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GROUP FIELD THEORY
Group field theory is formulated as statistical field theory

- non-local GFT action

- dimension of the theory

- functions from usually with gauge invariance
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In all following examples I will assume



Perturbative expansion of correlation functions in GFT becomes a sum over spin 
foam amplitudes with boundaries
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GROUP FIELD THEORY & SPIN FOAMS

Group field theory provides a prescription for summing over two complexes of 
spin foam models.
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- symmetry factor of the Feynman graph

- spin foam amplitude on the two complex



With field operators satisfying the usual CCR

The Fock vacuum
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Boundaries of the spin foam amplitudes can be interpreted as states on a Hilbert 
space crated by creation and annihilation operators acting on the Fock vacuum

GROUP FIELD THEORY & LQG

and creation operators creating a triangle labelled by group elements

We can glue vertices together to obtain spin networks [Oriti, 16]



Group field theory can be seen as:

1. A field theory of space time

2. A field theoretical formulation of spin foam models

3. A many body formulation of Loop Quantum Gravity

Investigating the field theoretical structure of the frame work is beneficial for 
any of the above formalisms.
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GROUP FIELD THEORY

Part I: Symmetries of GFT

Part II: Representations of GFT
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SYMMETRIES OF GFT [AK, Oriti, 15, 16]



Classical symmetries in quantum field theory provide a powerful tool for the 
analysis of non-perturbative effects. In particular: 

1. give mathematical tools to solve equations of motion

2. explain and describe conserved quantities

3. become non-trivial relations between correlation function in the absence of 
anomalies

Symmetries are very well understood for local field theories. But in GFT the action is 
non-local.
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Fields of GFT are associated with triangles. In order to produce a tetrahedron with
four triangles we need to glue them in a non-local way. 
Where non-locality means that the fields entering the 
interaction are evaluated at different points of the group. 

A particular example is the interaction for the Ponzano-Regge spin foam model:

NON-LOCALITY IN GFT

Identify fields with triangles

Field theory Simplicial complex



For non-local actions we need to understand:

1. How to define a continuous symmetry ?

2. What are the consequences of continuous symmetries - Noether Theorem ?

3. Can we characterise continuous  symmetries for a given action ? 
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In local field theories the action is an integral of a Lagrangian

where the Lagrangian is a function on a jet bundle.

12HOW TO DEFINE A SYMMETRY

Jet space - derivatives of fields at a point

Vector bundle - locally

Base manifold

Fields - sections in the vector bundle

Fiber

A point of a jet bundle is specified in coordinates as follows



The simplest notion of a symmetry in local field theory is the point symmetry.
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A point symmetry is a diffeomorphism on the vector 
bundle that leaves the action invariant for any 
integral domain       and any field configuration     .

HOW TO DEFINE A SYMMETRY



In the non-local theory we define the action as a sum of local integrals on different 
vector bundles, and relations between the bundles.
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We define a point symmetry for a non-local action as a set of compatible vector 
fields on each vector bundle, such that every integral in the sum is invariant in the 
local sense under the flow of the corresponding vector field.

With the compatibility condition
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Every point symmetry of a non-local action gives rise to a 
continuity equation with „sources“. [AK, Oriti, 15]

On solutions of equations of motion we obtain generalised Noether currents      with 
„sources“

For local theories      becomes the usual Noether current and the „source“ vanishes.

16NOETHER THEOREM

With



Can we characterise continuous point symmetries for a given action ? Yes. [AK, Oriti, 16]
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Model Symmetry Group Action

φ1
1,2,3φ

2
1,4,5φ

3
6,2,5φ

4
6,4,3 G×3 × U (1)×3

g⃗ "→ LC (g⃗)

φc "→ eıθcφc
∑

c θ
c = 0

with C =
(

c1, c2, c3
)

φ1,2,3 φ3,4,5 φ5,2,6 φ6,4,1 G×2
g⃗ "→ LC (g⃗)

with C =
(

c1, c2, c1
)

φP
1,2,3 φ

P
1,4,5 φ

P
2,5,6 φ

P
3,6,4 G

g⃗ "→ LC (g⃗)

with C = (c, c, c)

φ1,2,3 φ̄3,4,5 φ5,2,6 φ̄6,4,1 G×2 × U (1)

g⃗ "→ LC (g⃗)

φ "→ eıθφ

with C =
(

c1, c2, c1
)

φ1,2,3,4 φ4,5,6,7 φ7,3,8,9 φ9,6,2,10 φ10,8,5,1 SU (2)×2
g⃗ "→ LC (g⃗)

with C =
(

c1, c2, c2, c1
)

Barrett-Crane Spin (4)×2 × SU (2)

g⃗ "→ LS (g⃗)

g⃗ "→ c · (g⃗; k) · c−1

with S =
(

s1, s2, s2, s1
)

Table IV: Models and their symmetry groups excluding gauge symmetries of the fields. Hereby, ci ∈ SU (2) and
si ∈ Spin (4) and LC denotes the left multiplication by C.

the model with the interaction part of the type
∫

φφ̄φφ̄,
since we defined it as a model with two different colors.
The symmetry group of colored models, which is indepen-
dent from the precise combinatorial pattern of field argu-
ments, is the largest compatible with the one of the local
part of the action (and with gauge invariance), and coin-
cides with the one of the corresponding tensorial model.
This gives a different perspective, and confirms, the close
relation between colored simplicial models and tensorial
ones, highlighted first in [35] in terms of properties of the
corresponding functional integrals.

3. Barrett-Crane model

We now briefly discuss the implication of the simplic-
ity constraints, in the Barrett-Crane formulation, on the
symmetry group.
Applying the above analysis to the BC model from equa-
tion (16) defined by the following function f

f : (g1, · · · g10; k1, · · · , k4) "→ (104)

(g1,2,3,4; k1) (g4,5,6,7; k2) (g7,3,8,9; k3)

× (g9,6,2,10; k4) (g10,8,5,1; k5) , (105)

we realize that the symmetry group for the gauge in-
variant BC model without simplicity constrains would

be that of an extended Ooguri model from equation (92)
where the group G is now specified to Spin (4)

Spin (4)×2 × Spin (4)×G (k) . (106)

The group G (k) denotes a group of transformations of
the SU (2) element ki. However, remember that the ex-
tension of the GFT field the SU (2) variable k was needed
for consistent implication of simplicity constrains and
therefore the actual meaning of G (k) is relevant only
after the imposition of simplicity constrains.
Equation (106) provides the symmetry group of extended
Ooguri model with gauge invariance, in order to obtain
the symmetry group of the BC model simplicity con-
straints need to be further imposed. We refer to the
appendix (B) for explicit calculations and state here just
the result of imposing the simplicity constrains on the
field φ, by imposing invariance under the projector S
from equation (20). As we show in the appendix (B), the
simplicity constrains

φ ◦ S = φ, (107)

reduce the symmetry group of the Ooguri model (for the
chosen combinatorics) down to

Spin (4)×2 × SU (2) , (108)

SYMMETRIES OF GFT



1. Apply the symmetries of GFT models to correlation function and spin foam 
amplitudes

2. Reduce and understand recurrence relations of spin foam models and recoupling 
theory from the field theoretical symmetries [Baratin, Girelli, Oriti, 11]

3. Better understand four dimensional spin foam models with Immirzi parameter

4. Understand the implications of the continuity equation for the cosmological 
calculations of GFT models [Gielen, Sindoni, Oriti, 13; Wilson-Ewing, Sindoni, Oriti, 16]
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Possible application and future work:

APPLICATIONS TO GFT

1. We defined the notion of a continuous symmetry.

2. We generalised the Noether theorem and obtain relations between 
symmetries and continuity equations.

3. We provided a prescription to characterise continuous symmetries for a 
given action. 



REPRESENTATIONS OF GFT [AK, Oriti, Tomlin, t.a.]
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Goal: To construct the algebra of observables of GFT and to find its irreducible 
representations as bounded linear operators on a Hilbert space.

1. A concrete realisations of the algebra as operators on a Hilbert space is the 
usual canonical description of QFT.

2. Inequivalent representations of QFT are closely related to non-perturbative 
effects of QFT such as phase transitions and symmetry breaking.

ALGEBRA OF OBSERVABLES



We construct the Weyl algebra for GFT from the CCR algebra 

The Weyl algebra is a -algebra with identity labeled by the smearing functions
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We smear the operators with smooth, square integrable functions on 

And define the Weyl operators as

ALGEBRA OF OBSERVABLES
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By construction one possible representation is the Fock representation 

In this representation we have a notion of a particle created by           and a notion of 
the number of particles on the dense domain of the Hilbert space.

This is the representation in which we represented the boundaries of the spin foam.

Are there different representations obtained as limits from the Fock representation ?



We begin with a Fock representation of the Weyl algebra in the finite (regularised) 
volume                 .

We then remove the regulator by taking the limits

23ALGEBRA OF OBSERVABLES

And construct an N-particle state by creation operators for                       as

or

With particle numbers

and
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Mixture of Fock Fock
Mixture of 
inequivalent 

condensate reps.

- Fock Condensate rep.

Mixture of Fock Fock Mixture of Fock

- Fock Fock

On a non-compact group      we obtain
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Mixture of inequivalent representation is a necessary condition for spontaneous 
symmetry breaking.

If the representations are connected by a symmetry, then this symmetry is broken due 
to the in-equivalence of representations

Physical process

Ising model
Mexican hat

BEC condensation

25SPONTANEOUS SYMMETRY BREAKING

symmetry

A. In order to get inequivalent representations we need translation invariance. This is 
not the symmetry which is broken [Wreszinski, Strocchi].

B. The broken symmetry is the one that connects the inequivalent representations.



SUMMARY

1. We defined a notion of symmetries of a non-local action

2. We derived generalised conservation laws from classical 
symmetries

3. In this frame work we were able to characterise symmetries of 
non-local GFT actions

4. Constructed inequivalent representations in GFT by limits from the 
Fock representation

5. Obtained inequivalent representations
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1. Generalise the notion of the classical symmetries to obtain more, non-
standard symmetries in GFT [AK,Oriti, Thieme]

2. Characterise necessary  conditions for spontaneous symmetry breaking 
[AK,Oriti]

3. Investigate the anomalies of classical symmetries

4. Characterise the ground state of GFT by its symmetries in the KMS sense 
[Kotecha, Oriti]

5. Perform the same limit for a more complicated type of states with connected 
vertices

6. Construct the thermodynamic limit on the compact manifold [AK, Oriti]

7. Can a non-local interaction be represented on a Fock space - Haags 
theorem ?

8. Can we adopt the Spin-Statistics theorem to GFT and its symmetries
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THANK YOU !


