Shape Dynamics International Loop Quantum Gravity Seminar

Tim A. Koslowski

Perimeter Institute for Theoretical Physics Waterloo, Ontario

November 1st, 2011

Tim A. Koslowski (Perimeter Institute)

Shape Dynamics

November 1st, 2011 1 / 24

Literature

Original:

- H. Gomes, S. Gryb, T.K.: "Einstein gravity as a 3D conformally invariant theory," CQG 28 (2011) 045005. [arXiv:1010.248];
- H. Gomes, T.K.: "The Link between General Relativity and Shape Dynamics," [arXiv:1101.5974];
- H. Gomes, S. Gryb, T.K., F. Mercati: "The gravity/CFT correspondence," [arXiv:1105.0938];
- T. Budd, T.K.: "Shape Dynamics in 2+1 Dimensions," [arXiv:1107.1287];
- H. Gomes, T.K.: "Coupling Shape Dynamics to Matter Gives Spacetime," [arXiv:1110.3837];
- T.K.: "Loop Quantization of Shape Dynamics", (sorry, not yet out)

Introduction:

- H. Gomes: "The Dynamics of Shape," [arXiv:1108.4837];
- T.K.: "Shape Dynamics," [arXiv:1108.5224]

Background:

J. Barbour: "Shape Dynamics: An Introduction," [arXiv:1105.0183]

Work in progress:

- T.K.: "Symmetry Doubling";
- H. Gomes, T.K.: "Constructing Shape Dynamics";
- H. Gomes, S. Gryb, T.K., N.N.: "Shape Dynamics Perturbation Theory."

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Outline

- Introduction
- Symmetry Trading: Linking Theories, Canonical best Matching
- **Construction of Shape Dynamics:** Best matching ADM, Linking Theory, Shape Dyanmics
- Challenges and Answers: Spacetime Picture, Nonlocality, Non-CMC solutions
- **Tentative Loop Quantization:** SD in Ashtekar variables, kinematic loop quantization, tentative "dyanmics", "interpretation"
- Summary and Outlook: "There are many open questions."

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

What is Shape Dynamics?

Short Answer:

Shape Dynamics is a formulation of GR where refoliation symmetry is traded for local spatial conformal symmetry.

It is just a reformulation of GR. Why bother?

- Ontology: Different Symmetry ⇒ different theory space for effective field theory (Hořva)
- Access to new aspects: e.g. classical large CMC-volume/CFT correspondence
- Quantization Opportunities: e.g. Dirac quantization of metric gravity on 2+1 sphere and torus

Canonical Framework

Canonical System $(\Gamma, \{.,.\}, H, \{\chi_i^{fir.}\}_{i \in \mathcal{I}}, \{\chi_j^{sec.}\}_{j \in \mathcal{J}})$

- Obtained from singular Legendre transform of consistent Lagrangian
- form of constraints is **not** determined by Legendre transform
- assume regular, irreducible first class constraints $\{\chi^{\textit{fir.}}_i\}_{i\in\mathcal{I}}$
- Dirac conjecture: First class secondary constraints generate gauge transformations. (counter example: $L = e^y \dot{x}^2$)
- Gauge fixing: regular, irreducible set $\{\sigma_i\}_{i \in \mathcal{I}} \cup \{\chi_i^{\text{fir.}}\}_{i \in \mathcal{I}}$, such that $\{\chi_i^{\text{fir.}}, \sigma_i\}$ is invertible
- Reduced phase space: $\Gamma_{red} = \Gamma|_{\{\chi_j^{sec.}=0\}_{j\in \mathcal{J}}}$ with Dirac bracket $\{.,.\}_D$

From now on:

- assume energy conservation constraint $\chi_o^{\text{fir.}} = H E$
- second class constraints are solved, i.e. $\{\chi_j^{sec.}\}_{j\in\mathcal{J}}=\emptyset$

DQA

Image: A match a ma

Symmetry Trading

Linking Gauge Theories and Symmetry Trading

Tim A. Koslowski (Perimeter Institute)

Shape Dynamics

November 1st, 2011

6 / 24

Canonical Best Matching (an implementation of J. Barbour's Machian ideas)

Goal: Implement symmetry $q_i \rightarrow Q_i(q, \phi)$

first class system (Γ , {.,.}, H, { χ^{μ} } $_{\mu \in M}$), group param. ϕ_{α}

Construction

• phase space extension $\Gamma \to \Gamma imes \Gamma(\phi, \pi)$

equivalence with orig. Γ through first class constraints $\pi^{\alpha} \approx 0$ • canonical transformation (generator) $F = Q_i(q, \phi)P^i + \phi_{\alpha}\Pi^{\alpha}$ takes $\pi^{\alpha} \to \pi^{\alpha} - \pi^{\alpha}_o(q, \rho)$

• Impose best matching condition $\pi^{\alpha} = 0$:

(1) π^{α} commutes \Rightarrow orig. system had gauge invariance

(2) π^{lpha} gauge fixes some χ^{μ} \Rightarrow equivalence of gauge theories

(3) π^{α} generates secondary constraints \Rightarrow complete Dirac procedure

in general one obtains mixture of these three cases

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Canonical General Relativity (you know that)

ADM formulation

- \bullet Global hyperbolicity; for now also Σ is compact without boundary
- Poisson bracket $\{F(g), \pi(f)\} = F(f)$
- spatial diffeomrophism constraints $H(v) = \int_{\Sigma} d^3 x \pi^{ab} (\mathcal{L}_v g)_{ab}$
- local refoliation constraints

$$S(N) = \int_{\Sigma} d^3 x N\left(\frac{1}{\sqrt{|g|}}\pi^{ab}G_{abcd}\pi^{cd} - \sqrt{|g|}(R-2\Lambda)\right)$$

Generic IVP and Regularity:

are strictly proven in $\pi = g_{ab}\pi^{ab} = const.$ gauge. (Only few extensions.)

Linking GR and Shape Dynamics

ADM best matched w.r.t. VPCT

• extend phase space by canonical pair $\phi(x), \pi_{\phi}(x)$

• generating functional $F = \int d^3x \left(g_{ab} e^{4\hat{\phi}} \Pi^{ab} + \phi \Pi_{\phi} \right)$, where $\hat{\phi} = \phi - \frac{1}{6} \ln \langle e^{6\phi} \rangle_g$

canonical transformation $T: \pi_\phi \mapsto \pi_\phi - 4\left(\pi - \langle \pi
angle_g \sqrt{|g|}
ight)$

- ullet impose $\pi_\phi=0$ and work out reduced phase space
- volume preserving condition leaves one Hamilton constraint behind
 ⇒ matching trajectories (SD in ADM-gauge = GR in CMC-gauge)

Shape Dynamics on $(\Gamma_{ADM}, \{.,.\}_{ADM})$

 $\begin{array}{ll} \text{diffeomorphism:} & H(\xi) = \int d^3 x \pi^{ab} \mathcal{L}_{\xi} g_{ab} \\ \text{loc. conformal trf.:} & D(\rho) = \int d^3 x \rho(\pi - \langle \pi \rangle_g \sqrt{|g|}) \\ \text{Hamiltonian:} & H_{SD} = \int d^3 x \ TS_{ADM}(x)|_{\phi = \phi_o(g,\pi)} \end{array}$

where ϕ_o satisfies inhomogeneous Lichnerowicz-York equation and $\langle e^{6\phi} \rangle_g = 1$ (\exists existence proof).

イロト イポト イヨト イヨト

Pure Shape Dynamics (trajectories vs. IVP)

Dirac algebra	s traded for	Shape Dynamics algebra
$[S(N_1),S(N_2)]=H($	$N_1 \nabla N_2 - N_2$	$_{2}\nabla N_{1}) \mid [D(\rho_{1}), D(\rho_{2})] = 0$
		$[D(\rho), H_{SD}] = 0$
$[H(\xi), S(N)] = S(\mathcal{L}_{\xi})$	N)	$[H(\xi), D(\rho)] = D(\mathcal{L}_{\xi}\rho)$
$[H(\xi_1), H(\xi_2)] = H(\xi_1)$	ά ¢ 1)	$[\Pi(\zeta), \Pi_{SD}] = 0$

• Nonlin. constraints traded for linear constraints and nonloc. Hamiltonian

Implies different Theory Space for Quantum Gravity.

for IVP (fixed time slice): lift volume preservation

- trade S(N) for $D(\rho) = \int_{\Sigma} d^3 x \rho \left(\pi \pm \sqrt{8\Lambda} \sqrt{|g|} \right)$.
- locality, but frozen dynamics (fixed time slice)

10 / 24

Image: A matrix

Objection 1: "You have no Spacetime Picture."

Answer: No.

Use a minimally coupled test multiplet (as clocks/rods) to recover spacetime operationally. Relationalist: You should do the same in GR.

Real Problem:

Universality of recovered spacetime (all fields see same spacetime).

Possible way out:

Symmetry Doubling: SD and GR BRST-invariances at the same time. (this is work currently in progress, see "Outlook")

Coupling Matter to Shape Dynamics

Construction

- Best matching of ADM+matter system w.r.t. VPCT
- Shape Dynamics through phase space reduction
- \Rightarrow Equivalence with GR+matter system by construction

Conformal weight for matter?

Constraint-decoupling (conf., diffeo., gauge) as guiding principle
 ⇒ Solution for bosonic Standard Model: conformal weight 0 for all matter

$$\mathcal{F} = \int_{\Sigma} d^3 x \left(e^{4\hat{\phi}} g_{ab} \Pi^{ab} + \phi \Pi_{\phi} + A^i_a \mathcal{E}^a_i + \varphi^{lpha} \Pi_{lpha} + ...
ight)$$

Shape Dynamics-matter system:

- ADM $S(N) \Rightarrow$ SD-Ham. H_{SD} and $Q(\rho) = \int_{\Sigma} \rho\left(\pi \langle \pi \rangle \sqrt{|g|}\right)$
- diffeomorphism- and gauge constraints are unaltered
- \bullet restrictions on $\langle \pi \rangle$ only from cosmological constant and Higgs potential

Objection 2: "It's just the York procedure."

Key differences with York procedure

- York procedure concerns only IVP (decoupling of constraints), SD concerns dynamics (propagation of constraints)
 ⇒ Hamiltonian needs lapse fixing equation (York) vs. Lichnerowicz-York-equation (SD).
- Volume preserving condition (**not** used by York) is essential for equivalence of trajectories and gives correct scaling.
- Best matching is **canonical** transformation (SD) vs. manual TT-decomposition (York)

Summary:

The existence of SD is based in the same existence theorems as York, but the construction and consequences are fundamentally different.

Tim A. Koslowski (Perimeter Institute)

November 1st, 2011

13 / 24

イロト 不得下 イヨト イヨト 二日

Objection 3: "Your Hamiltonian is Unmanageable."

Yes, pertaining to classical trajectories. But:

- classically, one can work in ADM gauge then $H_{SD} = H_{ADM}(N \equiv 1)$
- \bullet once one is interested in ${\bf generic}$ IVP solution one needs to fix gauge also in ADM

then ADM suffers from the same complications

H_{SD} can be constructed explicitly in:

- 2 + 1-dimensions (on sphere and torus)
- Strong gravity limit (precisely: whenever spatial derivatives negligible)
- perturbation theory around ADM solutions (in particular cosmological perturbation theory, WIP)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのぐ

Gravity in 2+1 Dimensions

One of the 2+1 Tricks

 $g = e^{2\lambda} f^* g(\tau)$ and TT-decomp. of π reduces GR to Teichmüller-sp dyn.

SD on 2+1 Torus

- lin. constr. $H(v) = \int_T d^2 x \pi^{ab} (\mathcal{L}g)_{ab}, D(\rho) = \int_T d^2 x \rho (\pi \langle \pi \rangle \sqrt{|g|})$
- SD-Hamilton constraint $H_{SD} = \frac{\tau^2}{2V} \left(p_1^2 + p_2^2 \right) \frac{V}{2} \left(\langle \pi \rangle^2 4\Lambda \right)$

Dirac Qunat. = Reduced phase space Quant.

• Set $\hat{\pi}^{ab} = i\hbar \frac{\delta}{\delta_{g_{ab}}} \Rightarrow$ linear constraints imply $\psi[g[\lambda, f; \tau_1, \tau_2)] = \psi(\tau_1, \tau_2)$ $\Rightarrow H_{SD} = -\tau_2^2(\partial_{\tau_1}^2 + \partial_{\tau_2}^2) + V^2(\partial_V^2 + 4\Lambda)$ (equal to reduced phase space Hamiltonian)

Large CMC-Volume Expansion

- genus $\geq 2 \Rightarrow V/V_o$ -expans.: $H_{SD} = -\frac{V}{2}(\langle \pi \rangle^2 4\Lambda) R + O(\frac{1}{V})$
- works in higher dimensions (large CMC-volume/CFT-correspondence)

Objection 4: "Non-CMC solutions to Einstein's equations."

Answer:

This is a restriction compared to GR (like global hyperbolicity).

However:

Boundaries are in principle treatable (see future projects). If dynamical boundaries are also treatable then one could possibly circumvent some of these restrictions.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのぐ

Shape Dynamics in Ashtekar-Barbero variables

Road map

triad var.
$$(e_a^i, \pi_i^a) \Rightarrow$$
 ext. curv. var. $(K_a^i, E_i^a) \Rightarrow$ Ashtakar var. (A_a^i, E_i^a)

Triad vars.: (e_a^i, π_i^a) , rotation const. $G(\lambda) = \int_{\Sigma} d^3 x \lambda^i \epsilon_{ij} k e_a^k \pi_k^a$

- best matching generator $F = \int_{\Sigma} d^3 x \left(e^i_a e^{2\hat{\phi}} \Pi^a_i + \phi \Pi_{\phi} \right)$
- linear constr.: H(v), $C(\rho)$ and $G(\lambda)$
- Hamiltonian: $H_{SD} = TS(N \equiv 1)|_{\phi = \hat{\phi}_{\phi}}$

$$\Rightarrow (K_a^i, E_i^a)$$
 and can. trf. $F = \int d^3x (K_a^i \beta \tilde{E}_i^a + \tilde{E}_i^a \Gamma_a^i(\tilde{E}))$

Ashtekar vars.: (A_a^i, E_i^a) , Gauss constraint $G(\lambda)$

- linear constraints: H(v) and $G(\lambda)$
- VPCT-generator: $C(\rho) = \int_{\Sigma} d^3 x \rho ((A^i_a \Gamma^i_a) \tilde{E}^a_i \langle (A^i_a \Gamma^i_a) \tilde{E}^a_i \rangle \sqrt{|\tilde{E}|})$
- Hamiltonian: $H_{SD}=\left.TS(N\equiv1)
 ight|_{\phi=\hat{\phi}_{o}}$ (retain Gauss-constr.)

Kinematic Loop Quantization

Do everything as in kinematic LQG:

- dense orthogonal set $T(A) = \prod_e \rho_{n_e m_e}^{j_e}(h_e(A))$
- holonomy-matrix elements act by multiplication $\rho_{nm}^{\prime}(h(A))$
- fluxes act as derivations $E(S, \lambda)$
- solve Gauss- and diffeomorphism constraint

 \Rightarrow orthogonal set: gauge-inv. spin-knot functions

classical VPCT-invariants

- VPCTs of holonomies are unmanageable
- VPCTs of fluxes are straightforward: $E_a^i(x) \mapsto e^{4\hat{\phi}(x)} E_a^i(x)$
- \Rightarrow total volume V and all angles (=gauge-inv. ratios) are **invariant**
- \Rightarrow all nonvanishing areas are **pure gauge**

イロト 不得下 イヨト イヨト 二日

Disclaimer

Warning

The following is a **naive** application of LQG methods to the IVP of SD only.

In particular be critical of:

- No quantization of equivalent dynamics
- e Heuristic treatment of conf. trfs.

3

→ Ξ → < Ξ</p>

Tentative Quantization

Heuristic implementation of VPCTs

- \bullet choose recoupling basis \Rightarrow max. comm. set of angles
- determine SNF uniquely by (area-, angle-) eignevalues and keep V_{tot}
- \Rightarrow areas are pure gauge \Rightarrow choose unique representative
- \Rightarrow knot, max. set of angles and V_{tot} label basis
- How quantize *H_{SD}* ???

For total Dirac procedure (fix time slice)

- trade also H_{SD} for $\langle \pi \rangle \alpha V$ (can. trf. to $\langle \pi \rangle$)
- \Rightarrow basis labeled by knot, max. set of angles

Problem:

Can one get rid of recoupling choice?

Tim A. Koslowski (Perimeter Institute)

3

イロト イポト イヨト イヨト

A Questionable Interpretation

Objection:

Where is equivalence with CMC dynamics?

Large CMC-volume correpsondence

- \bullet assume $\Lambda>0$ and suitable initial data \Rightarrow asymptotic expansion
- use V/V_o -expansion $\Rightarrow H_{SD} \rightarrow 12\Lambda \langle \pi \rangle^2$
- \Rightarrow classical equivalent $\langle \pi \rangle \approx \pm \sqrt{12\Lambda}$

Questionable Interpretation

"The states in the mutual constraint kernel describe asymptotic shapes of the universe in the large volume limit."

イロト 不得 トイラト イラト ニヨー

Summary

Features of Shape Dynamics

- Shape Dynamics arises from trading refoliation invariance for local conformal invariance
- Linking theories and canonical best matching provide general mechanism for symmetry trading
- S Existence theorems of for IVP ensure Shape Dynamics exists
- SD on 2+1-torus in metric variables can be quantized without phase space reduction
- Iarge CMC-volume/CFT-correspondence
- Works with standard matter content
- Spacetime picture can be recovered operationally
- tentative LQG-quantization

3

イロト イポト イヨト イヨト

Outlook

Current Project: Symmetry Doubling

Observation: special $H_{BRST} = \sigma^{\alpha} \chi_{\alpha} + ...$ is BRST invariant under **both** $\Omega_{orig} = \eta^{\alpha} \chi_{\alpha} + ...$ and $\Omega_{dual} = \bar{\eta}_{\alpha} \sigma^{\alpha} + ...$ \Rightarrow small theory space **here:** complete symmetry trading is admissible \Rightarrow locality

There are many open questions (examples):

- Symplectic geometry of symmetry trading/symmetry doubling
- Treatment of boundaries (e.g. isolated horizons)
- More advanced: dynamical boundaries (possibly non CMC?)
- Higher orders in perturbation theory
- SD-gauge transformations of solutions to GR
- Symmetry trading/symmetry doubling in other theories

ヘロン 人間と 人間と

Summary and Outlook

Thank you!

Tim A. Koslowski (Perimeter Institute)

Shape Dynamics

▲□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <