Effective Field Theory for Quantum Gravity from Shape Dynamics

International Loop Quantum Gravity Seminar

Tim A. Koslowski tkoslowski@perimeterinstitute.ca

Perimeter Institute for Theoretical Physics

April 10th, 2012

T. Koslowski (PI)

Quantum Shape Dynamics

April 10th, 2012 1 / 23

Outline

- Introduction: motivation, goal of talk
- Symmetry Trading and Symmetry Doubling: symmetry trading, Shape Dynamics and General Relativity, symmetry doubling and Doubly General Relativity
- Doubly General Relativity: effective field theory, revised gravity theory space
- Consequences: new construction principle \Rightarrow possible observational consequences, bulk/bulk duality, renormalization
- Summary

Motivation

General Relativity is not renormalizable:

perturbation expansion of Einstein-Hilbert action, unitarity problem with higher derivative gravity

 \Rightarrow problem is finding a different universality class

Importance of Symmetries:

- RG flow stays on (evolving) symm. surface
- encoded as BRST-invariance of path integral
 - \Rightarrow Slavnov-Taylor identities for eff. action
- universality classes are often explained by symmetries

Possibility: Hidden Symmetry

● FP may not be detected without adapting search to symmetry
 ⇒ important heuristic for finding new universality class

3

イロト イポト イヨト イヨト

Main Message

"Doubly General Relativity" in one line:

There is a hidden BRST-invariance in gravity due to Shape Dynamics.

3

< 回 > < 三 > < 三 >

BACKGROUND:

symmetry trading, Shape Dynamics and BRST-formalism

T. Koslowski (PI)

Quantum Shape Dynamics

3

< 回 > < 三 > < 三 >

Symmetry Trading Mechanism

Construction of Shape Dynamics

Construction on ADM-phase space:

ADM Gravity

$$\begin{split} S(N) &= \int N\left(\frac{G(\pi,\pi)}{\sqrt{|g|}} - (R - 2\Lambda)\sqrt{|g|}\right) \\ H(v) &= \int \pi^{ab}\mathcal{L}_v g_{ab} \end{split}$$

Shape Dynamics

 $\begin{array}{l} H_{SD} = V - V_o \\ Q(\rho) = \int (\pi - \langle \pi \rangle \sqrt{|g|}) \\ H(v) = \int \pi^{ab} \mathcal{L}_v g_{ab} \end{array}$

(日) (同) (三) (三)

Relation of Dirac Observables

Intersecting constraint surfaces in local coordinates

•
$$\chi_{\alpha} = M_{\alpha}^{\beta} q_{\beta} \approx 0$$
 and $\sigma^{\beta} = N_{\alpha}^{\beta} (p^{\alpha} - p_{o}^{\alpha})$ with M_{α}^{β} and N_{α}^{β} intertible
• equiv. doubly Abelian set: $\tilde{\chi}_{\alpha} = q_{\alpha} \approx 0$ and $\tilde{\sigma}^{\beta} = p^{\beta} - p_{o}^{\beta}$

⇒ vector fields $\{\tilde{\chi}_{\alpha}, .\}$ and $\{\tilde{\sigma}^{\beta}, .\}$ are Frobenius integrable ⇒ for every function f_{red} on intersection Γ_{red} there exists a local function f on $U \subset \Gamma$ s.t. $\{\tilde{\chi}_{\alpha}, f\} = 0 = \{\tilde{\sigma}^{\beta}, f\}$ (doubly strong observables) ⇒ for these preferred representatives the identification on full Γ is trivial

$$f_A \equiv f_B$$
.

Abelianization generally spoils locality:

Nonabelian case: there is still a dictionary for observables through the two phase space reductions of the linking theory.

< ロト < 同ト < ヨト < ヨト

BRST-Formalism

Abelian constraints χ_{α}

• BRST-generator $\Omega = \eta^{\alpha} \chi_{\alpha}$ satisfies $\{\Omega, \Omega\} = 0$ (nontrivial: $gh(\Omega) = 1$) \Rightarrow defines graded differential $s : f \to \{\Omega, f\}$, i.e. $s^2 = 0$

• Observables as cohomology of s at gh(.) = 0:

- gauge invariance: $\{\Omega, f(p,q)\} = 0 \Rightarrow f$ (strong observable)
- equivalence: $\tilde{f} = f + \{\Omega, \Psi\} = f + \sigma^{\alpha} \chi_{\alpha} + \mathcal{O}(\eta)$ (weak observable) for gauge fixing $\Psi = \sigma^{\alpha} P_{\alpha} + \mathcal{O}(\eta)$ with $gh(\Psi) = -1$

⇒ always strong equations on extended phase space • gauge fixed Hamiltonian $H_{BRS} = H_o + {\Omega, \Psi}$ when ${H_o, \Omega} = 0$.

Nonabelian constraints $\tilde{\chi}_{lpha} = M^{eta}_{lpha} \chi_{eta}$

apply canonical transform $\exp(\{\eta_{\alpha}c_{\beta}^{\alpha}P^{\beta},.\})$ to Abelian case $\tilde{\Omega} = \eta^{\alpha}M_{\alpha}^{\beta}\chi_{\beta} + \mathcal{O}(\eta^2)$ defines \tilde{s} , cohomology same as of s at gh(.) = 0.

DOUBLY GENERAL RELATIVITY

symmetry doubling, Extended Shape Dynamics, Doubly General Relativity

-

From Symmetry Trading to Symmetry Doubling

Symmetry Trading requires

Two first class surfaces (original and equivalent gauge symmetry) that **gauge fix** one another

BRST-gauge-fixing

- Ω is nilpotent because orig. system is first class
- Ψ can be chosen nilpotent because equiv. system is first class
- $\bullet\,$ if ${\it H}_{o}$ (on shell) Poisson commutes with Ω and Ψ then gauge fixed

$$H_{BRS} = H_o + \{\Omega, \Psi\}$$

is annihilated by both s_{Ω} and s_{Ψ}

Symmetry Doubling (NOT anti-BRST!)

Canonical action $S = \int dt (p_i \dot{q}^i + P_\alpha \dot{\eta}^\alpha - H_{BRST})$ is invariant under two BRST-transformations (up to a boundary term).

T. Koslowski (PI)

Construction of Doubly General Relativity (I)

Extending Shape Dynamics

- fixed CMC condition $Q(x) = \pi(x) + \lambda \sqrt{|g|}$
- conformal spatial harmonic gauge $F^{k}(x) = (g^{ab}\delta^{k}_{c} + \frac{1}{3}g^{ak}\delta^{b}_{c})e^{c}_{\alpha}(\nabla_{a} - \hat{\nabla}_{a})e^{\alpha}_{b}$
- First class system: $\{Q(x), Q(y)\} = 0 = \{F^i(x), F^j(y)\}$ as well as $\{Q(x), F^i(y)\} = F^i(y)\delta(x, y)$

Interpretation as "local conformal system"

 ${\cal Q}$ generates spatial dilatations and Poisson brackets resemble ${\cal C}(3)$ at each point

Gauge fixing ADM

- gauge fixing operator is elliptic and invertible in a region R
- out side R: meager set with finite dimensional kernel

Construction of Doubly General Relativity (II)

BRST-charges

$$\Omega_{ADM} = \int d^3x \left(\eta S + \eta^a g_{ac} \pi^{cd}_{;d} + \eta^b \eta^a_{,b} P_a + \frac{1}{2} \eta^a \eta_{,a} P + \eta \eta_{,c} P_b g^{bc} \right)$$

$$\Omega_{ESD} = \int d^3x \left(P \frac{\pi}{\sqrt{g}} + P_a F^a + \frac{1}{2} \frac{P}{\sqrt{g}} P_a \eta^a \right)$$

Gauge-fixed gravity action

 $S_{gf} = \int dt (symp.pot. + \{\Omega_{ADM}, \Omega_{ESD}\})$ is invariant under usual ADM-BRST transformations **and**

a hidden BRST-invariance of S_{gf} under

due to extended Shape Dynamics.

Construction of Doubly General Relativity (III)

Interpretation

The Hamiltonian of Doubly General Relativity is

$$H_{DGR} = S(\frac{\pi}{\sqrt{|g|}} + \lambda) + H(F^{a}) + \mathcal{O}(\eta)$$

The ghost-free part is neither the "frozen Hamiltonain" H = 0nor the CMC-Hamiltonian $H = S(N_{CMC}[g, \pi])$, but a generator of dynamics for $\lambda + \frac{\pi}{\sqrt{|g|}} > 0$.

EFFECTIVE FIELD THEORY

standard reasoning, symmetry doubling, definition of a gravity theory

T. Koslowski (PI)

Quantum Shape Dynamics

-

Renormalization Group and Effective Field Theory

- Renormalization group: Γ_k interpolates between local bare action S_Λ (at UV cut-off Λ) and effective action Γ (in IR)
- Γ_k : functional on theory space (field content, symmetries, approx. locality)
- Asymptotic safety progr.: Find UV-fixed point with few relevant directions ⇒ predictive theory
- Approximations: Fixed points ↔ broken BRST-symmetries, RG-relevance ↔ dimensional analysis (weak IR coupling)
- Universality: IR attractive critical manifold (i.e. S_{Λ} unimportant for IR)

Two Uses for RG:

- Fundamental theory: hard to verify w/o heuristic
- Theory Space constr. ppl. for local effective actions (field content, BRST-symmetries, dimensionality, locality)

イロト イポト イヨト イヨト

Theory Space of Gravity

Slavnov-Taylor Identities:

• assuming an invariant path integral measure \Rightarrow BRST-variations yield:

$$\langle s_{ADM}\phi_A \rangle \frac{\delta_L \Gamma}{\delta \phi_A} = 0 \text{ and } \langle s_{ESD}\phi_A \rangle \frac{\delta_L \Gamma}{\delta \phi_A} = 0$$

BRST-variations are nonlinear ⇒ difficult Legendre transform
 Nonlinearity obstructs use of two Zinn-Justin equations

 $(\Gamma, \Gamma)_1|_{\hat{\phi}_2=0} = 0 = (\Gamma, \Gamma)_2|_{\hat{\phi}_1=0}$ • in semiclassical approximation $(\langle F[\phi] \rangle_{sc} = F[\phi_{sc}] + O(\hbar))$:

$$s_{ADM} \Gamma = \mathcal{O}(\hbar)$$
 and $s_{ESD} \Gamma = \mathcal{O}(\hbar)$

Refined definition of a gravity theory (from semiclassical reasoning):

Gravity = local action for g_{ab} , π^{ab} , η , P, η^{a} , P_{a} at gh. number 0 that is invariant under ADM- and ESD- BRST-transformations s_{ADM} , s_{ESD}

T. Koslowski (PI)

< 白型 ▶

FURTHER DIRECTIONS

dualities, experimental implications, renormalization (first baby steps)

3. 3

- ×

___ ▶

Classical Theory and Observations

Construction of classical gravity:

effective field theory:

- revised theory space
- dimensional analysis

 \Rightarrow construction ppl. for classical Doubly General Relativity

Possible Observable Consequences

- Effective field theory for GR: all higher derivative curvature invariants are allowed (just suppressed at low energies)
- these are generally not compatible with Extended Shape Dynamics
 ⇒ DGR can be experimentally distinguished from usual GR (but only beyond Einstein-Hilbert)

This theory space has **not** been explored!

3

(日) (周) (三) (三)

Bulk/bulk duality

Usual Shape Dynamics: bulk/boundary duality

- Hamiltonian at large volume $H_{SD} = \langle \pi \rangle^2 12\Lambda$
- gauge group: diffeomorphisms, vol. pres. conf. trfs. $\pi \langle \pi \rangle \sqrt{|g|} \approx 0$ \Rightarrow dynamical large CMC-volume CFT-correspondence of gravity

Duobly General Relativity:

- True evolution generated by $H_{BRST} \Rightarrow$ "bulk"
- compatible with two equivalent symmetry principles describe gravity

Remark:

The symmetry doubling mechanism is very generic: possible explanation for dualities like (A)dS/CFT

イロト 不得下 イヨト イヨト 二日

Renormalization

Immediate Question:

Are there implications of symmetry doubling for counter terms? Possibly yes, but seems unfeasible in metric formulation.

Current Directions:

 Find a formulation of DGR where enough transofrmations are linearly realized:

This makes prediction about counter terms very feasible

 Find a gauge fixing with improved power counting: Idea: part. fkt. Z is independent of gaug.fix. (quant. mast equ.) view action as ESD action and gauge fix with Ω' − Ω_{ADM} (in BV)
 ⇒ gives arbitrary gauge fixing of ESD

イロト 不得下 イヨト イヨト 二日

Conclusions

- Symmetry trading is generic and gives equivalent gauge theories
- Symmetry trading implies symmetry doubling in BRST formalism
- **③** Equivalence of Shape Dynamics and $GR \Rightarrow$ Doubly General Relativity
- OGR implies a new theory space for gravity. To explore:
 - are there semiclassical predictions (beyond E-H-action)?
 - universality classes on this revised theory space (FRGE methods)?
 - new view on dualities?
- Just started homogeneous quantum cosmology

"Doubly General Relativity" in one line:

There is a hidden BRST-invariance in gravity due to Shape Dynamics.

不同下 不至下 不至下

THANK YOU

and many thanks to my collaborators: H. Gomes, S. Gryb, F. Mercati and J. Barbour.