The Complete Barrett-Crane Model and its Causal Structure

based on 2206.15442 (PRD) and 2112.00091 (JCAP)

Alexander F. Jercher, in collaboration with Daniele Oriti and Andreas Pithis September 27, 2022

Ludwig-Maximilians-Universität München Munich Center of Quantum Science and Technology Friedrich-Schiller-Universität Jena

Motivation and Overview

Malament 1977; Bianchi, Martin-Dussaud 2109.00986; Livine, Oriti gr-qc/0210064; Figure: Wikipedia Alexander F. Jercher The Complete Barrett-Crane Model and its Causal Structure Causal structure is an integral part of continuum spacetime physics

Role of causal structure in QG

Causal structure is an integral part of continuum spacetime physics

- Characteristic feature of Lorentzian signature
- Encodes all geometric information up to conformal factor
- Rich phenomenology: cosmological and black hole horizons

Role of causal structure in QG

Causal structure is an integral part of continuum spacetime physics

- Characteristic feature of Lorentzian signature
- Encodes all geometric information up to conformal factor
- Rich phenomenology: cosmological and black hole horizons

Expectation for QG theory: address the role of causality

- directly encode it into the quantum theory
- show how it arises in a classical and/or continuum limit

Bianchi, Martin-Dussaud 2109.00986; Alexander F. Jercher

Causal structure $=$	bare causality +	time orientation
Locally	tangent vectors are timelike, lightlike or spacelike	timelike tangent vectors are future- pointing or past- pointing
Globally	two points have time- like, lightlike or space- like separation	timelike separated points have a causal order

Bianchi, Martin-Dussaud 2109.00986;

Alexander F. Jercher

The Complete Barrett-Crane Model and its Causal Structure

Causal structure $=$	bare causality +	time orientation
Locally	tangent vectors are timelike, lightlike or spacelike	timelike tangent vectors are future- pointing or past- pointing
Globally	two points have time- like, lightlike or space- like separation	timelike separated points have a causal order

Markopoulou, Smolin gr-qc/9702025; Bianchi, Martin-Dussaud 2109.00986; Livine, Oriti gr-qc/0210064 Alexander F. Jercher The Complete Barrett-Crane Model and its Causal Structure

Status of causality in GFT and SF: time orientation

Observation

Standard BC and EPRL are time unoriented

Observation

Standard BC and EPRL are time unoriented

Lack of orientation = time-reversal invariance of kernels

$$K^{\rho}(\eta(X,Y)) = \frac{\sin \rho \eta}{\rho \sinh \eta}$$

$$K^{\rho}(T \cdot X, T \cdot Y) = K^{\rho}(-\eta(X, Y)) = K^{\rho}(X, Y)$$

Observation

Standard BC and EPRL are time unoriented

Lack of orientation = time-reversal invariance of kernels

$$K^{\rho}(\eta(X,Y)) = \frac{\sin\rho\eta}{\rho\sinh\eta}$$

$$K^{\rho}(T \cdot X, T \cdot Y) = K^{\rho}(-\eta(X, Y)) = K^{\rho}(X, Y)$$

Time oriented BC model by Livine and Oriti

Explicit realization of a quantum causal histories model

Time orientation

Explicitly break invariance at the level of amplitudes

$$K^{\rho}(X,Y) = \sum_{\epsilon=\pm} \frac{\mathrm{e}^{i\epsilon\rho\eta}}{2i\rho\sinh(\epsilon\eta)}$$

Markopoulou, Smolin gr-qc/9702025; Bianchi, Martin-Dussaud 2109.00986; Livine, Oriti gr-qc/0210064 Alexander F. Jercher The Complete Barrett-Crane Model and its Causal Structure

Observation

Standard BC and EPRL are time unoriented

Lack of orientation = time-reversal invariance of kernels

$$K^{\rho}(\eta(X,Y)) = \frac{\sin \rho \eta}{\rho \sinh \eta}$$

$$K^{\rho}(T \cdot X, T \cdot Y) = K^{\rho}(-\eta(X, Y)) = K^{\rho}(X, Y)$$

Time oriented BC model by Livine and Oriti

▶ Explicit realization of a quantum causal histories model

Time orientation

Explicitly break invariance at the level of amplitudes

$$K^{\rho}(X,Y) = \sum_{\epsilon=\pm} \frac{\mathrm{e}^{i\epsilon\rho\eta}}{2i\rho\sinh(\epsilon\eta)}$$

Time oriented EPRL model by Bianchi and Martin-Dussaud

Markopoulou, Smolin gr-qc/9702025; Bianchi, Martin-Dussaud 2109.00986; Livine, Oriti gr-qc/0210064 Alexander F. Jercher The Complete Barrett-Crane Model and its Causal Structure

Perez, Rovelli gr-qc/0011037; Alexandrov, Kadar gr-qc/0501093; Speziale, Zhang 1311.3279; Conrady, Hnybida 1002.1959 Alexander F. Jercher The Complete Barrett-Crane Model and its Causal Structure

Observation

Standard BC and EPRL treat spacelike tetrahedra only

Perez, Rovelli gr-qc/0011037; Alexandrov, Kadar gr-qc/0501093; Speziale, Zhang 1311.3279; Conrady, Hnybida 1002.1959 Alexander F. Jercher The Complete Barrett-Crane Model and its Causal Structure

Observation

Standard BC and EPRL treat spacelike tetrahedra only

- Bare causal structure emerges in a continuum limit?
- Exclusion of timelike and lightlike boundaries
- ▶ Different phase structure in bare causal model? (see 2209.04297)

Observation

Standard BC and EPRL treat spacelike tetrahedra only

- Bare causal structure emerges in a continuum limit?
- Exclusion of timelike and lightlike boundaries
- ▶ Different phase structure in bare causal model? (see 2209.04297)

Observation

Standard BC and EPRL treat spacelike tetrahedra only

- Bare causal structure emerges in a continuum limit?
- Exclusion of timelike and lightlike boundaries
- ▶ Different phase structure in bare causal model? (see 2209.04297)

- ► Alexandrov: LQG with timelike boundaries
- ► Speziale: LQG with lightlike boundaries

Observation

Standard BC and EPRL treat spacelike tetrahedra only

- Bare causal structure emerges in a continuum limit?
- Exclusion of timelike and lightlike boundaries
- ▶ Different phase structure in bare causal model? (see 2209.04297)

- ▶ Alexandrov: LQG with timelike boundaries
- ► Speziale: LQG with lightlike boundaries
- > Perez-Rovelli: BC model with spacelike or timelike tetraehdra

Observation

Standard BC and EPRL treat spacelike tetrahedra only

- Bare causal structure emerges in a continuum limit?
- Exclusion of timelike and lightlike boundaries
- ▶ Different phase structure in bare causal model? (see 2209.04297)

- ► Alexandrov: LQG with timelike boundaries
- ▶ Speziale: LQG with lightlike boundaries
- > Perez-Rovelli: BC model with spacelike or timelike tetraehdra
- ► Conrady-Hnybida: EPRL model with spacelike and timelike tetrahedra
 - Liu, Han 1810.09042; Simão, Steinhaus 2106.15635
 - Livine 1807.06848

Observation

Standard BC and EPRL treat spacelike tetrahedra only

- Bare causal structure emerges in a continuum limit?
- Exclusion of timelike and lightlike boundaries
- ▶ Different phase structure in bare causal model? (see 2209.04297)

- ► Alexandrov: LQG with timelike boundaries
- Speziale: LQG with lightlike boundaries
- > Perez-Rovelli: BC model with spacelike or timelike tetraehdra
- ► Conrady-Hnybida: EPRL model with spacelike and timelike tetrahedra
 - Liu, Han 1810.09042; Simão, Steinhaus 2106.15635
 - Livine 1807.06848
 - Exclusion of lightlike tetrahedra

Observation

Standard BC and EPRL treat spacelike tetrahedra only

- Bare causal structure emerges in a continuum limit?
- Exclusion of timelike and lightlike boundaries
- ▶ Different phase structure in bare causal model? (see 2209.04297)

- ► Alexandrov: LQG with timelike boundaries
- Speziale: LQG with lightlike boundaries
- > Perez-Rovelli: BC model with spacelike or timelike tetraehdra
- ► Conrady-Hnybida: EPRL model with spacelike and timelike tetrahedra
 - Liu, Han 1810.09042; Simão, Steinhaus 2106.15635
 - Livine 1807.06848
 - Exclusion of lightlike tetrahedra
 - No explicit GFT formulation

Jordan, Loll 1305.4582; Sorkin 1908.10022; Asante, Dittrich, Padua-Argüelles 2112.15387 Alexander F. Jercher The Complete Barrett-Crane Model and its Causal Structure

Objective

In the most democratic fashion, construct a GFT and spin foam model that includes spacelike, lightlike and timelike tetrahedra with all possible interactions

Objective

In the most democratic fashion, construct a GFT and spin foam model that includes spacelike, lightlike and timelike tetrahedra with all possible interactions

Beyond the scope:

- ► (Space)time orientation
- Local causality conditions
 - Locally causal DT
 - Causality violations in Lorentzian Regge calculus

Jordan, Loll 1305.4582; Sorkin 1908.10022; Asante, Dittrich, Padua-Argüelles 2112.15387

The Barrett-Crane Model

Barrett, Crane gr-qc/9904025; Baratin, Oriti 1108.1178; Oriti, Pithis, AJ 2112.00091 Alexander F. Jercher The Complete Barrett-Crane Model and its Causal Structure

BF quantization of first-order Palatini gravity with spacelike hypersurfaces

Barrett, Crane gr-qc/9904025; Baratin, Oriti 1108.1178; Oriti, Pithis, AJ 2112.00091 Alexander F. Jercher The Complete Barrett-Crane Model and its Causal Structure

BF quantization of first-order Palatini gravity with spacelike hypersurfaces

BF quantization of first-order Palatini gravity with spacelike hypersurfaces

 $\begin{array}{ccc} \mathrm{SL}(2,\mathbb{C})^4 & \longrightarrow & \mathrm{SL}(2,\mathbb{C})^4 \times \mathrm{H}^3 \\ \mathrm{Extended \ formulation:} & \varphi(g_v) & \longrightarrow & \varphi(g_v;X) \\ \mathrm{quadratic \ simplicity} & \longrightarrow & \mathrm{linear \ simplicity} \end{array}$

$$S[\bar{\varphi},\varphi] = K + V = \int [\mathrm{d}g]^4 \int \mathrm{d}X \,\bar{\varphi}(g_v;X)\varphi(g_v;X) +$$

$$+\frac{\lambda}{5!}\int \left[\mathrm{d}g\right]^{10}\int \left[\mathrm{d}X\right]^5 \varphi_{1234}(X_1)\varphi_{4567}(X_2)\varphi_{7389}(X_3)\varphi_{962(10)}(X_4)\varphi_{(10)851}(X_5)+c.c.,$$

BF quantization of first-order Palatini gravity with spacelike hypersurfaces

Extended formulation:

$$\begin{array}{ccc} \operatorname{SL}(2,\mathbb{C})^4 & \longrightarrow & \operatorname{SL}(2,\mathbb{C})^4 \times \mathrm{H}^3 \\ \varphi(g_v) & \longrightarrow & \varphi(g_v;X) \\ \operatorname{quadratic simplicity} & \longrightarrow & \operatorname{linear simplicity} \end{array}$$

$$S[\bar{\varphi},\varphi] = K + V = \int [\mathrm{d}g]^4 \int \mathrm{d}X \,\bar{\varphi}(g_v;X)\varphi(g_v;X) + \\ + \frac{\lambda}{5!} \int [\mathrm{d}g]^{10} \int [\mathrm{d}X]^5 \,\varphi_{1234}(X_1)\varphi_{4567}(X_2)\varphi_{7389}(X_3)\varphi_{962(10)}(X_4)\varphi_{(10)851}(X_5)$$

Barrett, Crane gr-qc/9904025; Baratin, Oriti 1108.1178; Oriti, Pithis, AJ 2112.00091 Alexander F. Jercher The Complete Barrett-Crane Model and its Causal Structure + c.c..

Barrett, Crane gr-qc/9904025; Baratin, Oriti 1108.1178; Oriti, Pithis, AJ 2112.00091 Alexander F. Jercher The Complete Barrett-Crane Model and its Causal Structure

Properties:

Barrett, Crane gr-qc/9904025; Baratin, Oriti 1108.1178; Oriti, Pithis, AJ 2112.00091 Alexander F. Jercher The Complete Barrett-Crane Model and its Causal Structure Properties:

- ► Closure and simplicity commute, imposed via projector
 - ⇒ For $\gamma \rightarrow \infty$, simplicity is first class and should be imposed strongly (see Baratin, Oriti 1108.1178, 1111.5842)
 - \Rightarrow Unique formulation
- Constraints imposed covariantly
- Explicit form known in group representation
- Results of GFT condensate cosmology are recovered

Properties:

- ► Closure and simplicity commute, imposed via projector
 - ⇒ For $\gamma \rightarrow \infty$, simplicity is first class and should be imposed strongly (see Baratin, Oriti 1108.1178, 1111.5842)
 - \Rightarrow Unique formulation
- Constraints imposed covariantly
- Explicit form known in group representation
- Results of GFT condensate cosmology are recovered

Geometric interpretation in bivector variables
Properties:

- ► Closure and simplicity commute, imposed via projector
 - ⇒ For $\gamma \rightarrow \infty$, simplicity is first class and should be imposed strongly (see Baratin, Oriti 1108.1178, 1111.5842)
 - \Rightarrow Unique formulation
- Constraints imposed covariantly
- Explicit form known in group representation
- Results of GFT condensate cosmology are recovered

Geometric interpretation in bivector variables

Barrett, Crane gr-qc/9904025; Baratin, Oriti 1108.1178; Oriti, Pithis, AJ 2112.00091 Alexander F. Jercher The Complete Barrett-Crane Model and its Causal Structure

Completing the Barrett-Crane Model

Alexander F. Jercher

 $X \in \operatorname{H}^3$ was assumed to be timelike \Rightarrow Restriction to spacelike tetrahedra

 $X \in \operatorname{H}^3$ was assumed to be timelike \Rightarrow Restriction to spacelike tetrahedra

Idea 1

Allow for all normal vector signatures

 $X \in \operatorname{H}^3$ was assumed to be timelike \Rightarrow Restriction to spacelike tetrahedra

ldea 1				
Allow for all normal vector signatures				
	α	+	0	-
		$X_+ = (1, 0, 0, 0)$	$X_0 = (1, 0, 0, 1)$	$X_{-} = (0, 0, 0, 1)$
	$U^{(\alpha)}$	SU(2)	ISO(2)	$\mathrm{SU}(1,1)$
	$\mathrm{SL}(2,\mathbb{C})/\mathrm{U}^{(\alpha)}$	H^3	С	$\mathrm{H}^{1,2}$

Speziale, Zhang 1311.3279; Conrady, Hnybida 1002.1959

Alexander F. Jercher

The Complete Barrett-Crane Model and its Causal Structure

Idea 2

Allow for all possible simplicial interactions \Rightarrow 21 vertices

Idea 2

Allow for all possible simplicial interactions \Rightarrow 21 vertices

Kinetic term:

$$K[\varphi,\bar{\varphi}] = \sum_{\alpha} \mu_{\alpha} \int [\mathrm{d}g]^4 \int \mathrm{d}X_{\alpha} \,\bar{\varphi}(g_v; X_{\alpha}) \varphi(g_v; X_{\alpha})$$

Idea 2

Allow for all possible simplicial interactions \Rightarrow 21 vertices

 $\begin{array}{lll} \text{Kinetic term:} & K[\varphi,\bar{\varphi}] = \sum_{\alpha} \mu_{\alpha} \int [\mathrm{d}g]^4 \int \mathrm{d}X_{\alpha} \, \bar{\varphi}(g_v;X_{\alpha}) \varphi(g_v;X_{\alpha}) \\ & & & & \\ & & & \\ & & & \\ \text{Interaction term:} & V[\varphi,\bar{\varphi}] = \sum_{(n_+,n_0,n_-)} \frac{\lambda^{(n_+,n_0,n_-)}}{5!} \mathcal{V}(n_+,n_0,n_-) + c.c. \\ & & \\ & & \\ & & \\ \mathcal{V} = \int [\mathrm{d}g]^{10} \int [\mathrm{d}X_{\alpha}]^5 \, \varphi_{1234}(X_{\alpha_1}) \varphi_{4567}(X_{\alpha_2}) \varphi_{7389}(X_{\alpha_3}) \varphi_{962(10)}(X_{\alpha_4}) \varphi_{(10)851}(X_{\alpha_5}) \end{array}$

Idea 2

Alexander F. Jercher

The Complete Barrett-Crane Model and its Causal Structure

Martin-Dussaud 1902.08439; Oriti, Pithis, AJ 2206.15442 Alexander F. Jercher The Complete Barrett-Crane Model and its Causal Structure

Canonical basis of unitary $SL(2, \mathbb{C})$ -irreps in the principal series

$$\mathcal{D}^{(\rho,\nu)}[\mathbb{C}^2] \cong \bigoplus_{j=|\nu|}^{\infty} \mathcal{Q}_j, \quad (\rho,\nu) \in \mathbb{R} \times \mathbb{Z}/2$$

Casimir operators of $SL(2,\mathbb{C})$: $Cas_1 = -\rho^2 + \nu^2 - 1$, $Cas_2 = -\rho\nu$

Canonical basis of unitary $SL(2, \mathbb{C})$ -irreps in the principal series

$$\mathcal{D}^{(\rho,\nu)}[\mathbb{C}^2] \cong \bigoplus_{j=|\nu|}^{\infty} \mathcal{Q}_j, \quad (\rho,\nu) \in \mathbb{R} \times \mathbb{Z}/2$$

Casimir operators of $SL(2, \mathbb{C})$: $Cas_1 = -\rho^2 + \nu^2 - 1$, $Cas_2 = -\rho\nu$

Simplicity

$$Cas_2 = 0 \quad \Leftrightarrow \quad \nu = 0 \quad \text{or} \quad \rho = 0$$

Canonical basis of unitary $SL(2, \mathbb{C})$ -irreps in the principal series

$$\mathcal{D}^{(\rho,\nu)}[\mathbb{C}^2] \cong \bigoplus_{j=|\nu|}^{\infty} \mathcal{Q}_j, \quad (\rho,\nu) \in \mathbb{R} \times \mathbb{Z}/2$$

Casimir operators of $SL(2,\mathbb{C})$: $Cas_1 = -\rho^2 + \nu^2 - 1$, $Cas_2 = -\rho\nu$

Simplicity

$$Cas_2 = 0 \quad \Leftrightarrow \quad \nu = 0 \quad \text{or} \quad \rho = 0$$

Projector onto simple $SL(2, \mathbb{C})$ -states

$$P^{(\rho,\nu),\alpha} = \int_{\mathbf{U}^{(\alpha)}} \mathrm{d} u \, \boldsymbol{D}^{(\rho,\nu)}(u) = |\mathcal{I}^{(\rho,\nu),\alpha}\rangle \, \langle \mathcal{I}^{(\rho,\nu),\alpha} |$$

Martin-Dussaud 1902.08439; Oriti, Pithis, AJ 2206.15442

Canonical basis of unitary $SL(2, \mathbb{C})$ -irreps in the principal series

$$\mathcal{D}^{(\rho,\nu)}[\mathbb{C}^2] \cong \bigoplus_{j=|\nu|}^{\infty} \mathcal{Q}_j, \quad (\rho,\nu) \in \mathbb{R} \times \mathbb{Z}/2$$

Casimir operators of $SL(2,\mathbb{C})$: $Cas_1 = -\rho^2 + \nu^2 - 1$, $Cas_2 = -\rho\nu$

Simplicity

$$Cas_2 = 0 \quad \Leftrightarrow \quad \nu = 0 \quad \text{or} \quad \rho = 0$$

Projector onto simple $SL(2, \mathbb{C})$ -states

$$P^{(\rho,\nu),\alpha} = \int_{\mathbf{U}^{(\alpha)}} \mathrm{d}u \, \boldsymbol{D}^{(\rho,\nu)}(u) = |\mathcal{I}^{(\rho,\nu),\alpha}\rangle \, \langle \mathcal{I}^{(\rho,\nu),\alpha}|$$

$$P^{(\rho,\nu),+} = \delta_{\nu,0} P^{(\rho,0),+}$$
 Cas₁ < 0 s.l. triangles

$$P^{(\rho,\nu),0} = \delta_{\nu,0} P^{(\rho,0),0} \qquad \qquad \text{Cas}_1 < 0 \qquad \text{ s.l. triangles}$$

$$P^{(\rho,\nu),-} = \delta_{\nu,0}P^{(\rho,0),-} + \delta(\rho)\chi_{\nu\in 2\mathbb{N}^+}P^{(0,\nu),-} \quad \operatorname{Cas}_1 \lessgtr 0 \quad \text{ s.l. or t.l. triangles}$$

Martin-Dussaud 1902.08439; Oriti, Pithis, AJ 2206.15442

Alexander F. Jercher

The Complete Barrett-Crane Model and its Causal Structure

Spin representation of group field

$$\varphi(g_{v}; X_{\alpha}) = \left[\prod_{i=1}^{4} \sum_{\nu_{i}} \int d\rho_{i} \, 4\left(\rho_{i}^{2} + \nu_{i}^{2}\right)\right] \varphi_{j_{v}m_{v}}^{\rho_{v}\nu_{v},\alpha} \prod_{i} D_{j_{i}m_{i}l_{i}n_{i}}^{(\rho_{i},\nu_{i})}(g_{i}g_{X_{\alpha}}) \bar{\mathcal{I}}_{l_{i}n_{i}}^{(\rho_{i},\nu_{i}),\alpha}$$
$$\int dX_{\alpha} \, \varphi(g_{v}; X_{\alpha}) = \left[\prod_{i=1}^{4} \sum_{\nu_{i}} \int d\rho_{i} \, 4\left(\rho_{i}^{2} + \nu_{i}^{2}\right)\right] \varphi_{j_{v}m_{v}}^{\rho_{v}\nu_{v},\alpha} B_{l_{v}n_{v}}^{\rho_{v}\nu_{v},\alpha} \prod_{i} D_{j_{i}m_{i}l_{i}n_{i}}^{(\rho_{i},\nu_{i})}(g_{i})$$

Spin representation of group field

$$\varphi(g_{v}; X_{\alpha}) = \left[\prod_{i=1}^{4} \sum_{\nu_{i}} \int d\rho_{i} \, 4\left(\rho_{i}^{2} + \nu_{i}^{2}\right)\right] \varphi_{j_{v}m_{v}}^{\rho_{v}\nu_{v},\alpha} \prod_{i} D_{j_{i}m_{i}l_{i}n_{i}}^{(\rho_{i},\nu_{i})}(g_{i}g_{X_{\alpha}}) \bar{\mathcal{I}}_{l_{i}n_{i}}^{(\rho_{i},\nu_{i}),\alpha}$$
$$dX_{\alpha} \, \varphi(g_{v}; X_{\alpha}) = \left[\prod_{i=1}^{4} \sum_{\nu_{i}} \int d\rho_{i} \, 4\left(\rho_{i}^{2} + \nu_{i}^{2}\right)\right] \varphi_{j_{v}m_{v}}^{\rho_{v}\nu_{v},\alpha} B_{l_{v}n_{v}}^{\rho_{v}\nu_{v},\alpha} \prod_{i} D_{j_{i}m_{i}l_{i}n_{i}}^{(\rho_{i},\nu_{i})}(g_{i})$$

Generalized Barrett-Crane intertwiner

$$B_{j_v m_v}^{\rho_v \nu_v, \alpha} = \int_{\mathrm{SL}(2, \mathbb{C})/\mathrm{U}^{(\alpha)}} \mathrm{d}X_{\alpha} \prod_{i=1}^4 D_{j_i m_i l_i n_i}^{(\rho_i, \nu_i)}(g_{X_{\alpha}}) \bar{\mathcal{I}}_{l_i n_i}^{(\rho_i, \nu_i), \alpha}$$

Spin representation of group field

$$\varphi(g_v; X_\alpha) = \left[\prod_{i=1}^4 \sum_{\nu_i} \int \mathrm{d}\rho_i \, 4\left(\rho_i^2 + \nu_i^2\right)\right] \varphi_{j_v m_v}^{\rho_v \nu_v, \alpha} \prod_i D_{j_i m_i l_i n_i}^{(\rho_i, \nu_i)}(g_i g_{X_\alpha}) \bar{\mathcal{I}}_{l_i n_i}^{(\rho_i, \nu_i), \alpha}$$

$$\int \mathrm{d}X_{\alpha}\,\varphi(g_{v};X_{\alpha}) = \left[\prod_{i=1}^{4}\sum_{\nu_{i}}\int \mathrm{d}\rho_{i}\,4\left(\rho_{i}^{2}+\nu_{i}^{2}\right)\right]\varphi_{j_{v}m_{v}}^{\rho_{v}\nu_{v},\alpha}B_{l_{v}n_{v}}^{\rho_{v}\nu_{v},\alpha}\prod_{i}D_{j_{i}m_{i}l_{i}n_{i}}^{(\rho_{i},\nu_{i})}(g_{i})$$

Generalized Barrett-Crane intertwiner

$$B_{j_v m_v}^{\rho_v \nu_v, \alpha} = \int_{\mathrm{SL}(2, \mathbb{C})/\mathrm{U}^{(\alpha)}} \mathrm{d}X_\alpha \prod_{i=1}^4 D_{j_i m_i l_i n_i}^{(\rho_i, \nu_i)}(g_{X_\alpha}) \bar{\mathcal{I}}_{l_i n_i}^{(\rho_i, \nu_i), \alpha}$$

- Right covariance: $(g_v; X) \longrightarrow (g_v h^{-1}; h \cdot X)$
- Simplicity: $(g_v; X) \longrightarrow (g_v u_v; X)$
- Change of representative: $g_X \longrightarrow g_X u$

Define kernels

$$D_{\alpha_{1}\alpha_{2}}^{(\rho,\nu)}(g_{X_{1}}^{-1}g_{X_{2}}) \equiv K_{\alpha_{1}\alpha_{2}}^{(\rho,\nu)}(X_{1},X_{2}) \coloneqq \sum_{jmln} \mathcal{I}_{jm}^{(\rho,\nu),\alpha_{1}} D_{jmln}^{(\rho,\nu)}(g_{X_{1}}^{-1}g_{X_{2}}) \bar{\mathcal{I}}_{ln}^{(\rho,\nu),\alpha_{2}}$$

$$K_{\alpha_{1}\alpha_{2}}^{(\rho,\nu)}(X_{1},X_{2}) = \overline{K_{\alpha_{2}\alpha_{1}}^{(\rho,\nu)}(X_{2},X_{1})}$$

12

Define kernels

$$D_{\alpha_{1}\alpha_{2}}^{(\rho,\nu)}(g_{X_{1}}^{-1}g_{X_{2}}) \equiv K_{\alpha_{1}\alpha_{2}}^{(\rho,\nu)}(X_{1},X_{2}) \coloneqq \sum_{jmln} \mathcal{I}_{jm}^{(\rho,\nu),\alpha_{1}} D_{jmln}^{(\rho,\nu)}(g_{X_{1}}^{-1}g_{X_{2}}) \bar{\mathcal{I}}_{ln}^{(\rho,\nu),\alpha_{2}}$$
$$K_{\alpha_{1}\alpha_{2}}^{(\rho,\nu)}(X_{1},X_{2}) = \overline{K_{\alpha_{2}\alpha_{1}}^{(\rho,\nu)}(X_{2},X_{1})}$$

Spin foam amplitude for a Lorentzian 2-complex Γ

$$\begin{split} \mathcal{A}_{\Gamma} &= \prod_{f} \sum_{\nu_{f}} \int \mathrm{d}\rho_{f} \,\mathcal{A}_{f}(\rho_{f},\nu_{f}) \prod_{e} \mathcal{A}_{e}^{\alpha_{e}}(\rho_{i_{e}},\nu_{i_{e}}) \prod_{v} \mathcal{A}_{v}^{\alpha_{1},\dots,\alpha_{5}}(\rho_{v_{a}},\nu_{v_{a}}) \\ \mathcal{A}_{f}(\rho_{f},\nu_{f}) &= 4(\rho_{f}^{2}+\nu_{f}^{2}) \\ \mathcal{A}_{e}^{\alpha_{e}}(\rho_{i_{e}},\nu_{i_{e}}) &= 1 \\ \mathcal{A}_{v}^{\alpha_{1},\dots,\alpha_{5}}(\rho_{v_{a}},\nu_{v_{a}}) &= \int [\mathrm{d}X_{\alpha}]^{5} \prod_{a < b} K_{\alpha_{a}\alpha_{b}}^{(\rho_{ab},\nu_{ab})}(X_{a},X_{b}). \end{split}$$

Alexander F. Jercher

Define kernels

$$D_{\alpha_{1}\alpha_{2}}^{(\rho,\nu)}(g_{X_{1}}^{-1}g_{X_{2}}) \equiv K_{\alpha_{1}\alpha_{2}}^{(\rho,\nu)}(X_{1},X_{2}) \coloneqq \sum_{jmln} \mathcal{I}_{jm}^{(\rho,\nu),\alpha_{1}} D_{jmln}^{(\rho,\nu)}(g_{X_{1}}^{-1}g_{X_{2}}) \bar{\mathcal{I}}_{ln}^{(\rho,\nu),\alpha_{2}}$$
$$K_{\alpha_{1}\alpha_{2}}^{(\rho,\nu)}(X_{1},X_{2}) = \overline{K_{\alpha_{2}\alpha_{1}}^{(\rho,\nu)}(X_{2},X_{1})}$$

Spin foam amplitude for a Lorentzian 2-complex Γ

$$\begin{split} \mathcal{A}_{\Gamma} &= \prod_{f} \sum_{\nu_{f}} \int \mathrm{d}\rho_{f} \,\mathcal{A}_{f}(\rho_{f},\nu_{f}) \prod_{e} \mathcal{A}_{e}^{\alpha_{e}}(\rho_{i_{e}},\nu_{i_{e}}) \prod_{v} \mathcal{A}_{v}^{\alpha_{1},\dots,\alpha_{5}}(\rho_{v_{a}},\nu_{v_{a}}) \\ \mathcal{A}_{f}(\rho_{f},\nu_{f}) &= 4(\rho_{f}^{2}+\nu_{f}^{2}) \\ \mathcal{A}_{e}^{\alpha_{e}}(\rho_{i_{e}},\nu_{i_{e}}) &= 1 \\ \mathcal{A}_{v}^{\alpha_{1},\dots,\alpha_{5}}(\rho_{v_{a}},\nu_{v_{a}}) &= \int [\mathrm{d}X_{\alpha}]^{5} \prod_{a < b} K_{\alpha_{a}\alpha_{b}}^{(\rho_{ab},\nu_{ab})}(X_{a},X_{b}). \end{split}$$

Spacelike triangles are labelled by $(\rho_f, 0)$: continuous spectrum

Timelike triangles are labelled by $(0, \nu_f)$: discrete spectrum

Gel'fand, Graev, Vilenkin 1966; Perez, Rovelli gr-qc/0011037; Oriti, Pithis, AJ 2206.15442 Alexander F. Jercher The Complete Barrett-Crane Model and its Causal Structure

Explicit expressions for the kernels via integral geometry

Gel'fand, Graev, Vilenkin 1966; Perez, Rovelli gr-qc/0011037; Oriti, Pithis, AJ 2206.15442 Alexander F. Jercher The Complete Barrett-Crane Model and its Causal Structure

Explicit expressions for the kernels via integral geometry

 $K_{++}^{(
ho,
u)}(\eta)$ and $K_{--}^{(
ho,
u)}(\eta,\hat{r})$ already known (see Perez, Rovelli gr-qc/0011037)

Explicit expressions for the kernels via integral geometry

 $K_{++}^{(
ho,
u)}(\eta)$ and $K_{--}^{(
ho,
u)}(\eta,\hat{r})$ already known (see Perez, Rovelli gr-qc/0011037)

$$K_{00}^{(\rho,\nu)}(\lambda,\hat{\boldsymbol{r}}) = \delta_{\nu,0} \frac{\delta(\theta)}{\sin\theta} \lambda^{i\rho-1} \qquad \qquad K_{+0}^{(\rho,\nu)}(X_+,Y_0) = \delta_{\nu,0} \left(X_+^{\mu}Y_{0\mu}\right)^{i\rho-1} \\ K_{+-}^{(\rho,\nu)}(\eta,\hat{\boldsymbol{r}}) = \delta_{\nu,0} K_{+-}^{(\rho,0)}(\eta,\hat{\boldsymbol{r}}) \qquad \qquad K_{-0}^{(\rho,\nu)}(X_-,Y_0) = \delta_{\nu,0} \left|X_-^{\mu}Y_{0\mu}\right|^{i\rho-1}$$

Explicit expressions for the kernels via integral geometry

 $K_{++}^{(
ho,
u)}(\eta)$ and $K_{--}^{(
ho,
u)}(\eta,\hat{r})$ already known (see Perez, Rovelli gr-qc/0011037)

$$K_{00}^{(\rho,\nu)}(\lambda,\hat{\boldsymbol{r}}) = \delta_{\nu,0} \frac{\delta(\theta)}{\sin\theta} \lambda^{i\rho-1} \qquad \qquad K_{+0}^{(\rho,\nu)}(X_+,Y_0) = \delta_{\nu,0} \left(X_+^{\mu}Y_{0\mu}\right)^{i\rho-1} \\ K_{+-}^{(\rho,\nu)}(\eta,\hat{\boldsymbol{r}}) = \delta_{\nu,0} K_{+-}^{(\rho,0)}(\eta,\hat{\boldsymbol{r}}) \qquad \qquad K_{-0}^{(\rho,\nu)}(X_-,Y_0) = \delta_{\nu,0} \left|X_-^{\mu}Y_{0\mu}\right|^{i\rho-1}$$

Spacetime orientation

Explicit expressions for the kernels via integral geometry

 $K_{++}^{(
ho,
u)}(\eta)$ and $K_{--}^{(
ho,
u)}(\eta,\hat{r})$ already known (see Perez, Rovelli gr-qc/0011037)

$$K_{00}^{(\rho,\nu)}(\lambda,\hat{\boldsymbol{r}}) = \delta_{\nu,0} \frac{\delta(\theta)}{\sin\theta} \lambda^{i\rho-1} \qquad \qquad K_{+0}^{(\rho,\nu)}(X_+,Y_0) = \delta_{\nu,0} \left(X_+^{\mu} Y_{0\mu} \right)^{i\rho-1} \\ K_{+-}^{(\rho,\nu)}(\eta,\hat{\boldsymbol{r}}) = \delta_{\nu,0} K_{+-}^{(\rho,0)}(\eta,\hat{\boldsymbol{r}}) \qquad \qquad K_{-0}^{(\rho,\nu)}(X_-,Y_0) = \delta_{\nu,0} \left| X_-^{\mu} Y_{0\mu} \right|^{i\rho-1}$$

Spacetime orientation

Observation

Completion of BC model is unoriented

Extended symmetry under $O(1,3) = SO(1,3)^+ \rtimes \{1, T, P, TP\}$

$$K_{\alpha_1\alpha_2}^{(\rho,\nu)}(h \cdot X_1, h \cdot X_2) = K_{\alpha_1\alpha_2}^{(\rho,\nu)}(X_1, X_2), \qquad \forall h \in \mathcal{O}(1,3)$$

Context and Applications

 Barrett, Crane gr-qc/9904025; Baratin, Oriti 1108.1178; Perez, Rovelli gr-qc/0011037

 Alexander F. Jercher
 The Complete Barrett-Crane Model and its Causal Structure

Timelike normal vector BC model: $\alpha = +$

Barrett, Crane gr-qc/9904025; Baratin, Oriti 1108.1178; Perez, Rovelli gr-qc/0011037 Alexander F. Jercher The Complete Barrett-Crane Model and its Causal Structure

Timelike normal vector BC model: $\alpha = +$

$$P_{jmln}^{(\rho,\nu),+} = \bar{\mathcal{I}}_{jm}^{(\rho,\nu),+} \mathcal{I}_{ln}^{(\rho,\nu),+} = \delta^{\nu,0} \delta_{j,0} \delta_{m,0} \delta_{l,0} \delta_{n,0}$$
$$B_{jvmv}^{\rho,vv,+} = \int dX_{+} \prod_{i=1}^{4} \delta_{\nu_{i},0} D_{j_{i}m_{i}00}^{(\rho_{i},0)}(X_{+})$$
$$K^{(\rho,\nu)}(\eta(X,Y)) = \frac{\sin \rho \eta}{\rho \sinh \eta}$$

Timelike normal vector BC model: $\alpha = +$

$$P_{jmln}^{(\rho,\nu),+} = \bar{\mathcal{I}}_{jm}^{(\rho,\nu),+} \mathcal{I}_{ln}^{(\rho,\nu),+} = \delta^{\nu,0} \delta_{j,0} \delta_{m,0} \delta_{l,0} \delta_{n,0}$$
$$B_{j_v m_v}^{\rho_v \nu_v,+} = \int dX_+ \prod_{i=1}^4 \delta_{\nu_i,0} D_{j_i m_i 00}^{(\rho_i,0)}(X_+)$$
$$K^{(\rho,\nu)}(\eta(X,Y)) = \frac{\sin \rho \eta}{\rho \sinh \eta}$$

- ▶ Single interaction with 5 spacelike tetrahedra
- ► Only spacelike triangles

Timelike normal vector BC model: $\alpha = +$

$$P_{jmln}^{(\rho,\nu),+} = \bar{\mathcal{I}}_{jm}^{(\rho,\nu),+} \mathcal{I}_{ln}^{(\rho,\nu),+} = \delta^{\nu,0} \delta_{j,0} \delta_{m,0} \delta_{l,0} \delta_{n,0}$$
$$B_{j_{\nu}m_{\nu}}^{\rho_{\nu}\nu_{\nu},+} = \int dX_{+} \prod_{i=1}^{4} \delta_{\nu_{i},0} D_{j_{i}m_{i}00}^{(\rho_{i},0)}(X_{+})$$
$$K^{(\rho,\nu)}(\eta(X,Y)) = \frac{\sin\rho\eta}{\rho\sinh\eta}$$

- \blacktriangleright Single interaction with 5 spacelike tetrahedra
- ► Only spacelike triangles

Spacelike normal vector BC model (Perez-Rovelli): $\alpha = -$

Barrett, Crane gr-qc/9904025; Baratin, Oriti 1108.1178; Perez, Rovelli gr-qc/0011037 Alexander F. Jercher The Complete Barrett-Crane Model and its Causal Structure
*Restricting the complete BC model

Timelike normal vector BC model: $\alpha = +$

$$P_{jmln}^{(\rho,\nu),+} = \bar{\mathcal{I}}_{jm}^{(\rho,\nu),+} \mathcal{I}_{ln}^{(\rho,\nu),+} = \delta^{\nu,0} \delta_{j,0} \delta_{m,0} \delta_{l,0} \delta_{n,0}$$
$$B_{j_{\nu}m_{\nu}}^{\rho_{\nu}\nu_{\nu},+} = \int dX_{+} \prod_{i=1}^{4} \delta_{\nu_{i},0} D_{j_{i}m_{i}00}^{(\rho_{i},0)}(X_{+})$$
$$K^{(\rho,\nu)}(\eta(X,Y)) = \frac{\sin\rho\eta}{\rho\sinh\eta}$$

- \blacktriangleright Single interaction with 5 spacelike tetrahedra
- ► Only spacelike triangles

Spacelike normal vector BC model (Perez-Rovelli): $\alpha = -$

- ▶ Single interaction with 5 timelike tetrahedra
- All combinations of spacelike and timelike triangles
- Extended formulation

*Relation to Conrady-Hnybida extension of EPRL

EPRL-CH	cBC

EPRL-CH	cBC
quantization of Palatini-Holst	quantization of Palatini

EPRL-CH	cBC
quantization of Palatini-Holst	quantization of Palatini
$X_A((*B)^{AB} + \frac{1}{\gamma}B^{AB}) = 0$	$X_A(*B)^{AB} = 0$

EPRL-CH	cBC
quantization of Palatini-Holst	quantization of Palatini
$X_A((*B)^{AB} + \frac{1}{\gamma}B^{AB}) = 0$	$X_A(*B)^{AB} = 0$
\boldsymbol{X} timelike or spacelike	\boldsymbol{X} timelike, spacelike or lightlike

EPRL-CH	cBC
quantization of Palatini-Holst	quantization of Palatini
$X_A((*B)^{AB} + \frac{1}{\gamma}B^{AB}) = 0$	$X_A(*B)^{AB} = 0$
X timelike or spacelike	\boldsymbol{X} timelike, spacelike or lightlike
$\mathop{\rm SU}(2)\text{-}$ and $\mathop{\rm SU}(1,1)\text{-representations}$	simple $SL(2, \mathbb{C})$ -representations

EPRL-CH	cBC
quantization of Palatini-Holst	quantization of Palatini
$X_A((*B)^{AB} + \frac{1}{\gamma}B^{AB}) = 0$	$X_A(*B)^{AB} = 0$
X timelike or spacelike	\boldsymbol{X} timelike, spacelike or lightlike
$\mathop{\rm SU}(2)\text{-}$ and $\mathop{\rm SU}(1,1)\text{-representations}$	simple $SL(2, \mathbb{C})$ -representations
spatial discreteness $j \in \mathbb{N}/2$	spatial continuity $ ho \in \mathbb{R}$
temporal continuity $s \in \mathbb{R}$	temporal discreteness $\nu \in \mathbb{Z}/2$

Ambjorn, Goerlich, Jurkiewicz, Loll, 1203.3591 Alexander F. Jercher The Complete Barrett-Crane Model and its Causal Structure Geometric assumptions in CDT:

Geometric assumptions in CDT:

- Fixed edge lengths
- ▶ Timelike and spacelike edge lengths related by $\alpha > 0$: $l_+^2 = \alpha a^2$, $l_-^2 = -a^2$
- ► Two simplicial building blocks

Geometric assumptions in CDT:

- Fixed edge lengths
- ▶ Timelike and spacelike edge lengths related by $\alpha > 0$: $l_+^2 = \alpha a^2$, $l_-^2 = -a^2$
- ► Two simplicial building blocks

	(4, 1)	(3, 2)
tetrahedra	1 spacelike	0 spacelike
	4 timelike	5 timelike
triangles	4 spacelike	1 spacelike
	6 timelike	9 timelike
edges	6 spacelike	3 spacelike
	4 timelike	7 timelike

- No topological singularities
- Global foliation structure

Dittrich, Kogios 2203.02409; Gurau 1109.4812; Benedetti, Henson 0812.4261 Alexander F. Jercher The Complete Barrett-Crane Model and its Causal Structure

CDT-like GFT model as a causal tensor model

Fix representation labels $(\rho_v, \nu_v) = (\rho^*, \nu^*)$

• Relate
$$\rho^*$$
 and ν^* via α : $\rho^2 = 3\frac{1-\nu^2}{1+4\alpha} - 1$

- Allow only for two interactions
- Introduce coloring
- Introduce dual-weighting

fix areas

relate s.l. and t.l. areas

restrict to (4,1) and (3,2)

exlucde top. singularities

enforce foliation constraint

CDT-like GFT model as a causal tensor model

Fix representation labels
$$(\rho_v, \nu_v) = (\rho^*, \nu^*)$$

• Relate
$$\rho^*$$
 and ν^* via α : $\rho^2 = 3\frac{1-\nu^2}{1+4\alpha} - 1$

- Allow only for two interactions
- Introduce coloring
- Introduce dual-weighting

fix areas

relate s.l. and t.l. areas

restrict to (4,1) and (3,2)

exlucde top. singularities

enforce foliation constraint

$$Z = \sum_{\Gamma} \frac{1}{\text{sym}(\Gamma)} e^{S_{\text{eff}}}$$
$$S_{\text{eff}}(\Gamma) = -F_s \ln(\rho^{*2}) - F_t \ln(\nu^{*2}) - V_{(4,1)} \ln(\lambda_{(4,1)} \mathcal{A}^{(4,1)}) - V_{(3,2)} \ln(\lambda_{(3,2)} \mathcal{A}^{(3,2)})$$

Dittrich, Kogios 2203.02409; Gurau 1109.4812; Benedetti, Henson 0812.4261

CDT-like GFT model as a causal tensor model

Fix representation labels
$$(\rho_v, \nu_v) = (\rho^*, \nu^*)$$

• Relate
$$\rho^*$$
 and ν^* via α : $\rho^2 = 3\frac{1-\nu^2}{1+4\alpha} - 1$

- Allow only for two interactions
- Introduce coloring
- Introduce dual-weighting

fix areas

relate s.l. and t.l. areas

restrict to (4,1) and (3,2)

exlucde top. singularities

enforce foliation constraint

$$Z = \sum_{\Gamma} \frac{1}{\text{sym}(\Gamma)} e^{S_{\text{eff}}}$$
$$S_{\text{eff}}(\Gamma) = -F_s \ln(\rho^{*2}) - F_t \ln(\nu^{*2}) - V_{(4,1)} \ln(\lambda_{(4,1)} \mathcal{A}^{(4,1)}) - V_{(3,2)} \ln(\lambda_{(3,2)} \mathcal{A}^{(3,2)})$$

Result

$\mathsf{CDT}\mathsf{-like}\;\mathsf{GFT}\;\mathsf{model}\Leftrightarrow\mathsf{causal}\;\mathsf{tensor}\;\mathsf{model}$

Dittrich, Kogios 2203.02409; Gurau 1109.4812; Benedetti, Henson 0812.4261

Alexander F. Jercher The Complete Barrett-Crane Model and its Causal Structure

Alexander F. Jercher The Complete Barrett-Crane Model and its Causal Structure

Physical reference frames in GFT condensate cosmology:

Alexander F. Jercher

Physical reference frames in GFT condensate cosmology:

- Background independence requires relational description
- Dynamical clocks and rods instead of coordinates

Physical reference frames in GFT condensate cosmology:

- Background independence requires relational description
- Dynamical clocks and rods instead of coordinates

Open questions

- How to properly distinguish clocks from rods?
- How do clocks and rods relate to the signature of spacetime?
- What are the implications on cosmology, in particular perturbations?

Marchetti, Oriti 2008.02774; Marchetti, Oriti 2112.12677;

Physical reference frames in GFT condensate cosmology:

- Background independence requires relational description
- Dynamical clocks and rods instead of coordinates

Open questions

- How to properly distinguish clocks from rods?
- How do clocks and rods relate to the signature of spacetime?
- What are the implications on cosmology, in particular perturbations?

Landau-Ginzburg analysis:

Physical reference frames in GFT condensate cosmology:

- Background independence requires relational description
- Dynamical clocks and rods instead of coordinates

Open questions

- How to properly distinguish clocks from rods?
- How do clocks and rods relate to the signature of spacetime?
- What are the implications on cosmology, in particular perturbations?

Landau-Ginzburg analysis:

- ▶ LG analysis provides rough estimate of phase structure
- ▶ BC with spacelike tetrahedra exhibits condensate phase

Physical reference frames in GFT condensate cosmology:

- Background independence requires relational description
- Dynamical clocks and rods instead of coordinates

Open questions

- How to properly distinguish clocks from rods?
- How do clocks and rods relate to the signature of spacetime?
- What are the implications on cosmology, in particular perturbations?

Landau-Ginzburg analysis:

- ▶ LG analysis provides rough estimate of phase structure
- ▶ BC with spacelike tetrahedra exhibits condensate phase

Open question

What is the phase structure of the cBC model?

Alexander F. Jercher

Summary

 $\checkmark\,$ Disambiguation and status of causality in GFT and SF

- $\checkmark\,$ Disambiguation and status of causality in GFT and SF
- $\checkmark\,$ Construct a GFT and spin foam model that faithfully encodes bare causality + coloring

- $\checkmark\,$ Disambiguation and status of causality in GFT and SF
- $\checkmark\,$ Construct a GFT and spin foam model that faithfully encodes bare causality + coloring
- ✓ Quantum geometric results via integral geometry:

- $\checkmark\,$ Disambiguation and status of causality in GFT and SF
- $\checkmark\,$ Construct a GFT and spin foam model that faithfully encodes bare causality + coloring
- Quantum geometric results via integral geometry:
 - Spacelike and lightlike tetrahedra contain spacelike faces, $ho \in \mathbb{R}$

- $\checkmark\,$ Disambiguation and status of causality in GFT and SF
- $\checkmark\,$ Construct a GFT and spin foam model that faithfully encodes bare causality + coloring
- Quantum geometric results via integral geometry:
 - Spacelike and lightlike tetrahedra contain spacelike faces, $ho \in \mathbb{R}$
 - Timelike tetrahedra contain spacelike and timelike faces, $ho \in \mathbb{R}$ and $u \in 2\mathbb{N}^+$

- $\checkmark\,$ Disambiguation and status of causality in GFT and SF
- $\checkmark\,$ Construct a GFT and spin foam model that faithfully encodes bare causality + coloring
- Quantum geometric results via integral geometry:
 - Spacelike and lightlike tetrahedra contain spacelike faces, $ho \in \mathbb{R}$
 - Timelike tetrahedra contain spacelike and timelike faces, $ho\in\mathbb{R}$ and $u\in2\mathbb{N}^+$
- \checkmark Determine behavior under spacetime reversal: O(1,3)-symmetry

- $\checkmark\,$ Disambiguation and status of causality in GFT and SF
- $\checkmark\,$ Construct a GFT and spin foam model that faithfully encodes bare causality + coloring
- Quantum geometric results via integral geometry:
 - Spacelike and lightlike tetrahedra contain spacelike faces, $\rho \in \mathbb{R}$
 - Timelike tetrahedra contain spacelike and timelike faces, $ho\in\mathbb{R}$ and $u\in2\mathbb{N}^+$
- ✓ Determine behavior under spacetime reversal: O(1,3)-symmetry
- ✓ Construct CDT-like GFT model, resulting in causal tensor model

Summary

- $\checkmark\,$ Disambiguation and status of causality in GFT and SF
- \checkmark Construct a GFT and spin foam model that faithfully encodes bare causality + coloring
- Quantum geometric results via integral geometry:
 - Spacelike and lightlike tetrahedra contain spacelike faces, $\rho \in \mathbb{R}$
 - Timelike tetrahedra contain spacelike and timelike faces, $ho\in\mathbb{R}$ and $u\in2\mathbb{N}^+$
- ✓ Determine behavior under spacetime reversal: O(1,3)-symmetry
- ✓ Construct CDT-like GFT model, resulting in causal tensor model

Open problems and perspectives

Summary

- $\checkmark\,$ Disambiguation and status of causality in GFT and SF
- \checkmark Construct a GFT and spin foam model that faithfully encodes bare causality + coloring
- Quantum geometric results via integral geometry:
 - Spacelike and lightlike tetrahedra contain spacelike faces, $\rho \in \mathbb{R}$
 - Timelike tetrahedra contain spacelike and timelike faces, $ho\in\mathbb{R}$ and $u\in2\mathbb{N}^+$
- ✓ Determine behavior under spacetime reversal: O(1,3)-symmetry
- ✓ Construct CDT-like GFT model, resulting in causal tensor model

Open problems and perspectives

What is the role of degenerate/lightlike faces?

Summary

- $\checkmark\,$ Disambiguation and status of causality in GFT and SF
- \checkmark Construct a GFT and spin foam model that faithfully encodes bare causality + coloring
- Quantum geometric results via integral geometry:
 - Spacelike and lightlike tetrahedra contain spacelike faces, $\rho \in \mathbb{R}$
 - Timelike tetrahedra contain spacelike and timelike faces, $ho\in\mathbb{R}$ and $u\in2\mathbb{N}^+$
- ✓ Determine behavior under spacetime reversal: O(1,3)-symmetry
- ✓ Construct CDT-like GFT model, resulting in causal tensor model

Open problems and perspectives

- What is the role of degenerate/lightlike faces?
- Which interactions/configurations should be ruled out?

Summary

- $\checkmark\,$ Disambiguation and status of causality in GFT and SF
- \checkmark Construct a GFT and spin foam model that faithfully encodes bare causality + coloring
- Quantum geometric results via integral geometry:
 - Spacelike and lightlike tetrahedra contain spacelike faces, $\rho \in \mathbb{R}$
 - Timelike tetrahedra contain spacelike and timelike faces, $ho\in\mathbb{R}$ and $u\in2\mathbb{N}^+$
- ✓ Determine behavior under spacetime reversal: O(1,3)-symmetry
- ✓ Construct CDT-like GFT model, resulting in causal tensor model

Open problems and perspectives

- What is the role of degenerate/lightlike faces?
- Which interactions/configurations should be ruled out?
- How to impose local causality conditions?
Summary

- $\checkmark\,$ Disambiguation and status of causality in GFT and SF
- $\checkmark\,$ Construct a GFT and spin foam model that faithfully encodes bare causality + coloring
- Quantum geometric results via integral geometry:
 - Spacelike and lightlike tetrahedra contain spacelike faces, $\rho \in \mathbb{R}$
 - Timelike tetrahedra contain spacelike and timelike faces, $ho\in\mathbb{R}$ and $u\in2\mathbb{N}^+$
- ✓ Determine behavior under spacetime reversal: O(1,3)-symmetry
- ✓ Construct CDT-like GFT model, resulting in causal tensor model

Open problems and perspectives

- What is the role of degenerate/lightlike faces?
- Which interactions/configurations should be ruled out?
- How to impose local causality conditions?
- **>** Develop an oriented GFT and spin foam model based on the group O(1,3)

Summary

- $\checkmark\,$ Disambiguation and status of causality in GFT and SF
- \checkmark Construct a GFT and spin foam model that faithfully encodes bare causality + coloring
- Quantum geometric results via integral geometry:
 - Spacelike and lightlike tetrahedra contain spacelike faces, $\rho \in \mathbb{R}$
 - Timelike tetrahedra contain spacelike and timelike faces, $ho\in\mathbb{R}$ and $u\in2\mathbb{N}^+$
- ✓ Determine behavior under spacetime reversal: O(1,3)-symmetry
- ✓ Construct CDT-like GFT model, resulting in causal tensor model

Open problems and perspectives

- What is the role of degenerate/lightlike faces?
- Which interactions/configurations should be ruled out?
- How to impose local causality conditions?
- \blacktriangleright Develop an oriented GFT and spin foam model based on the group O(1,3)
- Perform an asymptotic analysis

Summary

- $\checkmark\,$ Disambiguation and status of causality in GFT and SF
- \checkmark Construct a GFT and spin foam model that faithfully encodes bare causality + coloring
- Quantum geometric results via integral geometry:
 - Spacelike and lightlike tetrahedra contain spacelike faces, $\rho \in \mathbb{R}$
 - Timelike tetrahedra contain spacelike and timelike faces, $ho\in\mathbb{R}$ and $u\in2\mathbb{N}^+$
- ✓ Determine behavior under spacetime reversal: O(1,3)-symmetry
- ✓ Construct CDT-like GFT model, resulting in causal tensor model

Open problems and perspectives

- What is the role of degenerate/lightlike faces?
- Which interactions/configurations should be ruled out?
- How to impose local causality conditions?
- \blacktriangleright Develop an oriented GFT and spin foam model based on the group O(1,3)
- Perform an asymptotic analysis
- 🕨 Study bearing on cosmology 🛦

Alexander F. Jercher

The Complete Barrett-Crane Model and its Causal Structure

Summary

- $\checkmark\,$ Disambiguation and status of causality in GFT and SF
- $\checkmark\,$ Construct a GFT and spin foam model that faithfully encodes bare causality + coloring
- Quantum geometric results via integral geometry:
 - Spacelike and lightlike tetrahedra contain spacelike faces, $\rho \in \mathbb{R}$
 - Timelike tetrahedra contain spacelike and timelike faces, $ho\in\mathbb{R}$ and $u\in2\mathbb{N}^+$
- ✓ Determine behavior under spacetime reversal: O(1,3)-symmetry
- ✓ Construct CDT-like GFT model, resulting in causal tensor model

Open problems and perspectives

- What is the role of degenerate/lightlike faces?
- Which interactions/configurations should be ruled out?
- How to impose local causality conditions?
- \blacktriangleright Develop an oriented GFT and spin foam model based on the group O(1,3)
- Perform an asymptotic analysis
- 🕨 Study bearing on cosmology 🔬
- 🕨 Examine phase structure via LG analysis 🛕 or FRG

Alexander F. Jercher

The Complete Barrett-Crane Model and its Causal Structure

Back-Up

The BC spin foam model (Palatini quantization) has been criticized for

1. Inability of BC vertex to reproduce tensorial structure of (lattice) graviton propagator [Alesci, Rovelli 0708.0883]

The BC spin foam model (Palatini quantization) has been criticized for

- 1. Inability of BC vertex to reproduce tensorial structure of (lattice) graviton propagator [Alesci, Rovelli 0708.0883]
- 2. Missing area-length constraints [Alexandrov 0802.3389]

20

- 1. Inability of BC vertex to reproduce tensorial structure of (lattice) graviton propagator [Alesci, Rovelli 0708.0883]
- 2. Missing area-length constraints [Alexandrov 0802.3389]
- 3. Role of degenerate geometries [Barrett, Steele gr-qc/0209023]

- 1. Inability of BC vertex to reproduce tensorial structure of (lattice) graviton propagator [Alesci, Rovelli 0708.0883]
- 2. Missing area-length constraints [Alexandrov 0802.3389]
- 3. Role of degenerate geometries [Barrett, Steele gr-qc/0209023]
- 4. Constraints are imposed "too strongly" [EPR 0705.2388]

- 1. Inability of BC vertex to reproduce tensorial structure of (lattice) graviton propagator [Alesci, Rovelli 0708.0883]
- 2. Missing area-length constraints [Alexandrov 0802.3389]
- 3. Role of degenerate geometries [Barrett, Steele gr-qc/0209023]
- 4. Constraints are imposed "too strongly" [EPR 0705.2388]
- Non-covariant and non-commuting imposition of closure and simplicity [Baratin, Oriti 1002.4723]

The BC spin foam model (Palatini quantization) has been criticized for

- 1. Inability of BC vertex to reproduce tensorial structure of (lattice) graviton propagator [Alesci, Rovelli 0708.0883]
- 2. Missing area-length constraints [Alexandrov 0802.3389]
- 3. Role of degenerate geometries [Barrett, Steele gr-qc/0209023]
- 4. Constraints are imposed "too strongly" [EPR 0705.2388]
- Non-covariant and non-commuting imposition of closure and simplicity [Baratin, Oriti 1002.4723]

Also, the EPRL-like model has been favored since

The BC spin foam model (Palatini quantization) has been criticized for

- 1. Inability of BC vertex to reproduce tensorial structure of (lattice) graviton propagator [Alesci, Rovelli 0708.0883]
- 2. Missing area-length constraints [Alexandrov 0802.3389]
- 3. Role of degenerate geometries [Barrett, Steele gr-qc/0209023]
- 4. Constraints are imposed "too strongly" [EPR 0705.2388]
- Non-covariant and non-commuting imposition of closure and simplicity [Baratin, Oriti 1002.4723]

Also, the EPRL-like model has been favored since

6. Boundary states are closer to canonical LQG, incorporating the Barbero-Immirzi parameter γ

1. Conclusions reflect a mismatch of LQG boundary states and BC boundary states. [Baratin, Oriti 1108.1178] Revision via projected spin networks needed (for PSNs, see [Livine gr-qc/0207084])

- 1. Conclusions reflect a mismatch of LQG boundary states and BC boundary states. [Baratin, Oriti 1108.1178] Revision via projected spin networks needed (for PSNs, see [Livine gr-qc/0207084])
- 2. Recent results in [Dittrich 2105.10808] suggest that (on a hypercubical lattice) the BC model is still viable and possibly lies in the same universality class as the EPRL model in an effective continuum limit

- 1. Conclusions reflect a mismatch of LQG boundary states and BC boundary states. [Baratin, Oriti 1108.1178] Revision via projected spin networks needed (for PSNs, see [Livine gr-qc/0207084])
- Recent results in [Dittrich 2105.10808] suggest that (on a hypercubical lattice) the BC model is still viable and possibly lies in the same universality class as the EPRL model in an effective continuum limit
- 3. Further studies required. Timelike and lightlike configurations?

- 1. Conclusions reflect a mismatch of LQG boundary states and BC boundary states. [Baratin, Oriti 1108.1178] Revision via projected spin networks needed (for PSNs, see [Livine gr-qc/0207084])
- 2. Recent results in [Dittrich 2105.10808] suggest that (on a hypercubical lattice) the BC model is still viable and possibly lies in the same universality class as the EPRL model in an effective continuum limit
- 3. Further studies required. Timelike and lightlike configurations?
- 4./5. Issues are resolved in the extended BC model introduced in [Baratin, Oriti 1108.1178]

- 1. Conclusions reflect a mismatch of LQG boundary states and BC boundary states. [Baratin, Oriti 1108.1178] Revision via projected spin networks needed (for PSNs, see [Livine gr-qc/0207084])
- Recent results in [Dittrich 2105.10808] suggest that (on a hypercubical lattice) the BC model is still viable and possibly lies in the same universality class as the EPRL model in an effective continuum limit
- 3. Further studies required. Timelike and lightlike configurations?
- 4./5. Issues are resolved in the extended BC model introduced in [Baratin, Oriti 1108.1178]
 - 6. Absence of γ does not rule out the BC model. Entailing questions regarding its value and running as well as parity violation need to be clarified [Charles 1705.10984; Benedetti, Speziale 1111.0884]

- 1. Conclusions reflect a mismatch of LQG boundary states and BC boundary states. [Baratin, Oriti 1108.1178] Revision via projected spin networks needed (for PSNs, see [Livine gr-qc/0207084])
- 2. Recent results in [Dittrich 2105.10808] suggest that (on a hypercubical lattice) the BC model is still viable and possibly lies in the same universality class as the EPRL model in an effective continuum limit
- 3. Further studies required. Timelike and lightlike configurations?
- 4./5. Issues are resolved in the extended BC model introduced in [Baratin, Oriti 1108.1178]
 - 6. Absence of γ does not rule out the BC model. Entailing questions regarding its value and running as well as parity violation need to be clarified [Charles 1705.10984; Benedetti, Speziale 1111.0884]
 - The criticisms are yet inconclusive