Quantum theory from information inference principles

Philipp Höhn Perimeter Institute

ILQGS 11 November 2014

based on: PH (to appear hopefully soon) PH, C. Wever (to appear hopefully soon too) Tools from information theory proved useful in concrete physical situation to help understand and interpret physical phenomena

- BH entropy
- thermalization
- quantum information
- **.**...

Can apply tools to given theories/problems \Rightarrow growing number of applications

But: can concepts from information theory tell us something deeper about the structure of physical theories? Can they be used in the architecture of physical theories?

idea:

(im-)possibility of information theoretic tasks \Leftrightarrow particular structure of theory

Operational approaches and information theory

Shall follow an operational approach to physics

 \Rightarrow consider relations among systems and observers

advantage: only speak about what an observer has access to and not about how the universe 'really' is (relations among observers) disadvantage: unobservable 'realist' structure can facilitate global description (spacetime)

 \Rightarrow old and ubiquitous debate 'operationalism vs realism' in physics

 \Rightarrow clearly, no resolution here, but ask:

How much can an operational and information theoretic approach teach us about physics?

Which structures can we deduce?

information inference

from information inference to quantum theory \Rightarrow THIS TALK!

from information inference to quantum theory \Rightarrow THIS TALK!

Limits to operational information theoretic approach:

- **1** finite systems, finitely many observers, clear separation between observers and systems \Rightarrow approximation
- will only obtain 'skeleton' of theories (state spaces, transformations), but not the 'flesh' (concrete Hamiltonian, action, etc) rendering it a 'living' theory.

Nevertheless: novel perspective on architecture of physical theories

What is a (re-)construction of QT?

axiomatization of QT with some basic set of postulates

- define landscape L of theories within which axioms can be formulated
- 2 which physical statements characterize QT within *L*?
- \Rightarrow derive quantum state spaces, operations,...

usually: $\mathcal{L} =$ 'generalized probability theories' (GPT)

class. probab. theory real QT complex QT theory landscape L

Why a (re-)construction of QT?

- **1** Give operational sense to usual textbook axioms (why $\mathcal{H}, \otimes, \mathbb{C},...?$)
- 2 Better understand QT within larger context
- **3** why or why not QT in its present form a fundamental theory
- ☑ Often voiced: will clarify interpretation of QT [Rovelli, Fuchs,...] ⇒ hope thus far not realized (e.g., GPTs interpretationally neutral)

Why another (re-)construction of QT?

QT as framework for information inference [Rovelli, Zeilinger, Brukner, Fuchs, Spekkens,.....] \Rightarrow derive with primacy on information inference

advantage: 1. 'simpler' axioms on relation between *O* and *S* 2. emphasizes information inference and close to Relational

QM [for RQM see Rovelli, Smerlak]

disadvantage: landscape $\mathcal L$ smaller than for GPTs

 \Rightarrow novel perspective, new 'coordinates' on theory space

Outline for the remainder

Table of contents

- **1** Landscape of information inference theories and tool box
- 2 Postulates
- Strategy
- 4 Summary of reconstruction steps
- 5 Conclusions

Specifying the landscape of inference theories

Observer O interrogating system S with *binary* questions Q_i , i = 1, ...

interrogation

- each *Q_i* non-trivial 1-bit question (info measure later)
- O has tested identical S sufficiently often to 'know' set Σ of all possible answer statistics
- Bayesian viewpoint: for specific S, O assigns probabilities p_i to Q_i accord. to his info about
 - Σ
 particular S

■ p_i encode all O can say about $S \Rightarrow$ state of S (rel. to O): collection of p_i \Rightarrow state space: Σ (to be convex)

■ assume: \exists state of 'no information' $p_i = \frac{1}{2} \forall i \Rightarrow$ call totally mixed state ■ Q_i, Q_j are:

independent if, relative to totally mixed state of S, answer to only Q_i gives O no information about answer to Q_j (and vice versa) $\Rightarrow p(Q_i, Q_j) = p_i \cdot p_j$ factorizes

compatible if O may know answers to both simultaneously $\Rightarrow p_i, p_j$ can be simultaneously 0, 1

complementary if knowledge of Q_i disallows O to know Q_j at the same time (and vice versa) $\Rightarrow p_i = 0, 1$, then $p_j = 1/2$

assumption: state parametrized by max. set of pairwise indep. *Q_i*

$$ec{P}_{\mathcal{O}
ightarrow \mathcal{S}} = \left(egin{array}{c} p_1 \ dots \ p_{\mathcal{D}_{\mathcal{N}}} \end{array}
ight), \quad p_i ext{ prob. that } Q_i = 1$$

Specker's principle: $n Q_i$ pairwise compatible \Rightarrow mutually compatible

- LI: (limited information) "O can acquire maximally $N \in \mathbb{N}$ independent bits of information about S at the same time." $\exists Q_i, i = 1, ..., N$ (mutually) independent compatible
- C: (complementarity) "O can always get up to N new (independent) bits of information about S. Whenever O asks a new question he experiences no net loss of information." ∃ Q'_i, i = 1,..., N independent compatible but Q_i, Q'_{j=i} complementary
- CO: (completeness) Any $\vec{P}_{O \rightarrow S}$ permissible, s.t. info in $\vec{P}_{O \rightarrow S}$ compatible with LI and C
 - P: (preservation) "O's total amount of information about S preserved between interrogations".
 - T: (time evolution) Time evolution of $\vec{P}_{O \rightarrow S}$ continuous
- LO: (locality) "Info inference is local: O can determine $\vec{P}_{O \rightarrow S}$ for a composite system by asking only questions to its components."

<u>Claim:</u> Σ is space of $2^N\times 2^N$ density matrices over $(\mathbb{C}^2)^{\otimes N}$ and states evolve unitarily

Strategy

N = 1: only individual Q_i , $i = 1, ..., D_1 \Rightarrow D_1 =$? (know $D_1 \ge 2$) N = 2: $2D_1$ individual Q_i

system

 Q_1

 Q_2

Q3

 Q_{D_1}

<u>vertex</u>: individual question Q_i

N = 1: only individual Q_i , $i = 1, ..., D_1 \Rightarrow D_1 =$? (know $D_1 \ge 2$) N = 2: $2D_1$ individual Q_i

 $\begin{array}{l} N = 1: \text{ only individual } Q_i, \ i = 1, \ldots, D_1 \Rightarrow D_1 = ? \text{ (know } D_1 \geq 2\text{)} \\ N = 2: \ 2D_1 \text{ individual } Q_i + D_1^2 \text{ composite questions:} \\ Q_{ij} := Q_i \leftrightarrow Q'_j \text{ "Are answers to } Q_i \text{ and } Q'_j \text{ the same?"} \\ + ??? \end{array}$

 $\begin{array}{l} N=1: \mbox{ only individual } Q_i, \ i=1,\ldots, D_1 \Rightarrow D_1=? \ (\mbox{know } D_1 \geq 2) \\ N=2: \ 2D_1 \ \mbox{individual } Q_i + D_1^2 \ \mbox{composite questions:} \\ Q_{ij}:=Q_i \leftrightarrow Q_j' \ \mbox{"Are answers to } Q_i \ \mbox{and } Q_j' \ \mbox{the same?"} \\ + \ ??? \end{array}$

<u>vertex</u>: individual question Q_i, Q'_j edge: composite question Q_{ij}

show: Qij

- pairwise indep.
- 2 complementary if corresp. edges intersect (e.g., Q₁₁, Q₃₁)
- compatible if corresp. edges non-intersecting (e.g., Q₁₁, Q₂₂)
- \Rightarrow entanglement: > 1 bit in Q_{ij}

[see also Brukner, Zeilinger]

What is the dimension of the Bloch sphere?

- Logical argument from N = 2 case:
- Q_{ii}, i =,..., D₁ pairwise independent, compatible
- O can acquire answers to all D₁ composites Q_{ii} simultaneously (Specker)
- LI: O cannot know more than N = 2 independent bits about S
- \Rightarrow answers to any two Q_{ii} determine answers to all other Q_{jj}
- e.g., truth table for any three Q_{ii} $(a \neq b)$: $\Rightarrow Q_{33} = Q_{11} \leftrightarrow Q_{22}$ or $\neg(Q_{11} \leftrightarrow Q_{22})$
- ⇒ holds for all compatible sets of Q_{ij} : 2 ≤ D_1 ≤ 3

$$\Rightarrow$$
 # DoFs: 15 if $D_1 = 3$; 9 if $D_1 = 2$

Q_{11}	Q ₂₂	Q33
0	1	а
1	0	а
1	1	b
0	0	b

Correlation structure for qubits (N = 2 and $D_1 = 3$)

Compatibility structure of $Qs \Rightarrow$ correlation structure for 2 qubits in QT

Correlation structure for rebits (N = 2 and $D_1 = 2$)

Information measure

recall: state of S relative to O:

$$\vec{P}_{O \to S} = \begin{pmatrix} p_1 \\ \vdots \\ p_{D_N} \end{pmatrix}, \quad p_i \text{ prob. that } Q_i = 1, Q_i \text{ indep.}$$

preservation and time evolution (+ operational cond.) imply:

1 reversible time evolution $T \in$ some 1-param. group

$$\vec{P}_{O\to S}(t) = T(t) \cdot \vec{P}_{O\to S}(0) \tag{1}$$

2 O's info about $Q_i \ \alpha_i = (2p_i - 1)^2 \Rightarrow O$'s total info about S:

$$I_{O\to S} = ||2\vec{P}_{O\to S} - \vec{1}||^2 = \sum_{i=1}^{D_N} (2p_i - 1)^2$$
(2)

[from different perspective also proposed by Brukner, Zeilinger]

- **3** {all possible time evolutions} \subset SO(D_N)
- \Rightarrow info $I_{O \rightarrow S}$ 'conserved charge' of time evol.

N = 1 and the Bloch ball

argued before:
$$D_1 = 3 \Rightarrow$$
 have: $\vec{P}_{O \rightarrow S} = \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix}$

pure states:

$$I_{O\to S} = (2p_1 - 1)^2 + (2p_2 - 1)^2 + (2p_3 - 1)^2 = 1 \text{ bit}$$
(3)

mixed states:

$$Dbit < (2p_1 - 1)^2 + (2p_2 - 1)^2 + (2p_3 - 1)^2 < 1 bit$$
 (4)

completely mixed state:

$$(2p_1-1)^2 + (2p_2-1)^2 + (2p_3-1)^2 = 0$$
 bit (5)

using completeness axiom:

Bloch sphere

2 {all time evolutions
$$T$$
} = SO(3) \checkmark

Qrr

from before: $D_2 = 15$

\blacksquare \exists 6 max. complementary sets of 5 Qs, e.g.

Pent 1= {
$$Q_{xx}, Q_{xz}, Q_{xy}, Q_{z_1}, Q_{y_1}$$
} = $Q_{y_1 \otimes Q_{x_2}}$

• 'conserved info charges' for pure states: $I_{O \rightarrow S}(Pent 1) = \alpha_{xx} + \alpha_{xy} + \alpha_{xz} + \alpha_{y_1} + \alpha_{z_1} = 1$

- **1** 15 such swaps \Rightarrow define the 15 generators of $\mathfrak{su}(4) \simeq \mathfrak{so}(6) \simeq \mathfrak{psu}(4)$
- **2** get: evol. group PSU(4) as in QT $(\rho_{4\times 4} \mapsto U\rho_{4\times 4}U^{\dagger}, U \in SU(4))$ \checkmark

B get: space of pure states $\mathbb{C}P^3 \Rightarrow \underline{\text{all}}$ states cone over $\mathbb{C}P^3$ as in $\mathsf{QT}\checkmark$

easier!!! $\Rightarrow N = 2$ case contains non-trivial part

permit: group of time evol. contains pairwise qubit unitaries

get:

- I time evol. group PSU(2^N) as in QT (pairwise unitaries generate <u>all</u> unitaries [Harrow]) ✓
- 2 pure quantum state space CP^{2^N-1} contained in pure state space permitted by axioms ✓

still show: other 'solutions' to axioms are diff., but equiv. reps of QT

quantum theory is a framework for information inference

quantum theory is beautiful!

An operational alternative to the 'wave function of the universe'

quantum state as state of information also in cosmology/gravity?

- no absolute observer
- universe as information exchange network of subsystems/subregions
- each subsystem assigns state to rest of network, but absence of a global state ('self-reference problem')
- realized in concrete toy model: elliptic-dS [Hackl, Neiman '14]