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Outline

Introduction

Symmetry Trading: Linking Theories, Canonical best Matching

Construction of Shape Dynamics: Best matching ADM, Linking
Theory, Shape Dyanmics

Challenges and Answers: Spacetime Picture, Nonlocality, Non-CMC
solutions

Tentative Loop Quantization: SD in Ashtekar variables, kinematic
loop quantization, tentative “dyanmics”, “interpretation”

Summary and Outlook: “There are many open questions.”
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Introduction

What is Shape Dynamics?

Short Answer:

Shape Dynamics is a formulation of GR where refoliation symmetry is
traded for local spatial conformal symmetry.

It is just a reformulation of GR. Why bother?

Ontology: Different Symmetry ⇒ different theory space for effective
field theory (Hǒrva)

Access to new aspects: e.g. classical large CMC-volume/CFT
correspondence

Quantization Opportunities: e.g. Dirac quantization of metric
gravity on 2+1 sphere and torus
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Introduction

Canonical Framework

Canonical System (Γ, {., .},H, {χfir .
i }i∈I , {χsec.

j }j∈J )

• Obtained from singular Legendre transform of consistent Lagrangian
• form of constraints is not determined by Legendre transform
• assume regular, irreducible first class constraints {χfir .

i }i∈I
• Dirac conjecture: First class secondary constraints generate gauge
transformations. (counter example: L = ey ẋ2)
• Gauge fixing: regular, irreducible set {σi}i∈I ∪ {χfir .

i }i∈I , such that
{χfir .

i , σj} is invertible
• Reduced phase space: Γred = Γ|{χsec.

j =0}j∈J
with Dirac bracket {., .}D

From now on:

• assume energy conservation constraint χfir .
o = H − E

• second class constraints are solved, i.e. {χsec.
j }j∈J = ∅
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Symmetry Trading

Linking Gauge Theories and Symmetry Trading

partial gauge fixing φα = 0 ←−
Linking Theory

Γ(q, p, φ, π)
χα1 , χ

2
α, χ

µ
3

−→ partial gauge fixing πα = 0

↓ ↓
Theory A

Γ(q, p), χ2
α, χ

µ
3

Theory B
Γ(q, p), χα1 , χ

µ
3

↓ ↓

gauge fixing πα
o (q, p) = 0 −→ Dictionary

Γred , χ
µ
3

←− gauge fixing φo
α(q, p) = 0

where χα1 = 0 is equiv. πα = παo (q, p) and χ2
α = 0 is equiv. φα = φo

α(q, p)

Equivalence of Gauge Theories on (Γ, {., .})
∃ gauge fixing with identical trajectories (same IVP and EOM)
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Symmetry Trading

Canonical Best Matching (an implementation of J. Barbour’s Machian ideas)

Goal: Implement symmetry qi → Qi (q, φ)

first class system (Γ, {., .},H, {χµ}µ∈M), group param. φα

Construction

• phase space extension Γ→ Γ× Γ(φ, π)
equivalence with orig. Γ through first class constraints πα ≈ 0
• canonical transformation (generator) F = Qi (q, φ)P i + φαΠα

takes πα → πα − παo (q, p)
• Impose best matching condition πα = 0:
(1) πα commutes ⇒ orig. system had gauge invariance
(2) πα gauge fixes some χµ ⇒ equivalence of gauge theories
(3) πα generates secondary constraints ⇒ complete Dirac procedure
in general one obtains mixture of these three cases
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Construction of Shape Dynamics

Canonical General Relativity (you know that)

ADM formulation

• Global hyperbolicity; for now also Σ is compact without boundary
• Poisson bracket {F (g), π(f )} = F (f )
• spatial diffeomrophism constraints H(v) =

∫
Σ d3xπab(Lvg)ab

• local refoliation constraints

S(N) =
∫

Σ d3xN

(
1√
|g |
πabGabcdπ

cd −
√
|g |(R − 2Λ)

)

Generic IVP and Regularity:

are strictly proven in π = gabπ
ab = const. gauge. (Only few extensions.)
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Construction of Shape Dynamics

Linking GR and Shape Dynamics

ADM best matched w.r.t. VPCT

• extend phase space by canonical pair φ(x), πφ(x)

• generating functional F =
∫
d3x

(
gabe

4φ̂Πab + φΠφ

)
, where φ̂ = φ− 1

6
ln〈e6φ〉g

canonical transformation T : πφ 7→ πφ − 4
(
π − 〈π〉g

√
|g |
)

• impose πφ = 0 and work out reduced phase space
• volume preserving condition leaves one Hamilton constraint behind
⇒ matching trajectories (SD in ADM-gauge = GR in CMC-gauge)

Shape Dynamics on (ΓADM , {., .}ADM)

diffeomorphism: H(ξ) =
∫
d3xπabLξgab

loc. conformal trf.: D(ρ) =
∫
d3xρ(π − 〈π〉g

√
|g |)

Hamiltonian: HSD =
∫
d3x TSADM(x)|φ=φo (g ,π)

where φo satisfies inhomogeneous Lichnerowicz-York equation and 〈e6φ〉g = 1 (∃ existence proof).
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Construction of Shape Dynamics

Pure Shape Dynamics (trajectories vs. IVP)

Dirac algebra is traded for Shape Dynamics algebra

[S(N1), S(N2)] = H(N1∇N2 − N2∇N1) [D(ρ1),D(ρ2)] = 0
[D(ρ),HSD ] = 0

[H(ξ),S(N)] = S(LξN) [H(ξ),D(ρ)] = D(Lξρ)
[H(ξ),HSD ] = 0

[H(ξ1),H(ξ2)] = H([ξ1, ξ2]) [H(ξ1),H(ξ2)] = H[ξ1, ξ2]

• Nonlin. constraints traded for linear constraints and nonloc. Hamiltonian
• Implies different Theory Space for Quantum Gravity.

for IVP (fixed time slice): lift volume preservation

• trade S(N) for D(ρ) =
∫

Σ d3xρ
(
π ±
√

8Λ
√
|g |
)

.

• locality, but frozen dynamics (fixed time slice)
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Critical Questions And Answers

Objection 1: “You have no Spacetime Picture.”

Answer: No.

Use a minimally coupled test multiplet (as clocks/rods) to recover
spacetime operationally.
Relationalist: You should do the same in GR.

Real Problem:

Universality of recovered spacetime (all fields see same spacetime).

Possible way out:

Symmetry Doubling: SD and GR BRST-invariances at the same time.
(this is work currently in progress, see “Outlook”)
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Critical Questions And Answers

Coupling Matter to Shape Dynamics

Construction

• Best matching of ADM+matter system w.r.t. VPCT
• Shape Dynamics through phase space reduction
⇒ Equivalence with GR+matter system by construction

Conformal weight for matter?

• Constraint-decoupling (conf., diffeo., gauge) as guiding principle
⇒ Solution for bosonic Standard Model: conformal weight 0 for all matter

F =
∫

Σ d3x
(
e4φ̂gabΠab + φΠφ + Ai

aEa
i + ϕαΠα + ...

)
Shape Dynamics-matter system:

• ADM S(N) ⇒ SD-Ham. HSD and Q(ρ) =
∫

Σ ρ
(
π − 〈π〉

√
|g |
)

• diffeomorphism- and gauge constraints are unaltered
• restrictions on 〈π〉 only from cosmological constant and Higgs potential
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Critical Questions And Answers

Objection 2: “It’s just the York procedure.”

Key differences with York procedure

York procedure concerns only IVP (decoupling of constraints), SD
concerns dynamics (propagation of constraints)
⇒ Hamiltonian needs lapse fixing equation (York) vs.
Lichnerowicz-York-equation (SD).

Volume preserving condition (not used by York) is essential for
equivalence of trajectories and gives correct scaling.

Best matching is canonical transformation (SD) vs. manual
TT-decomposition (York)

Summary:

The existence of SD is based in the same existence theorems as York, but
the construction and consequences are fundamentally different.

Tim A. Koslowski (Perimeter Institute) Shape Dynamics November 1st , 2011 13 / 24



Critical Questions And Answers

Objection 3:“Your Hamiltonian is Unmanageable.”

Yes, pertaining to classical trajectories. But:

• classically, one can work in ADM gauge then HSD = HADM(N ≡ 1)
• once one is interested in generic IVP solution one needs to fix gauge
also in ADM
then ADM suffers from the same complications

HSD can be constructed explicitly in:

2 + 1-dimensions (on sphere and torus)

Strong gravity limit (precisely: whenever spatial derivatives negligible)

perturbation theory around ADM solutions (in particular cosmological
perturbation theory, WIP)
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Critical Questions And Answers

Gravity in 2+1 Dimensions

One of the 2+1 Tricks

g = e2λf ∗g(τ) and TT-decomp. of π reduces GR to Teichmüller-sp dyn.

SD on 2+1 Torus

• lin. constr. H(v) =
∫

T d2xπab(Lg)ab, D(ρ) =
∫

T d2xρ(π − 〈π〉
√
|g |)

• SD-Hamilton constraint HSD = τ2

2V

(
p2

1 + p2
2

)
− V

2

(
〈π〉2 − 4Λ

)
Dirac Qunat. = Reduced phase space Quant.

• Set π̂ab = i~ δ
δgab
⇒ linear constraints imply ψ[g [λ, f ; τ1, τ2)] = ψ(τ1, τ2)

⇒ HSD = −τ2
2 (∂2

τ1
+ ∂2

τ2
) + V 2(∂2

V + 4Λ) (equal to reduced phase space Hamiltonian)

Large CMC-Volume Expansion

• genus ≥ 2 ⇒ V /Vo-expans.: HSD = −V
2 (〈π〉2 − 4Λ)− R +O( 1

V )
• works in higher dimensions (large CMC-volume/CFT-correspondence)
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Critical Questions And Answers

Objection 4: “Non-CMC solutions to Einstein’s equations.”

Answer:

This is a restriction compared to GR (like global hyperbolicity).

However:

Boundaries are in principle treatable (see future projects).
If dynamical boundaries are also treatable then one could possibly
circumvent some of these restrictions.
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Tentative Loop Quantization

Shape Dynamics in Ashtekar-Barbero variables

Road map

triad var. (e i
a, π

a
i ) ⇒ ext. curv. var. (K i

a,E
a
i ) ⇒ Ashtakar var. (Ai

a,E
a
i )

Triad vars.: (e i
a, π

a
i ), rotation const. G (λ) =

∫
Σ d3xλiεij

kek
a π

a
k

• best matching generator F =
∫

Σ d3x
(
e i

ae
2φ̂Πa

i + φΠφ

)
• linear constr.: H(v), C (ρ) and G (λ)
• Hamiltonian: HSD = TS(N ≡ 1)|φ=φ̂o

⇒ (K i
a,E

a
i ) and can. trf. F =

∫
d3x(K i

aβẼ
a
i + Ẽ a

i Γi
a(Ẽ ))

Ashtekar vars.: (Ai
a,E

a
i ), Gauss constraint G (λ)

• linear constraints: H(v) and G (λ)

• VPCT-generator: C (ρ) =
∫

Σ d3xρ((Ai
a − Γi

a)Ẽ a
i − 〈(Ai

a − Γi
a)Ẽ a

i 〉
√
|Ẽ | )

• Hamiltonian: HSD = TS(N ≡ 1)|φ=φ̂o
(retain Gauss-constr.)
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Tentative Loop Quantization

Kinematic Loop Quantization

Do everything as in kinematic LQG:

• dense orthogonal set T (A) =
∏

e ρ
je
ne me (he(A))

• holonomy-matrix elements act by multiplication ρj
nm(h(A))

• fluxes act as derivations E (S , λ)
• solve Gauss- and diffeomorphism constraint
⇒ orthogonal set: gauge-inv. spin-knot functions

classical VPCT-invariants

• VPCTs of holonomies are unmanageable

• VPCTs of fluxes are straightforward: E i
a(x) 7→ e4φ̂(x)E i

a(x)
⇒ total volume V and all angles (=gauge-inv. ratios) are invariant
⇒ all nonvanishing areas are pure gauge
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Tentative Loop Quantization

Disclaimer

Warning

The following is a naive application of LQG methods to the IVP of SD
only.
In particular be critical of:

1 No quantization of equivalent dynamics

2 Heuristic treatment of conf. trfs.
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Tentative Loop Quantization

Tentative Quantization

Heuristic implementation of VPCTs

• choose recoupling basis ⇒ max. comm. set of angles
• determine SNF uniquely by (area-,angle-) eignevalues and keep Vtot

⇒ areas are pure gauge ⇒ choose unique representative
⇒ knot, max. set of angles and Vtot label basis
• How quantize HSD ???

For total Dirac procedure (fix time slice)

• trade also HSD for 〈π〉 − αV (can. trf. to 〈π〉)
⇒ basis labeled by knot, max. set of angles

Problem:

Can one get rid of recoupling choice?
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Tentative Loop Quantization

A Questionable Interpretation

Objection:

Where is equivalence with CMC dynamics?

Large CMC-volume correpsondence

• assume Λ > 0 and suitable initial data ⇒ asymptotic expansion
• use V /Vo-expansion ⇒ HSD → 12Λ− 〈π〉2
⇒ classical equivalent 〈π〉 ≈ ±

√
12Λ

Questionable Interpretation

“The states in the mutual constraint kernel describe asymptotic shapes of
the universe in the large volume limit.”
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Summary and Outlook

Summary

Features of Shape Dynamics

1 Shape Dynamics arises from trading refoliation invariance for local
conformal invariance

2 Linking theories and canonical best matching provide general
mechanism for symmetry trading

3 Existence theorems of for IVP ensure Shape Dynamics exists

4 SD on 2+1-torus in metric variables can be quantized without phase
space reduction

5 large CMC-volume/CFT-correspondence

6 Works with standard matter content

7 Spacetime picture can be recovered operationally

8 tentative LQG-quantization
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Summary and Outlook

Outlook

Current Project: Symmetry Doubling

Observation: special HBRST = σαχα + ... is BRST invariant under
both Ωorig = ηαχα + ... and Ωdual = η̄ασ

α + ...
⇒ small theory space
here: complete symmetry trading is admissible ⇒ locality

There are many open questions (examples):

Symplectic geometry of symmetry trading/symmetry doubling

Treatment of boundaries (e.g. isolated horizons)

More advanced: dynamical boundaries (possibly non CMC?)

Higher orders in perturbation theory

SD-gauge transformations of solutions to GR

Symmetry trading/symmetry doubling in other theories
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Summary and Outlook

Thank you!
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