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In practice, any reference frame is a physical system, most often one 
that should ultimately be described by quantum physics.

Operationalism

Motivations

The problem of time evokes the need for a reference 
frame in order to describe evolution.

Quantum Gravity

Reference frames allow to construct gauge-invariant 
observables through dressings.

Gauge Theory



First-Principles Approach
Idea: Take principles of known theories such as quantum theory, general 
relativity, and QFT and try to push them as far as possible.

✦ linearity & the superposition principle

✦ relativity of position, momenta, directions, …

✦ symmetries of the equations of motion

Quantum Reference Frames

Bottom-Up Approach

As such, it is complementary to top-down approaches to quantum 
gravity, which aim to find a more fundamental theory from which the 
known theories can be derived.

Top-Down Approach



✦ Introduction to Quantum Reference Frames 

✦ Quantum Reference Frames & Gravity 

‣ Massive Objects in Superposition


✦ Gravity & Quantum Reference Frames 

‣ QRFs at the Boundary of Spacetime


✦ Outlook & Connections

Outline 



Reference Frames & Symmetries
Classical Physics 

✦  Example: invariance under translations.


✦  Corresponds to free choice of position reference frame.

xA0 xB 0−xA xB − xA



Formalism

xA0 xB 0−xA xB − xA

Reference Frames & Symmetries



Formalism

|xA⟩A|0⟩C |xB⟩B |0⟩A| − xA⟩C |xB − xA⟩B

Giacomini, Castro-Ruiz, and Brukner (2019)

Quantum Reference Frames



Formalism

|ψ⟩(C)
ABC = |0⟩C |xA⟩A |xB⟩B |ψ⟩(A)

ABC = |0⟩A | − xA⟩C |xB − xA⟩B

Giacomini, Castro-Ruiz, and Brukner (2019)

|xA⟩A|0⟩C |xB⟩B |0⟩A| − xA⟩C |xB − xA⟩B

ℋ(C)
ABC = ℋ(C)

A ⊗ ℋ(C)
B ⊗ ℋ(C)

C
ℋ(A)

ABC = ℋ(A)
A ⊗ ℋ(A)

B ⊗ ℋ(A)
C∈ ∈

Quantum Reference Frames



Formalism

|ψ⟩(C)
ABC = |0⟩C |xA⟩A |xB⟩B |ψ⟩(A)

ABC = |0⟩A | − xA⟩C |xB − xA⟩B

= 𝒫CA |0⟩C |xA⟩Ae
i
ℏ xA ̂pB |xB⟩B

Giacomini, Castro-Ruiz, and Brukner (2019)

|xA⟩A|0⟩C |xB⟩B |0⟩A| − xA⟩C |xB − xA⟩B

Quantum Reference Frames



Formalism

|ψ⟩(A)
ABC = |0⟩A | − xA⟩C |xB − xA⟩B

= 𝒫CA |0⟩C |xA⟩Ae
i
ℏ xA ̂pB |xB⟩B

𝒫CA = SWAPCA ∘ ∫ | − xA⟩⟨xA |A dxA

Giacomini, Castro-Ruiz, and Brukner (2019)

|xA⟩A|0⟩C |xB⟩B |0⟩A| − xA⟩C |xB − xA⟩B

|ψ⟩(C)
ABC = |0⟩C |xA⟩A |xB⟩B

Quantum Reference Frames



= 𝒫CAe
i
ℏ xA ̂pB |ψ⟩(C)

ABC

Formalism

𝒫CAe
i
ℏ xA ̂pB

|ψ⟩(A)
ABC = |0⟩A | − xA⟩C |xB − xA⟩B

= 𝒫CA |0⟩C |xA⟩Ae
i
ℏ xA ̂pB |xB⟩B

Giacomini, Castro-Ruiz, and Brukner (2019)

|xA⟩A|0⟩C |xB⟩B |0⟩A| − xA⟩C |xB − xA⟩B

|ψ⟩(C)
ABC = |0⟩C |xA⟩A |xB⟩B

Quantum Reference Frames



= 𝒫CAe
i
ℏ xA ̂pB |ψ⟩(C)

ABC

Formalism

𝒫CAe
i
ℏ xA ̂pB

|ψ⟩(A)
ABC = |0⟩A | − xA⟩C |xB − xA⟩B

= 𝒫CA |0⟩C |xA⟩Ae
i
ℏ xA ̂pB |xB⟩B

Giacomini, Castro-Ruiz, and Brukner (2019)

|xA⟩A|0⟩C |ϕ⟩B |0⟩A| − xA⟩C e
i
ℏ xA ̂pB |ϕ⟩B

|ψ⟩(C)
ABC = |0⟩C |xA⟩A |xB⟩B

Quantum Reference Frames



Formalism

1

2 ( |x(1)
A ⟩A + |x(2)

A ⟩A)|0⟩C |ϕ⟩B

|ψ⟩(C)
ABC = |0⟩C |

1

2 ( |x(1)
A ⟩A + |x(2)

A ⟩A) |ϕ⟩B

|0⟩A

Giacomini, Castro-Ruiz, and Brukner (2019)

Quantum Reference Frames



= 𝒫CAe
i
ℏ ̂xA ̂pB |0⟩C

1

2 ( |x(1)
A ⟩A + |x(2)

A ⟩A) |ϕ⟩B

Formalism

1

2 ( |x(1)
A ⟩A + |x(2)

A ⟩A)|0⟩C |ϕ⟩B

|ψ⟩(C)
ABC = |0⟩C |

1

2 ( |x(1)
A ⟩A + |x(2)

A ⟩A) |ϕ⟩B

1

2 ( | − x(1)
A ⟩C + | − x(2)

A ⟩C)

𝒫CAe
i
ℏ ̂xA ̂pB

1

2 (e
i
ℏ x(1)

A ̂pB |ϕ⟩B + e
i
ℏ x(2)

A ̂pB |ϕ⟩B)

Quantum controlled translation

𝒫CAe
i
ℏ ̂xA ̂pB

|0⟩A

Giacomini, Castro-Ruiz, and Brukner (2019)

|ψ⟩(A)
ABC = |0⟩A

1

2 ( | − x(1)
A ⟩Ce

i
ℏ x(1)

A ̂pB |ϕ⟩B + |x(2)
A ⟩Ce

i
ℏ x(2)

A ̂pB |ϕ⟩B)

Quantum Reference Frames



Quantum Physics 

✦  Generalisation to quantum reference frames.


✦  Example: invariance under superpositions of translations.

𝒫CAe
i
ℏ ̂xA ̂pB

1

2 ( |x(1)
A ⟩A + |x(2)

A ⟩A)|0⟩C |ϕ⟩B |ψ⟩(A)
ABC = |0⟩A

1

2 ( | − x(1)
A ⟩Ce

i
ℏ x(1)

A ̂pB |ϕ⟩B + |x(2)
A ⟩Ce

i
ℏ x(2)

A ̂pB |ϕ⟩B)

frame dependence of 
superposition & entanglement

Quantum Reference Frames & Quantum Symmetries



The General Idea

Examples


✦ Translations, Galilei group


✦ Spin rotations


✦ Conformal Transformations

✦ Lorentz boosts


✦ Asymptotic symmetries


✦ …

Symmetries of known 
physical theories

Linearity of 
quantum theory

Quantum 
Symmetries

Invariance under 
quantum-controlled transformations.

Quantum Reference Frames & Quantum Symmetries



✦ Introduction to Quantum Reference Frames 

✦ Quantum Reference Frames & Gravity 

‣ Massive Objects in Superposition


✦ Gravity & Quantum Reference Frames 

‣ QRFs at the Boundary of Spacetime


✦ Summary, Outlook & Connections

Outline 



de la Hamette, VK, Castro-Ruiz, and Brukner (2023)

Quantum Reference Frames & Gravity
Massive Objects in Superposition

Goal: Describe motion of test particle in presence of a gravitational source in superposition.



Strategy


✦ Change into QRF in which the 
gravitational source is definite. 

𝒫RMe
i
ℏ ̂xM ̂pS

Quantum Reference Frames & Gravity
Massive Objects in Superposition



Strategy


✦ Change into QRF in which the 
gravitational source is definite. 

𝒫RMe
i
ℏ ̂xM ̂pS

Quantum Reference Frames & Gravity
Massive Objects in Superposition



Strategy


✦ Change into QRF in which the 
gravitational source is definite. 


✦ Solve  problem in the new 
reference frame.

d2xμ

dτ2
+ Γμ

νρ
dxν

dτ
dxρ

dτ
= 0 Φ(i) = ∫

B(i)

A(i)

mS −gμνdxμdxν

geodesic motion quantum phase

Quantum Reference Frames & Gravity
Massive Objects in Superposition



Strategy


✦ Change into QRF in which the 
gravitational source is definite. 


✦ Solve  problem in the new 
reference frame.


✦ Transform back to infer the 
dynamics assuming that the 
change of QRF is a symmetry of 
the equations of motion. e− i

ℏ ̂xM ̂pS𝒫MR

Quantum Reference Frames & Gravity
Massive Objects in Superposition



Strategy


✦ Change into QRF in which the 
gravitational source is definite. 


✦ Solve  problem in the new 
reference frame.


✦ Transform back to infer the 
dynamics assuming that the 
change of QRF is a symmetry of 
the equations of motion. e− i

ℏ ̂xM ̂pS𝒫MR

“extended symmetry principle”

Quantum Reference Frames & Gravity
Massive Objects in Superposition



Implications


✦ Concrete predictions while staying 
agnostic about the quantum 
nature of the gravitational field.


✦ Coherence check for the quantum 
nature of the gravitational field 
sourced by a massive object in 
superposition.

Quantum Reference Frames & Gravity
Summary

𝒫RMe
i
ℏ ̂xM ̂pS

1

3

2

4

e− i
ℏ ̂xM ̂pS𝒫MR

de la Hamette, VK, Castro-Ruiz, and Brukner (2023)



Extended Symmetry Principle Semi-Classical GravityCollapse Models

≠ ≠

Quantum Reference Frames & Gravity
Comparison between Approaches



✦ Introduction to Quantum Reference Frames 

✦ Quantum Reference Frames & Gravity 

‣ Massive Objects in Superposition


✦ Gravity & Quantum Reference Frames 

‣ QRFs at the Boundary of Spacetime


✦ Summary, Outlook & Connections

Outline 



Gravity + Quantum Reference Frames

∂𝒟

γ

𝒟′ 

𝒟



QRFs at the Boundary of Spacetime
Gravity + Quantum Reference Frames

Question: Can we derive quantum reference frames 
from within a general relativistic setup?

‣ QRFs formulated in the field-theoretic 
language of general relativity.


‣ Generalised QRF transformations due to 
larger symmetry group.

First step: Linearised general relativity.

∂𝒟

γ

𝒟′ 

𝒟

XμΛμν

QRFs as edge modes at the boundary.

arXiv:2302.11629 



QRFs at the Boundary of Spacetime
Gravity + Quantum Reference Frames

Question: Can we derive quantum reference frames 
from within a general relativistic setup?

‣ QRFs formulated in the field-theoretic 
language of general relativity.


‣ Generalised QRF transformations due to 
larger symmetry group.

First step: Linearised general relativity.

∂𝒟

γ

𝒟′ 

𝒟

XμΛμν

QRFs as edge modes at the boundary.

Cf. Carrozza, Eccles, Höhn (2022)



Edge Modes
in an N-Particle System

Rovelli, “Why Gauge?” (2014)



Edge Modes
in an N-Particle System

Rovelli, “Why Gauge?” (2014)



Edge Modes

hα[A] = e−iq∮α A
Wilson loop

in Electrodynamics

e.g. Donnelly and Freidel (2016)



Edge Modes

hα[A] = e−iq∮α A
Wilson loop

in Electrodynamics

hγ[A] → hγ[A]e−iq∑p ϵpλ(p)
half-Wilson loop:

e.g. Donnelly and Freidel (2016)



Edge Modes in Linearised Gravity

Classical Setup: Linearised gravity in subregion of 
spacetime with N point particles.

eα = Λα
μ (dXμ + fμ) Aα

β = Λα
μdΛ μ

β + Λα
μΔμ

νΛ μ
β

where

Xμ : ℳ → ℝ4 Λμ
ν : ℳ → SO(1,3)

Governed by Hilbert-Palatini action (+ matter):

𝒮[A, e, {γi, Ni, pi}N
i=1] =

1
16πG ∫M

* (eα ∧ eβ) ∧ Fαβ[A] + 𝒮matter∂𝒟

γ

𝒟′ 

𝒟



Interlude: Covariant Phase Space

Ω =
N

∑
I=1

dpI ∧ dqI {f, g} ≡ Ω(Xf, Xg)

symplectic form Poisson bracket

N Point Particles

(qI, pI)

e.g. Harlow and Wu (2020)

df = Ω(Xf, ⋅ )

Provides manifestly covariant description of phase space:

ΩΣ = ∫Σ
dθ

δℒ = (EOM)IδΦI + dθ(δ)



Field-Space

Interlude: Covariant Phase Space

ΩΣ = ∫Σ
dΠIdΦI

field-space 
exterior derivative

dΦI(δ) = δΦI

(ΦI(x), ΠI(x))

e.g. Harlow and Wu (2020)

Provides manifestly covariant description of phase space:

ΩΣ = ∫Σ
dθ

δℒ = (EOM)IδΦI + dθ(δ)



Edge Modes in Linearised Gravity

Ω𝒟 = Ωmatter
𝒟 + Ωrad

𝒟 + Ω∂𝒟

Variation of action  symplectic form:→

where

relative or “dressed” position

Dqμ
i = dqμ

i + dXμ |γi

= d(Xμ ∘ γi)

Ωmatter
𝒟 =

N

∑
i=1

dpi
μ (dqμ

i + dXμ
γi∩𝒟

) ≡
N

∑
i=1

dpi
μDqμ

i

∂𝒟

γ

𝒟′ 

𝒟



D(n)f μ = d(n)f μ

−ℒX
(n)f μ

Edge Modes in Linearised Gravity

Ω𝒟 = Ωmatter
𝒟 + Ωrad

𝒟 + Ω∂𝒟

Variation of action  symplectic form:→

where

Ωrad
𝒟 = ∫𝒟

* (dX[μ ∧ D(1)fν]) ∧ D(1)Δμν

∂𝒟

γ

𝒟′ 

𝒟



Edge Modes in Linearised Gravity

Ω𝒟 = Ωmatter
𝒟 + Ωrad

𝒟 + Ω∂𝒟

Variation of action  symplectic form:→

where

Ω∂𝒟 = ∮∂𝒟
dPμdXμ −

1
2 ∮∂𝒟 [dSμ

νmν
μ +

1
2

Sμ
ν [m, m]ν

μ]
coordinate fields Lorentz frames

m = (dΛ−1)Λ

γ

Xμ ∘ γ

Xμ

𝒟
∂𝒟

Λμν

𝒟′ 



Edge Modes in Linearised Gravity

‣ Render  invariant under diffeomorphisms.Ω𝒟

Ω∂𝒟 = ∮∂𝒟
dPμdXμ −

1
2 ∮∂𝒟 [dSμ

νmν
μ +

1
2

Sμ
ν [m, m]ν

μ]
coordinate fields Lorentz frames

m = (dΛ−1)Λ

γ

Xμ ∘ γ

Xμ

𝒟
∂𝒟

Λμν

𝒟′ 

‣ Provide reference for point particles’ path 
through the dressing .Xμ ∘ γ

‣ Define the location of the boundary.



‣ Conserved quantity whose integral agrees with 
ADM momentum at infinity.

Edge Modes in Linearised Gravity

Ω∂𝒟 = ∮∂𝒟
dPμdXμ −

1
2 ∮∂𝒟 [dSμ

νmν
μ +

1
2

Sμ
ν [m, m]ν

μ]
conjugate momentum: Pμ = φ*𝒞 ((*(2)Δμν) ∧ dXν)

γ

Xμ ∘ γ

Xμ

𝒟
∂𝒟

Λμν

𝒟′ 

‣ Definition  constraint relating bulk and boundary.→



ℋmatter
𝒟 ⊗ ℋrad

𝒟

ℋbulk

⊗ ℋboundary
∂𝒟

✦ Separation of classical phase space  partition of 
kinematical Hilbert space as 

→

∂𝒟

γ

𝒟′ 

𝒟

✦ Constraints relating bulk and boundary imply relational 
Schrödinger evolution at the boundary 

̂PμΨphys[Xμ, Λα
μ] = − iℏ

δ
δXμ

Ψphys[Xμ, Λα
μ] = ĤμΨphys[Xμ, Λα

μ]

✦ Obtain quantum reference frames transformations for 
asymptotic symmetries.

Implications for the Quantum Theory



Quantum Reference Frames
for Asymptotic Symmetries

✦ Split coordinates into finite and divergent part:

ρ ≡ XμXμ → ∞

Xμ = Ωμ
ν(Xν

o + Qν) + 𝒪(ρ−1)

fiducial coordinates



global Lorentz 
rotation

Quantum Reference Frames
for Asymptotic Symmetries

✦ Split coordinates into finite and divergent part:

ρ ≡ XμXμ → ∞

Xμ = Ωμ
ν(Xν

o + Qν) + 𝒪(ρ−1)

finite, angle-dependent 
translation

asymptotic symmetry

|Ψ⟩ = ∫[ℝ4]S2

𝒟[Qμ]∫SO(1,3)
dμΩΨbulk[Qμ, Ωμ

ν) ⊗ |Qμ, Ωμ
ν⟩

✦ Generic state in the kinematical Hilbert space (formally): 
 
 



✦ To obtain QRF transformations, consider two kinematical states of the form 

Quantum Reference Frames
for Asymptotic Symmetries

Ψ = Ψ[Q0, Ω0] ⊗ |Q0, Ω0⟩ Φ = ∑
i

Φi[Qi, Ω0] ⊗ |Qi, Ω0⟩

QRF peaked on Q0, Ω0 QRF in superposition 

of  configurations Qi, Ω0



Quantum Reference Frames
for Asymptotic Symmetries

Ψ = Ψ[Q0, Ω0] ⊗ |Q0, Ω0⟩ Φ = ∑
i

Φi[Qi, Ω0] ⊗ |Qi, Ω0⟩

✦ Physical states obey momentum constraint  projector→

P = ∫[ℝ4]S2

𝒟[N]exp( i
ℏ ∮S2

Nμ(Pμ − Hμ))
✦ Assuming orthogonality of peaked states

⟨Ψ |Φ⟩phys = ∑
i

⟨Ψ[Q0, Ω0] |⟨Q0, Ω0 |P |Qi, Ωi⟩Φ[Qi, Ω0]⟩

UQi→Q0

✦ To obtain QRF transformations, consider two kinematical states of the form 



Quantum Reference Frames

✦ Unitary QRF transformation operator: 

for Asymptotic Symmetries

∑
i

UQi→Q0
Φi[Qi, Ω0] = ∑

i

e
i
ℏ ∮ (Qi−Q0)μHμΦi[Qi, Ω0]

quantum-controlled, 
point-wise translation 

𝒫CAe
i
ℏ ̂xA ̂pB = 𝒫CA ∫ dxAe

i
ℏ xA ̂pB |xA⟩⟨xA |

✦ Generalises quantum controlled translations:

Strategy to derive/justify QRF transformations from GR description.



✦ In linearised gravity, coordinate fields emerge naturally as 
edge modes at the boundary of spacetime.


✦ These ought to be included in the quantum description.


✦ Momentum constraint leads to a relational Schrödinger 
evolution with respect to these reference fields.


✦ At asymptotic boundaries, we obtain QRF transformations 
for point-wise translations and rotations.

QRFs at the Boundary of Spacetime
Summary 

γ

Xμ ∘ γ

Xμ

𝒟
∂𝒟

Λμν

𝒟′ 

arXiv:2302.11629 



Summary 
Quantum Reference Frames… 

‣ Generalise the idea of a classical reference frame.


‣ Changes are implemented by quantum-controlled 
symmetry transformations.


‣ Superposition and entanglement become frame-
dependent features.

… in Spacetime 

‣ Allow us to study problems at the interface between 
quantum physics and gravity from a new perspective.


‣ QRFs for asymptotic symmetries arise naturally as edge 
modes in a bounded region of spacetime in linearised GR.



Outlook & Connections

edge modes
algebras of 
observables

material reference 
frames in QG

Noether charges
Super-selection 

sectors

QRFs

Thank you for your attention!


