5 Conclusions

