

Quantum **Reference Frames** in Spacetime

Viktoria Kabel

International LQG Seminar, 19.09.2023

Vienna Doctoral School in Physics

Quantum **Reference Frames** in Spacetime

Viktoria Kabel

based on joint work with Č. Brukner, E. Castro-Ruiz, A.-C. de la Hamette, and W. Wieland arXív: 2112.11473, 2302.11629

Vienna Doctoral School in Physics

Motivations

In practice, any reference frame is a **physical system**, most often one that should ultimately be described by quantum physics.

Operationalism

The **problem of time** evokes the need for a reference frame in order to describe evolution.

Reference frames allow to construct gauge-invariant observables through dressings.

Quantum Gravity

First-Principles Approach

Idea: Take principles of known theories such as quantum theory, general relativity, and QFT and try to push them as far as possible.

Inearity & the superposition principle

- ✦ relativity of position, momenta, directions, ...
- symmetries of the equations of motion

Quantum Reference Frames

As such, it is **complementary** to top-down approaches to quantum gravity, which aim to find a more fundamental theory from which the known theories can be derived.

Outline

- Introduction to Quantum Reference Frames
- Gravity & Quantum Reference Frames
 - QRFs at the Boundary of Spacetime
- Outlook & Connections

- Quantum Reference Frames & Gravity
 - Massive Objects in Superposition

Reference Frames & Symmetries

Classical Physics

Example: invariance under translations.

Corresponds to free choice of position reference frame.

Reference Frames & Symmetries Formalism

 $|\psi\rangle_{ABC}^{(C)} = |0\rangle_C |x_A\rangle_A |x_B\rangle_B$ $\in \mathscr{H}_{ABC}^{(C)} = \mathscr{H}_{A}^{(C)} \otimes \mathscr{H}_{B}^{(C)} \otimes \mathscr{H}_{C}^{(C)}$

$$\begin{split} |\psi\rangle_{ABC}^{(A)} &= |0\rangle_{A} |-x_{A}\rangle_{C} |x_{B} - x_{A}\rangle_{B} \\ &\in \mathscr{H}_{ABC}^{(A)} = \mathscr{H}_{A}^{(A)} \otimes \mathscr{H}_{B}^{(A)} \otimes \mathscr{H}_{C}^{(A)} \end{split}$$

 $|\psi\rangle_{ABC}^{(C)} = |0\rangle_C |x_A\rangle_A |x_B\rangle_B$

 $|\psi\rangle_{ABC}^{(C)} = |0\rangle_C |x_A\rangle_A |x_B\rangle_B$

Quantum controlled translation

$$\mathcal{P}_{CA}e$$

 $\frac{i}{\hbar}\hat{x}_A\hat{p}_B$

Quantum Reference Frames & Quantum Symmetries The General Idea

Symmetries of known physical theories

Examples

- Translations, Galilei group
- Spin rotations
- Conformal Transformations

- Lorentz boosts
- Asymptotic symmetries

Outline

- - QRFs at the Boundary of Spacetime
- Summary, Outlook & Connections

Introduction to Quantum Reference Frames

Quantum Reference Frames & Gravity

Massive Objects in Superposition

Gravity & Quantum Reference Frames

Goal: Describe motion of test particle in presence of a gravitational source in superposition.

de la Hamette, <u>VK</u>, Castro-Ruiz, and Brukner (2023)

Strategy

Change into QRF in which the gravitational source is definite.

Strategy

Change into QRF in which the gravitational source is definite.

Strategy

Solve problem in the new reference frame.

geodesic motion

$$\frac{d^2 x^{\mu}}{d\tau^2} + \Gamma^{\mu}_{\nu\rho} \frac{dx^{\nu}}{d\tau} \frac{dx^{\rho}}{d\tau} = 0$$

quantum phase

$$\Phi^{(i)} = \int_{A^{(i)}}^{B^{(i)}} m_S \sqrt{-g_{\mu\nu} dx^{\mu} dx^{\nu}}$$

Strategy

- Change into QRF in which the gravitational source is definite.
- ✦ Solve problem in the new reference frame.
- Transform back to infer the dynamics assuming that the change of QRF is a symmetry of the equations of motion.

Strategy

- Solve problem in the new reference frame.
- Transform back to infer the dynamics assuming that the change of QRF is a symmetry of the equations of motion.

"extended symmetry principle"

Quantum Reference Frames & Gravity Summary

Implications

- Concrete predictions while staying agnostic about the quantum nature of the gravitational field.
- Coherence check for the quantum nature of the gravitational field sourced by a massive object in superposition.

de la Hamette, <u>VK</u>, Castro-Ruiz, and Brukner (2023)

Quantum Reference Frames & Gravity Comparison between Approaches

Collapse Models

Extended Symmetry Principle

Semi-Classical Gravity

Outline

- Introduction to Quantum Reference Frames
- Gravity & Quantum Reference Frames
 - QRFs at the Boundary of Spacetime
- Summary, Outlook & Connections

- Quantum Reference Frames & Gravity
 - Massive Objects in Superposition

Gravity + Quantum Reference Frames

Gravity + Quantum Reference Frames QRFs at the Boundary of Spacetime

- **Question:** Can we derive quantum reference frames from within a general relativistic setup?
 - QRFs formulated in the field-theoretic language of general relativity.
 - Generalised QRF transformations due to larger symmetry group.
- First step: Linearised general relativity.

RFs as <u>edge modes</u> at the boundary.

Gravity + Quantum Reference Frames QRFs at the Boundary of Spacetime

- **Question:** Can we derive quantum reference frames from within a general relativistic setup?
 - QRFs formulated in the field-theoretic language of general relativity.
 - Generalised QRF transformations due to larger symmetry group.
- First step: Linearised general relativity.

RFs as <u>edge modes</u> at the boundary.

Cf. Carrozza, Eccles, Höhn (2022)

Edge Modes in an N-Particle System

Rovelli, "Why Gauge?" (2014)

Edge Modes in an N-Particle System

Rovelli, "Why Gauge?" (2014)

Edge Modes in Electrodynamics

e.g. Donnelly and Freidel (2016)

e.g. Donnelly and Freidel (2016)

Classical Setup: Linearised gravity in subregion of spacetime with N point particles.

$$= \Lambda^{\alpha}_{\ \mu} \left(dX^{\mu} + f^{\mu} \right) \qquad A^{\alpha}_{\ \beta} = \Lambda^{\alpha}_{\ \mu} d\Lambda^{\mu}_{\beta} + \Lambda^{\alpha}_{\ \mu} \Delta^{\mu}_{\ \nu} \Lambda^{\mu}_{\beta}$$
$$X^{\mu} : \mathscr{M} \to \mathbb{R}^{4} \qquad \Lambda^{\mu}_{\ \nu} : \mathscr{M} \to SO(1,3)$$

Governed by Hilbert-Palatini action (+ matter):

$$\gamma_i, N_i, p_i\}_{i=1}^N = \frac{1}{16\pi G} \int_M * (e_\alpha \wedge e_\beta) \wedge F^{\alpha\beta}[A] + \mathcal{S}_{\mathrm{m}}$$

Interlude: Covariant Phase Space

Provides manifestly covariant description of phase space:

N Point Particles

$$\Omega = \sum_{I=1}^{N} dp_{I} \wedge dq^{I}$$
Symplectic form

- $\delta \mathscr{L} = (EOM)_I \delta \Phi^I + d\theta(\delta)$

1	_	ſ	dθ	
_		J_{Σ}		

 $\mathbf{P}(X_{f}, \cdot)$

Poisson bracket

Interlude: Covariant Phase Space

Provides manifestly covariant description of phase space:

Field-Space

.d-space r derivative

Variation of action \rightarrow symplectic form:

$$\Omega_{\mathcal{D}} = \Omega_{\mathcal{D}}^{matter} + \Omega_{\mathcal{D}}^{rad} + \Omega_{\partial \mathcal{D}}$$

$$\mathbf{D}q_{i}^{\mu} = \mathbf{d}q_{i}^{\mu} + \mathbf{d}q_{i}^{\mu} = \mathbf{d}q_{i}^{\mu} + \mathbf{d}q_{i}^{\mu} + \mathbf{d}q_{i}^{\mu} + \mathbf{d}q_{i}^{\mu} + \mathbf{d}q_{i}^{\mu} + \mathbf{d}q_{i}^{\mu} = \mathbf{d}q_{i}^{\mu} + \mathbf{d}q_{i}^{\mu} = \mathbf{d}q_{i}^{\mu} + \mathbf{d}qq_{i}^{\mu} + \mathbf{d}q_{i}^{\mu} + \mathbf{d}q_{i}^{\mu} + \mathbf{d}q_{i}^{\mu}$$

Variation of action \rightarrow symplectic form:

$$\Omega_{\mathcal{D}} = \Omega_{\mathcal{D}}^{matter} + \Omega_{\mathcal{D}}^{rad} + \Omega_{\partial \mathcal{D}}$$

$$\mathbf{D}^{(n)} f^{\mu} = \mathbf{d}^{(n)} f^{\mu} - \mathcal{L}_{\mathbf{X}} (\mathbf{u})$$

$$\mathbf{\Omega}_{\mathcal{D}}^{rad} = \int_{\mathcal{D}} * \left(dX_{[\mu} \wedge \mathbf{D}^{(1)} f_{\nu]} \right) \wedge \mathbf{D}^{(1)} \Delta^{\mu \nu}$$

Variation of action \rightarrow symplectic form:

$$\Omega_{\mathcal{D}} = \Omega_{\mathcal{D}}^{matter} + \Omega_{\mathcal{D}}^{rad} + \Omega_{\partial \mathcal{D}}$$

$$= \oint_{\partial \mathcal{D}} \mathbf{d} P_{\mu} \mathbf{d} X^{\mu} - \frac{1}{2} \oint_{\partial \mathcal{D}} \left[\mathbf{d} S^{\mu} \mathbf{u} \mathbf{m}^{\nu}{}_{\mu} + \frac{1}{2} S^{\mu}{}_{\nu} [\mathbf{m}, \mathbf{m}]^{\nu}{}_{\mu} \right]$$

coordinate fields
$$\mathbf{Lorentz frames}$$

$$\mathbf{m} = (d\Lambda^{-1})\Lambda$$

$$= \oint_{\partial \mathscr{D}} \mathbf{d} P_{\mu} \mathbf{d} X^{\mu} - \frac{1}{2} \oint_{\partial \mathscr{D}} \left[\mathbf{d} S^{\mu}{}_{\nu} \mathbf{m}^{\nu}{}_{\mu} + \frac{1}{2} S^{\mu}{}_{\nu} [\mathbf{m}, \mathbf{m}]^{\nu}{}_{\mu} \right]$$

coordinate fields Lorentz frames
$$\mathbf{m} = (d\Lambda^{-1})\Lambda$$

• Render $\Omega_{\mathcal{D}}$ invariant under diffeomorphisms.

- Provide reference for point particles' path through the **dressing** $X^{\mu} \circ \gamma$.
 - Define the location of the boundary.

$$= \oint_{\partial \mathscr{D}} \mathbf{d} P_{\mu} \mathbf{d} X^{\mu} - \frac{1}{2} \oint_{\partial \mathscr{D}} \left[\mathbf{d} S^{\mu}{}_{\nu} \mathbf{m}^{\nu}{}_{\mu} + \frac{1}{2} S^{\mu}{}_{\nu} [\mathbf{m}, \mathbf{m}]^{\nu}{}_{\mu} \right]$$

conjugate momentum: $P_{\mu} = \varphi_{\mathscr{C}}^{*} \left((*^{(2)} \Delta_{\mu\nu}) \wedge dX^{\nu} \right)$

Conserved quantity whose integral agrees with ADM momentum at infinity.

• Definition \rightarrow **constraint** relating bulk and boundary.

Implications for the Quantum Theory

Separation of classical phase space \rightarrow partition of kinematical Hilbert space as

 Constraints relating bulk and boundary imply relational Schrödinger evolution at the boundary

$$_{nys}[X^{\mu},\Lambda^{\alpha}_{\mu}] = -i\hbar \frac{\delta}{\delta X^{\mu}} \Psi_{phys}[X^{\mu},\Lambda^{\alpha}_{\mu}] = \hat{H}_{\mu} \Psi_{phys}[X^{\mu},\Lambda^{\alpha}_{\mu}]$$

Obtain **quantum reference frames transformations** for asymptotic symmetries.

• Split coordinates into finite and divergent part: $X^{\mu} = \Omega^{\mu}_{\nu} \left(X^{\nu}_{o} + Q^{\nu} \right) + \mathcal{O}(\rho^{-1})$

fiducíal coordinates

Generic state in the kinematical Hilbert space (formally):

$$|\Psi\rangle = \int_{[\mathbb{R}^4]^{S_2}} \mathscr{D}[Q^{\mu}] \int_{SO(1,3)} d\mu_{\Omega} \Psi_{bulk}[Q^{\mu}, \Omega^{\mu}{}_{\nu}) \otimes |Q^{\mu}, \Omega^{\mu}{}_{\nu}\rangle$$

$$\rho \equiv \sqrt{X^{\mu}X_{\mu}} \to \infty$$

To obtain QRF transformations, consider two kinematical states of the form

 $\Psi = \Psi[Q_0, \Omega_0] \otimes |Q_0, \Omega_0\rangle$ QRF peaked on Q_0, Ω_0

To obtain QRF transformations, consider two kinematical states of the form

$$\Psi = \Psi[Q_0, \Omega_0] \otimes |Q_0, \Omega_0\rangle$$

 \blacklozenge Physical states obey **momentum constraint** \rightarrow projector

$$\boldsymbol{P} = \int_{[\mathbb{R}^4]^{S_2}} \mathscr{D}[N] \exp\left(\frac{i}{\hbar} \oint_{S_2} N^{\mu} (\boldsymbol{P}_{\mu} - \boldsymbol{H}_{\mu})\right)$$

Assuming orthogonality of peaked states

$$\langle \Psi | \Phi \rangle_{phys} = \sum_{i} \langle \Psi[Q_{0}, \Omega_{0}] | \langle Q_{0}, \Omega_{0} | P | Q_{i}, \Omega_{i} \rangle \Phi[Q_{i}, \Omega_{0}] \rangle$$

$$\Phi = \sum_{i} \Phi_{i}[Q_{i}, \Omega_{0}] \otimes |Q_{i}, \Omega_{0}\rangle$$

Unitary **QRF transformation** operator:

$$\sum_{i} U_{Q_{i} \to Q_{0}} \Phi_{i}[Q_{i}, \Omega_{0}] = \sum_{i} e^{\frac{i}{\hbar} \oint (Q_{i} - Q_{0})^{\mu} H_{\mu}} \Phi_{i}[Q_{i}, \Omega_{0}]$$
quantum-controlled,

point-wise translation

Generalises quantum controlled translations:

$$\mathscr{P}_{CA}e^{\frac{i}{\hbar}\hat{x}_{A}\hat{p}_{B}} = \mathscr{P}_{CA}\int dx_{A}e^{\frac{i}{\hbar}x_{A}\hat{p}_{B}}|x_{A}\rangle\langle x_{A}|$$

Strategy to derive/justify QRF transformations from GR description.

QRFs at the Boundary of Spacetime Summary

- In linearised gravity, coordinate fields emerge naturally as edge modes at the boundary of spacetime.
- ✦ These ought to be included in the quantum description.
- Momentum constraint leads to a relational Schrödinger evolution with respect to these reference fields.
- At asymptotic boundaries, we obtain QRF transformations for point-wise translations and rotations.

Summary Quantum Reference Frames...

- Generalise the idea of a classical reference frame.
- Changes are implemented by quantum-controlled symmetry transformations.
- Superposition and entanglement become framedependent features.

... in Spacetime

- Allow us to study problems at the interface between quantum physics and gravity from a new perspective.
- QRFs for asymptotic symmetries arise naturally as edge modes in a bounded region of spacetime in linearised GR.

Outlook & Connections

Thank you for your attention!

algebras of observables

