3D/4D Gravity as the Dimensional Reduction of a theory of 3-forms in 6D/7D

> Kirill Krasnov (Nottingham) presently at AEI, Golm

LQG community is well aware of the importance of BF theory

• 3D gravity is BF theory

this is why we know how to quantise it - Ponzano-Regge, Turaev-Viro models

• 4D gravity is constrained BF theory

Chiral Plebanski formulation

Ashtekar Hamiltonian formulation

Non-chiral full Lorentz group based Plebanski

Spin Foam Models

This talk is about an unusual perspective on 3D/4D BF theory (and gravity)

They are seen to emerge via dimensional reduction from a theory of a very different nature

Dimensional reduction on S^3 of a theory 3-forms in 6D/7D

These ideas are new related to ideas in the subject of topological strings ~2002 But rely on beautiful geometry > 100 years old

I don't yet know if they are useful for physics

But they are natural and beautiful

So may be telling us something important about gravity

Plan

Review of (chiral) Plebanski formulation

and its generalisations

- Differential forms in Riemannian geometry
- G2 structures, dimensional reduction 7D to 4D
- From 3-forms in 6D to 3D gravity
- Summary

Chiral Plebanski formulation of 4D gravity Plebanski '77, CDJM '91

$$\begin{split} S[A,B,\Psi] &= M_p^2 \int_M B^i \wedge F^i - \frac{1}{2} \left(\frac{\Lambda}{3} \delta^{ij} + \Psi^{ij} \right) B^i \wedge B^j \\ i &= 1,2,3 \ \text{ SO(3) indices} \end{split}$$

Euler-Lagrange equations

On-shell becomes the self-dual part of Weyl curvature

Urbantke metric is Einstein, with cosmological constant Λ

A is the self-dual part of the spin connection compatible with the Urbantke metric

$$g_B(\xi,\eta) \operatorname{vol}_B = -\frac{1}{6} \epsilon^{ijk} i_{\xi} B^i \wedge i_{\eta} B^j \wedge B^k$$

 B^i

metric that makes B's self-dual

 $d_A B^i = 0$

 $F^{i} = \left(\frac{\Lambda}{3}\delta^{ij} + \Psi^{ij}\right)$

 $B^i \wedge B^j \sim \delta^{ij}$

Urbantke metric

5

Formulation of complex GR, need reality conditions depending on the desired signature Remarks:

 Hamiltonian formulation of Plebanski gives Ashtekar's new Hamiltonian formulation of GR

Convenient to make the action dimensionless

Dimensionless metric measures dimensionful distances

$$M_p^2 B_{old}^i = B_{new}^i$$

Dimensionful metric measures dimensionless distances (in units of Planck length)

Also

$$\Lambda_{old}/M_p^2 = \Lambda_{new} \sim 10^{-120}$$

$$\Psi_{old}/M_p^2 = \Psi_{new} \ll 1$$

dimensionless cosmological constant and Weyl curvature

 $[B] = 2, \quad [A] = 1, \quad [\Lambda] = [\Psi] = 0$

very small in classical situations where can trust GR

$$S[A, B, \Psi] = \int_M B^i \wedge F^i - \frac{1}{2} \left(\frac{\Lambda}{3}\delta^{ij} + \Psi^{ij}\right) B^i \wedge B^j$$

there is no scale in classical GR not coupled to any matter

Generalisations of Plebanski

CDJ '91 in the context of "pure connection" formulation of GR realised that there are <u>"neighbours of GR"</u>

$$S_{\rm CDJ}[A,\eta] = \int \eta \left({\rm Tr} M^2 - \frac{1}{2} ({\rm Tr} M)^2 \right) \qquad \qquad \text{change this coefficient}$$

later studied by Capovilla, and extensively by Bengtsson come in an infinite -parameter family

"cosmological constants" of Bengtsson

were mostly studied in the Hamiltonian formulation

geometrical interpretation was obscure

In 2006 I rediscovered these theories and studied since then

they are all 4D gravity theories describing just two propagating polarisations of the graviton

BF formulation of "deformations of GR"

$$S[A, B, M, \mu] = \int B^{i} F^{i} - \frac{1}{2} M^{ij} B^{i} B^{j} - \mu(f(M) - \lambda)$$

integrating out M gives V(B) gravity as "BF plus potential"

different choices of f(M) give different theories

 $f_{\rm GR}(M) = {\rm Tr}(M) \checkmark$

 $f_{\rm SDGR}(M) = {\rm Tr}(M^{-1})$

General Relativity in Plebanski formulation

Self-Dual Gravity

other interesting choice

 $f_{\det} = \det(M)$

can "integrate out" B,M to get the "pure connection formulation" useful alternative is to just "integrate out" B

These theories no longer have a "preferred" metric - only the conformal class is fixed

GR as the low energy limit of deformations of GR Deformations of GR are UV modifications of GR

Any of these theories will at sufficiently low energies be indistinguishable from GR

Parametrise

$$M^{ij} = \frac{\Lambda}{3}\delta^{ij} + \Psi^{ij}$$

Solve $f(M)=\lambda$ for $\Lambda=\Lambda(\Psi)$

For $\Psi \ll 1$ the solution will be of the form

 $\Lambda(\Psi) = \Lambda_0 + \alpha \mathrm{Tr}(\Psi^2) + \dots \qquad \begin{array}{l} \mathrm{can \ neglect} \ \mathrm{Tr}(\Psi^2) \\ \mathrm{compared \ to} \ \Psi \end{array}$ E.g.

$$\det(M) = (\lambda/3)^3 \qquad \Lambda(\Psi) = \lambda + \frac{3}{2\lambda} \operatorname{Tr}(\Psi^2) + \dots$$

indistinguishable from GR for $\Psi\ll\lambda$

but λ is also the cosmological constant!

in a generic theory with only one scale corrections to GR appear at the same scale as the effective cosmological constant scale

Remarks:

- It was always strange to have an infinite-parameter family of 4D gravity theories with similar properties
- The observation that GR is the low energy limit of any one of them explains specialness of GR
- But then there remains the question of what is the "right" theory from this class, if any

The new development:

Theories of this type arise by dimensional reduction from a certain theory of 3-forms in 7 dimensions

What comes out is a theory with specific f(M)

Moreover, the size of the extra dimension provides another scale

Frame field

Eli Cartan method of moving frames introduced differential forms into geometry

$$e^{I}, \qquad I = 1, \dots, n$$

 $n = \dim(M)$

frame (generalised tetrad, vielbein) as the square root of the metric

Cartan's structure equations

$$de^I + w^I{}_J \wedge e^J = 0$$

$$F^{IJ} := dw^{IJ} + w^I{}_K \wedge w^{KJ}$$

collection of I-forms that are declared orthonormal and this defines the metric

$$ds^2 = \eta_{IJ} e^I \otimes e^J$$

$$\operatorname{GL}(D)/\operatorname{SO}(D)$$

metric as coset

torsion-free condition determines the spin connection

curvature of the spin connection is Riemann curvature

Cartan connection

Both frame and the spin connection are one-forms

Cartan himself realised that there is a useful construction that puts the two together - Cartan connection

Cartan geometry is a generalisation of Riemannian and Kleinian geometry (based on homogeneous group spaces G/H)

book by Sharpe

CS description of 3D gravity

$$\begin{split} \Lambda^2 \mathbb{R}^3 &\sim \mathbb{R}^3 \\ w^{ij} &= \epsilon^{ikj} w_k \\ f^{ij} &= \epsilon^{ikj} f_k \\ \Lambda &< 0 \\ A^i &:= w^i + \sqrt{-1} e^i \\ \mathrm{SL}(2, \mathbb{C}) \text{ connection} \end{split} \begin{array}{l} f^i &= dw^i + \frac{1}{2} \epsilon^{ijk} w^j \wedge w^k \\ f^i &= dw^i + \frac{1}{2} \epsilon^{ijk} w^j \wedge w^k \\ F^i &= 0 \\ de^i + \epsilon^{ijk} w^j \wedge e^k = 0 \\ f^i &= \frac{1}{2} \epsilon^{ijk} e^j \wedge e^k \\ \mathrm{Einstein equations in 3D} \end{split}$$

Flat connections are extrema of Chern-Simons functional $S_{\rm CS}[A] = \int A^i \wedge dA^i + \frac{1}{3} \epsilon^{ijk} A^i \wedge A^j \wedge A^k$ Similar trials is react

We understand quantum gravity in 3D mostly due to formulation in terms of differential forms! Similar trick is possible in 4D -Mac Dowell-Mansouri formulation

> but does not seem to be so useful as in 3D

3-Forms

New idea - there is a different way of putting the spin connection and the frame together

Start by forming Lorentz group Lie algebra valued 2-forms

$$B^{IJ} := e^I \wedge e^J$$

of course not every Lie algebra valued 2-form is of this type, will need to deal with this

Introduce Maurer-Cartan I-forms on the Lorentz group

$$m^{IJ} := (g^{-1}dg)^{IJ} \qquad g \in \mathrm{SO}(n)$$

Then w^{IJ}, B^{IJ} are different components of a 3-form in $[m, m]^{IJ} \wedge w_{IJ}$ $M \times SO(n)$ $m^{IJ} \wedge B_{IJ}$ Kaluza-Klein spirit - gauge group arising from geometry of "internal" space

14

but there are other components as well

I am going to apply this idea to 4D gravity

There is no interesting theory of 3-forms in 4+6=10D

But can use self-dual 2-forms instead

 $SO(4) \sim SU(2) \times SU(2)$

$$\Sigma^{i} = \left(e^{I} \wedge e^{J}\right)_{sd}$$
$$A^{i} = \left(w^{IJ}\right)_{sd}$$

fields of chiral Plebanski formulation of GR

3-forms are most interesting in 4+3=7D!

Geometry of 3-forms in 7D

Stable forms define a metric

$$g_{C}(\xi,\eta) \operatorname{vol}_{C} = -\frac{1}{6} i_{\xi} C \wedge i_{\eta} C \wedge C$$
C as the "cube root" of the metric
Can also write an explicit formula for the volume

$$\operatorname{vol}_{C} \sim \left(\tilde{\epsilon}^{\mu_{1}\dots\mu_{7}} \tilde{\epsilon}^{\nu_{1}\dots\nu_{7}} \tilde{\epsilon}^{\rho_{1}\dots\rho_{7}} C_{\mu_{1}\nu_{1}\rho_{1}}\dots C_{\mu_{7}\nu_{7}\rho_{7}}\right)^{1/3}$$
When over reals, metric is either Riemannian or signature (4,3)

$$\frac{Canonical expression}{C = e^{123} + e^{1}\Sigma^{1} + e^{2}\Sigma^{2} + e^{3}\Sigma^{3}}$$

$$\Sigma^{1} = e^{45} - e^{67}$$

$$\Sigma^{2} = e^{46} - e^{75}$$

$$\Sigma^{3} = e^{47} - e^{56}$$

Intimate relation with /D spinors

3-form = metric + unit spinor

$$C_{\mu\nu\rho} = \psi^T \gamma_\mu \gamma_\nu \gamma_\rho \psi$$

16

 $\psi^T \psi = 1$

Theory of 3-forms in 7D

$$S[C] = \int_M C \wedge dC + 6\lambda \mathrm{vol}_C$$

Euler-Lagrange equations $dC = \lambda^* C$

can always set $\lambda = 1$ by rescaling 3-form

cone over such metrics can be shown to have holonomy Spin(7)

Can be shown to imply that the metric g_C is Einstein (with non-zero scalar curvature)

But they are more restrictive

- also imply vanishing of some Weyl components

This is a theory with 3 propagating DOF

Unlike 7D GR which has 7 * 8/2 - 2 * 7 = 14 DOF

Claim: the dimensional reduction of this theory on S^3 is 4D gravity theory coupled to a scalar field

canonical example: Hopf fibration $S^7 \to S^4$

Dimensional reduction to 4D

Assume 7D manifold to have SU(2) act on it without fixed pts Has the structure of the principal SU(2) bundle over 4D base Assume C is invariant 3-form

Urbantke metric has 7-dimensional origin!

Topological theory in 7D $S[C] = \int C \wedge dC$ for $\lambda = 0$ we get a topological theory analog of Abelian CS in 3D $dC = 0, \qquad C \mod dB$ <u>Dimensional reduction</u> on S^3 $C = -2\mathrm{Tr}\left(\frac{\phi^3}{3}W^3 + \phi WB\right) + c$ $dC = -2\operatorname{Tr}\left(\phi^2 d\phi W^3 + (\phi^3 F + \phi B)W^2 + d_A(\phi B)W + \phi FB\right) + dc$

$$\begin{aligned} \frac{1}{2} \int C dC &= \int_{\mathrm{SU}(2)} -\frac{2}{3} \mathrm{Tr}(\mathbf{m}^3) \\ &\times \int -2 \mathrm{Tr}(\phi^4 \mathbf{BF} + (\phi^2/2) \mathbf{BB}) + \phi^3 dc \end{aligned}$$

topological BF theory (with non-zero cosmological constant) coupled to topological 3-form field

Dimensional reduction of the full theory

The dimensional reduction of $\lambda \neq 0$ 7D theory gives $f(M) = \frac{1}{\phi^3} \det(\mathbb{I} + \phi^2 M)$ for small $M\Big|_{tf}$ gives GR!

with constraint f(M)=I

 $\label{eq:hermitian} \begin{array}{ll} \mbox{Then expanding} & \frac{\Lambda(\Psi)}{3} = \frac{\phi-1}{\phi^2} + \frac{\phi}{2} {\rm Tr}(\Psi^2) + \dots \end{array}$

The S^3 dim reduction of theory of 3-forms in 7D is 4D gravity theory (in general coupled to a scalar field) indistinguishable from GR for small Weyl curvatures $\Psi\ll 1/\phi$

For $\phi \approx 1$ get small cosmological constant and Planck scale modifications!

size of the internal manifold gives an extra scale!

Geometry of 3-forms in 6D (after Hitchin) A stable (=generic) 3-form $\Omega \in \Lambda^3(M)$ in 6D of the right sign defines an almost complex structure

$$GL(6)/SL(3) \times SL(3)$$

stable forms as coset

Defines an endomorphism $K_{\Omega}: TM \to TM$

$$i_{\xi}(K_{\Omega}(\alpha)) := \alpha \wedge i_{\xi}\Omega \wedge \Omega/v$$

Here defined using its action on one-forms rather than vector fields

Here v is an arbitrary volume form on M

A computation shows that its square is multiple of identity

 $K_{\Omega}(\alpha)^2 = \lambda(\Omega) \mathbb{I}$ $\lambda(\Omega) \neq 0 \Leftrightarrow \text{ form is stable}$

For $\lambda(\Omega) < 0$ get an almost complex structure

$$J_{\Omega} := \frac{1}{\sqrt{-\lambda(\Omega)}} K_{\Omega} \qquad J_{\Omega}^2 = -\mathbb{I}$$

Does not depend on v chosen in definition For the negative sign the canonical expression is

$$\Omega = 2\operatorname{Re}\left(\alpha^{1} \wedge \alpha^{2} \wedge \alpha^{3}\right) \qquad \qquad J_{\Omega}(\alpha^{i}) = \frac{1}{i}\alpha^{i}$$

1

where the complex I-forms are unique modulo SL(3,C)

Can apply J to all 3 slots of Ω

$$\hat{\Omega} := -J_{\Omega}(\Omega) \qquad \qquad \hat{\Omega} = 2\mathrm{Im}\left(\alpha^{1} \wedge \alpha^{2} \wedge \alpha^{3}\right)$$

Theorem (Hitchin): the almost complex structure J_{Ω} is integrable iff $d\Omega = 0$ $d\hat{\Omega} = 0$

Theorem (Hitchin): integrable almost complex structures are critical points of $S[\Omega] = \frac{1}{2} \int_M \Omega \wedge \hat{\Omega}$

when variation is taken within a cohomology class

Relation to 3D gravity with $\Lambda < 0$

starting with $A^i := w^i + \sqrt{-1} e^i$

form a lift to the total space of the principal SU(2) bundle

$$\mathbf{m} := g^{-1} dg, \qquad g \in \mathrm{SU}(2)$$
$$\mathbf{w} := w^{i} \tau^{i}, \qquad \mathbf{e} = e^{i} \tau^{i} \qquad \tau^{i} := (-i/2) \sigma^{i}$$

connection I-form in the
total space of the bundle
$$W = \mathbf{m} + g^{-1} \mathbf{w} g, \qquad E = g^{-1} \mathbf{e} g$$

Chern-Simons (Cartan) connection
$$A := W + \sqrt{-1} E$$

Define
$$\Omega = \operatorname{Re} \left(-\frac{1}{3} \operatorname{Tr}(A^{3}) \right) = \operatorname{Tr} \left(-\frac{1}{3} W^{3} + W E^{2} \right)$$

Theorem: J_{Ω} is integrable iff $d_{\mathbf{w}}\mathbf{e} = 0$ and $\mathbf{f}(\mathbf{w}) = \mathbf{e} \wedge \mathbf{e}$ $\operatorname{SL}(2, \mathbb{C}) \to H^3$

i.e. the 3D metric has constant negative curvature

Theory of forms in 6D

Consider a theory of 2- and 3-forms in 6D

$$S[B,C] = \int_M B \wedge dC + \operatorname{vol}_C \qquad \begin{array}{l} \text{topological theory} \\ C \in \Lambda^3(M) \qquad B \in \Lambda^2(M) \qquad \operatorname{vol}_C := \frac{1}{2}C \wedge \hat{C} \end{array}$$

Euler-Lagrange equations

$$dC = 0$$
 $\Rightarrow J_C$ is integrable $dB = \hat{C}$ $\Rightarrow d\hat{C} = 0$

Dimensional reduction to 3D

$$C = -2\mathrm{Tr}\left(\frac{\phi^3}{3}W^3 + \phi WB\right) + c$$

For simplicity we set

 $\phi = 1,$ c = 0In 3D $B = \pm E \wedge E$

So, consider

$$C = -2\operatorname{Tr}\left(\frac{1}{3}W^3 - WE^2\right) = \operatorname{Re}\left(-\frac{2}{3}\operatorname{Tr}\left(A^3\right)\right)$$
$$A = W + iE$$

So, 6D field equations imply 3D Einstein equations

in general get 3D gravity coupled to topological 2-form field

Summary

Can put Lie algebra valued I- and 2-forms together into a 3-form in a bigger space - variant of KK idea

one necessarily gets more than gravity - scalar in 4D

The origin of 4D SU(2) BF theory - topological theory of 3-forms in 7D

4D gravity (coupled to a scalar field) as the dimensional reduction of a theory of 3-forms in 7D Urbantke metric has 7D origin!

3D gravity arises as the dimensional reduction of a topological theory of 2- and 3-forms in 6D

would be interesting to quantise this theory

Problems of this approach

(if to apply it to real world gravity) No known mechanism to drive $\phi \rightarrow 1$ dynamically

There are 2 solutions with constant ϕ

 $\begin{array}{ll} \phi=2 & \mbox{Round sphere } S^7 & \\ S^7 \to S^4 & \\ \phi=6/5 & \mbox{Squashed sphere } S^7 & \mbox{Hopf bundle} \end{array}$

Both give very large cosmological constant

(order one in Planck units)

Exactly the same problem exists in Kaluza-Klein supergravity $AdS_4 \times S^7 \quad {\rm Freund-Rubin\ solution}$

Also (less so) coupling to matter and "reality conditions" but matter arises by generalising form content and/or number of dimensions reality conditions are either irrelevant or clear in many situations

Thank You!