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Terminological Remark

Used to refer to this class of theories as “non-metric gravity”.

Turned out to be perfectly metric, albeit unusual.

Hence more correct to use the term (modified) “self-dual gravity” (SDGR).

Not to be confused with SDGR –
The Salisbury Diocesan Guild of Ringers [http://www.sdgr.org.uk/]
that was founded on 14th September 1882 under the patronage of
the Bishop and the presidency of the Right Honorable the Earl Nelson.
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Questions you may be asking

Why should I be interested in modified gravity?

What’s wrong with the usual one?

We don’t understand even the usual GR as well as we would like.

Now people make life even more confusing with all these modifications:
Bekenstein (TeVeS), Moffat (SVeTe), brane worlds, Banados (Born-Infeld), etc.
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What’s wrong with GR?
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What’s wrong with GR?

Many things!

• Einstein’s general relativity
is non-renormalizable when quantized.
Was never designed to become a quantum theory -
as “classical” as it gets.

• Unless you add dark matter and dark energy,
GR is not consistent with astrophysical observations.
Einstein challenged by “dark” forces.
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Yes, but...

May be we can quantize GR non-perturbatively?
or
Loop Quantum Gravity: We CAN quantize GR non-perturbatively.

Non-renormalizability is not about non-applicability of perturbative quantization,
it is a physical property of the theory: new physics is around the corner. Should be
visible in any quantization scheme, when sufficiently developed.

Non-renormalizability does tell us that the UV physics of gravity is not described
by GR, not even by quantum GR. It is some other (quantum) theory.
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Yes, but...

How can a new theory designed to be the UV completion of GR have anything to
do with astrophysics? Gravity on large scales is certainly not quantum!

The classical theory whose quantum version describes gravity in the deep UV
regime does not have to coincide with GR on large scales.

Thus, the class of theories of this talk may or may not be UV complete (unknown),
but there is certainly enough room for them be different from GR on large scales.
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SDGR

Describe geometry of a four-manifold M by something else than the metric.

Theorem: [Atiyah-Hitchin-Singer’78] A metric g is Einstein iff the restriction of
the Levi-Civita connection Γ(g) to the bundle Λ+ of self-dual two-forms is
self-dual.

Plebanski’78: Einstein’s general relativity admits a reformulation in which the
main dynamical object is a triple of self-dual two-forms, and the metric appears as
a derived concept.

Bengtsson, Peldan’91: A large class of (modified) gravity theories is envisaged
in the Ashtekar’s Hamiltonian formulation.

KK’06 hep-th/0611182: The Lagrangian formulation of this new class of gravity
theories is found.



8

Hodge operator (of gµν)

Λk — k-forms on a 4-manifold M.

∗ : Λ2 → Λ2

∗Bµν =
1
2
ε ρσ
µν Bρσ.

Here εµνρσ ∈ Λ4 — volume form of gµν.
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Properties

•

∗ ∗ =
{+1 Riemannian
−1 Lorentzian

• gµν → Ωgµν conformal transformation

ε ρσ
µν invariant
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(continuation)

Theorem: Let g, ĝ define ∗, ∗̂ : ∗ = ∗̂. Then ∃Ω : ĝ = Ωg.
Proof.

ε̂ αβ
µν = ε αβ

µν .

But ∃Ω:
ε̂ρσαβ = Ω2ερσαβ.

Contracting the two get:
ĝµ[ρĝσ]ν = Ω2gµ[ρgσ]ν.

Work in coordinates xi in which ĝµν is diagonal. Prove that gµν is also diagonal in
the same coordinate system. Then

ĝiiĝjj = Ω2giigjj =⇒

ĝii = ±Ωgii.
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(continuation)

Corollary:

Hodge Operator = Metric/Conformal Transformations
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(continuation)

Lemma: One knows ∗ if one knows its eigenspace +Λ2 of self-dual two-forms.
Proof: If one knows +Λ2, can get −Λ2 as the complement of +Λ2 in Λ2 wrt the
(conformal) metric on Λ2 given by the wedge product. If knows +Λ2, −Λ2, then

B = Bsd + Basd,

∗B = Bsd −Basd (∗B = i(Bsd −Basd)) .
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Conformal metrics and self-dual two-forms

Corollary:

Space of conformal

metrics at a point

GL(4, R)/O(4)
=

Grassmanian of 3-planes
+Λ2 ⊂ Λ2

SO(3, 3)/SO(3)× SO(3)
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Plebanski formulation of GR: preliminaries

Let E → M be a principal SO(3) bundle over M . Let A be a connection in the
associated bundle. Locally A ∈ Λ1 ⊗ so(3). Let B be a Lie-algebra valued
two-form: B ∈ Λ2 ⊗ so(3).

Remark: [spacetime metric] Given B, there is a natural metric gB defined as
follows. Choose a basis τ i in so(3). Decompose B = Biτ i. Declare
Span(B1, B2, B3) to be the space +Λ2 of self-dual two-forms of some metric gB.
This defines gB up to conformal factor. Define the later via:

(vol)B =
1
3
Tr(B ∧B).

Note that gB may not be Riemannian and maybe singular.
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(continuation)

Remark: [fibre metric] Two-form field B defines a metric hB in the fibres via

(B ∧⊗ B) = hB(vol)B ∈ so(3)⊗ so(3)⊗ Λ4.

Does not have to coincide with the SO(3)-invariant Killing-Cartan fiber metric. If
hB is positive definite then gB is a non-singular Riemannian metric.

Remark: [another description] Given a metric g, there is a natural
bivector-valued two-form:

Gρσ
µν := gρ

[µgσ
ν].

The space of bivectors Xµν is isomorphic to the so(4) Lie-algebra. Thus, the
self-dual part of Gρσ

µν is a so(3)-valued two-form. A very special one, as the fiber
metric hB in this case coincides with the Killing-Cartan one.
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Connection

Lemma: Given B, there is a unique connection A(B) : DA(B)B = 0. Explicitly:

Ai(B) =
1

det(B)
∗ (Bj ∧ ∗(Bi ∧ ∗(dBj))). (1)

In general, it is not equal to the restriction of the Levi-Civita connection to the
bundle of gB-self-dual two-forms. Only when hB is the SO(3)-invariant fiber
metric.

Remark: To write (1) a metric g ∈ [gB] was used. The expression is invariant
under g → Ω2g.



17

Plebanski formulation: main theorem

Theorem: [Plebanski’78] Let E → M be an SO(3) bundle (of an appropriate
second Chern class), B a Lie-algebra valued two-form such that hB coincides with
the Killing-Cartan SO(3)-invariant metric in so(3) and ∃Ψ ∈ End(so(3)) :

F (A(B)) = Ψ(B), (2)

where F (A) is the curvature of A. Then the metric gB defined by B is Einstein.
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(continuation)

Remark: The converse statement is a part of the Atiyah-Hitchin-Singer theorem:
for an Einstein metric the curvature of the restriction of the Levi-Civita connection
to +Λ2 is self-dual.

Remark: The condition (2) is as natural in the context of Lie-algebra-valued
two-forms as is the Einstein condition in the context of symmetric rank two
tensors.
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Towards an action functional

Consider the following “natural” action:

S0 =
∫

Bi ∧ F i(A). (3)

Varying this wrt Ai get:

DABi = 0, (4)

which has a unique solution for Ai given Bi. But can’t vary wrt Bi, because has
to satisfy the constraint hij

B = δij. Need to add a constraint term.
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General relativity in Plebanski formulation

The action with the constraint:

S′ =
∫

Bi ∧ F i(A)− 1
2
ΨijBi ∧Bj. (5)

Here Ψij : Tr(Ψ) = 0 are Lagrange multipliers. Variation wrt the Lagrange
multipliers gives:

Bi ∧Bj = δij(vol)B. (6)
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Einstein equations

Variation wrt Bi gives:

F i(A) = ΨijBj. (7)

Not the most general action, for does not allow scalar curvature. The most
general one is:

S =
∫

Bi ∧ F i(A)− 1
2

(
Ψij − 1

3
Λδij

)
Bi ∧Bj, (8)

Remark: Ψij gets identified with the self-dual part W+ of the Weyl curvature,
and 4Λ with the scalar curvature s.
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Physics remark

Interested in this formulation because gravity becomes constrained BF theory
(topological). We know how to “quantize” BF, so hope to get some insight into
quantization of GR. Spin foam models.

Ashtekar’s Hamiltonian formulation of GR is the 3+1 decomposition of the
Plebanski action.
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Beyond Einstein

We have been keeping hB : Bi ∧Bj = hij
B(vol)B fixed to the SO(3)-invariant

metric, and thus freezing some degrees of freedom described by Bi. Can one allow
hB to become dynamical?

Still want to keep

F i(A) = (Ψij − 1
3
Λδij)Bj. (9)

These are 18 equations, can no longer keep Ψij arbitrary. Set
Ψij = Ψij(hB),Λ = Λ(hB).
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Action functional

The corresponding action: [hep-th/0611182]

S =
∫

Bi ∧ F i(A)− 1
2

(
Ψij − 1

3
δijφ(Ψ)

)
Bi ∧Bj, (10)

with Ψij still traceless. Now a variation wrt Ψij gives:

hij
B = δij +

∂φ

∂Ψij
=⇒ Ψij = Ψij((hB)tr−free). (11)



25

Remarks

Remark: The essence of the modification is in removing a natural, but too
restrictive condition on hB, and requiring:

F (A) = ΨB(B), (12)

where ΨB ∈ End(so(3)) depends on the hB part of B.

Remark: The modification is parameterized by a function of two arguments
φ(Ψ) = φ(Tr(Ψ)2,Tr(Ψ)3). A theory from this class is specified by an infinite
number of parameters — coefficients in the Taylor expansion of φ.

Remark: The described modification is the most general possible one (compatible
with the diffeomorphism and SO(3) invariance of the action) that leads to EOM
with not higher than second derivatives.
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Renormalizability motivation

Plebanski action (8) is NOT the most general one compatible with all the
symmetries and of the same field content. After G is absorbed into the fields, the
mass dimensions are:

[A] = 1, [B] = 2, [Ψ] = 0. (13)

It is thus obvious that all powers of Ψ can appear.
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Thus, in addition to the term ΨijBi ∧Bj need to add the terms of the form

1
2
(Ψk1)ij(Tr(Ψ2))k2 . . . (Tr(Ψn))knBi ∧Bj (14)

The theory does seem to be as non-renormalizable as in the usual perturbative
quantum gravity. Usual case: dimensionfull Newton’s constant; our case - a field
Ψ of mass dimension zero.
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Other terms

Clear that all powers of Ψ can get generated also in front of BF and FF terms.
The renormalized action with all these counterterms is:

L =
1
2
X̄(Ψ)ijF i ∧ F j + Ȳ (Ψ)ijBi ∧ F j +

1
2
Z̄(Ψ)ijBi ∧Bj, (15)

where X̄(Ψ), Ȳ (Ψ), Z̄(Ψ) are all tensors, polynomials in Ψ and its traces. The
coefficients of these polynomials are undetermined. Infinite number of them,
seemingly no predictive power. Usual non-renormalizability? Not quite.
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Field B redefinition

Can redefine the field B → B + H(Ψ)F (A) to get rid of the F iF j term. Can
then “rescale” the field B to map the BiF j term into its canonical form. After
this B field redefinitions one gets

L = B̃i ∧ F j +
1
2
Ψ̃(Ψ)ijB̃i ∧ B̃j, (16)

where

Ψ̃(Ψ) = (Y (Ψ)TZ(Ψ)−1Y (Ψ)−X(Ψ))−1. (17)
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Field Ψ redefinition

The whole effect of the considered counterterms is to replace the curvature field
Ψij by a non-trivial, depending on many new parameters (coupling constants)
functional Ψ̃ij(Ψ).

Rewrite:

Ψ̃(Ψ)ij = Φij(Ψ)− δij1
3
φ(Ψ), (18)

where Φij(Ψ) is the traceless part of Ψ̃. The field Φij just replaces the original
field Ψij after the renormalization!
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Renormalized action

The effect of the considered counterterms is in replacing the bare curvature field Ψ
by the renormalized one Φ, and in appearance in the action of a new “trace” term:∫

M

Bi ∧ F j +
1
2

(
Φij − Λ

3
δij − 1

3
δijφ(Φ)

)
Bi ∧Bj, (19)

Still non-renormalizable in the strict sense of the word (as still an infinite number
of undetermined constants).

Remark: Note that Λ is just the constant part of φ(Φ). The whole effect of the
“renormalization” we have considered is to replace the cosmological constant by a
“cosmological function”. We get the theory (10).
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Renormalizable?

If could prove that the counterterms considered are the only ones that appear
would prove that the theory (10) is renormalizable in the sense that the form of
the action is unchanged under the renormalization group flow.

Would be an extremely strong statement. One could then hope that
φ∗(Ψ) = limµ→∞ φµ(Ψ) exists. The UV completion of gravity would then be a
(quantum) theory from this class with φ = φ∗.
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May be not...

Unfortunately, terms of the form:

Ψ . . .Ψ(DΨ)4, Ψ . . .Ψ(DΨ)2B, Ψ . . .Ψ(DΨ)2F

can appear as well.

In spite of this, conjectured in hep-th/0611182 that this class IS renormalizable.
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Motivations

• Most optimistic scenario.

• Counterterms containing DΨ drastically change the character of the theory -
higher derivative EOM (and more DOF).

• The “toy” theory

S[A,Ψ] =
∫

M

(Ψ−1)ijF+ i ∧ F+ j, (20)

where F+ is the self-dual part of F is renormalizable in the sense described, at
least to one loop.
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Hamiltonian formulation

The phase space of the new class of theories is very similar to that of GR in the
Ashtekar’s Hamiltonian formulation: {Ai

a, σ̃
i a}.

Constraints are unmodified, except for the Hamiltonian constraint that becomes:

εijkσ̃i aσ̃j bF k
ab + ε˜abcσ̃

aiσ̃bjσ̃ckφ((Ψ)tr−free) ≈ 0, (21)

where

Ψij =
F i

abε
jklσ̃akσ̃bl

ε˜abcσ̃aiσ̃bjσ̃ck
. (22)

Constraints compactly:

Ψij ≈ Ψ(ij), Tr(Ψ) + φ((Ψ)tr−free) ≈ 0. (23)



36

Degrees of Freedom

The constraint algebra remains the first class [arXiv:0711.0090]. Theories from
this class thus have two propagating DOF, as GR.

This makes them unlike all other modifications of gravity considered in the
literature. Not so strongly modified after all!
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“Cosmological function”

The “only” modification as compared to Plebanski theory is that

Λ → φ(Ψ), (24)

i.e., the cosmological constant became “curvature” dependent.

The cosmological constant problem may be resolved in this gravity scenario by
having φ(1/l2p) ∼ 1/l2p, but then φ decreasing and taking a small value
φ(0) = Λobs of relevance in cosmology.
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Gravity as a sigma-model

Can rewrite the action in terms of the metric gB (determined by Bi) and a triple
of self-dual (with respect to gB) two forms Bi.

S[B] =
∫

M

volB

(
Gij(dBi, dBj)− 1

2
V (MB)

)
, (25)

where Gij is a certain metric (constructed from Bi) in the space Ω3 ⊗ su(2).
Conformally invariant action!

The potential V (M) is the Legendre transform of φ(Ψ) and

M ij
B = hij

B − δij =
(

∂φ(Ψ)
∂Ψij

)
tr−free

(26)

is the traceless part of the fibre metric hB.
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Summary

• There is an infinitely large class of self-dual gravity theories, parameterized by
a function φ(Tr(Ψ)2,Tr(Ψ)3) - the “cosmological function”. Einstein theory is
a member of this class corresponding to φ(Ψ) = Λ. All these theories have the
same number of DOF as GR.

• This class may be closed under the renormalization group flow (renormalizable).

• Physics that determines the form of φ(Ψ) is not yet understood, but whatever
mechanism takes φ(Ψ) from Planckian curvatures to zero (small) cosmological
curvatures also modifies gravity.

• In addition to the spacetime metric, these theories allow for a non-trivial fibre
metric. In quantum theory fluctuates independently of the spacetime metric,
leading to a potentially very different behaviour.


