3D/4D Gravity as the Dimensional Reduction of a theory of 3-forms in 6D/7D

Kirill Krasnov
(Nottingham)
presently at AEI, Golm

LQG community is well aware of the importance of BF theory

- 3D gravity is BF theory
this is why we know how to quantise it - Ponzano-Regge,Turaev-Viro models
- 4D gravity is constrained BF theory

Chiral Plebanski formulation

Non-chiral full Lorentz group based Plebanski

Ashtekar Hamiltonian formulation

Spin Foam Models

This talk is about an unusual perspective on 3D/4D BF theory (and gravity)

They are seen to emerge via dimensional reduction from a theory of a very different nature

Dimensional reduction on S^{3} of a theory 3-forms in 6D/7D
These ideas are new
related to ideas in the subject of topological strings ~2002
But rely on beautiful geometry > 100 years old
I don't yet know if they are useful for physics
But they are natural and beautiful
So may be telling us something important about gravity

Plan

- Review of (chiral) Plebanski formulation
and its generalisations
- Differential forms in Riemannian geometry
- G2 structures, dimensional reduction 7D to 4D
- From 3-forms in 6D to 3D gravity
- Summary

Chiral Plebanski formulation of 4D gravity

Plebanski '77, CDJM '9।

$$
\begin{aligned}
& S[A, B, \Psi]=M_{p}^{2} \int_{M} B^{i} \wedge F^{i}-\frac{1}{2}\left(\frac{\Lambda}{3} \delta^{i j}+\Psi^{i j}\right) B^{i} \wedge B^{j} \\
& i=1,2,3 \text { SO(3) indices }
\end{aligned}
$$

Euler-Lagrange equations

On-shell becomes the self-dual

$$
\begin{aligned}
& d_{A} B^{i}=0 \\
& F^{i}=\left(\frac{\Lambda}{3} \delta^{i j}+\Psi^{2}\right) B^{i}
\end{aligned}
$$

part of Weyl curvature

$$
B^{i} \wedge B^{j} \sim \delta^{i j}
$$

A is the self-dual part of the spin connection compatible with the Urbantke metric

Urbantke metric

$$
g_{B}(\xi, \eta) \operatorname{vol}_{B}=-\frac{1}{6} \epsilon^{i j k} i_{\xi} B^{i} \wedge i_{\eta} B^{j} \wedge B^{k}
$$

Formulation of complex GR, need reality conditions depending on the desired signature

Remarks:

- Hamiltonian formulation of Plebanski gives Ashtekar's new Hamiltonian formulation of GR
- Convenient to make the action dimensionless

Dimensionless metric measures dimensionful distances

$$
M_{p}^{2} B_{o l d}^{i}=B_{n e w}^{i}
$$

Dimensionful metric measures dimensionless distances
(in units of Planck length)
Also

$$
\begin{aligned}
& \Lambda_{\text {old }} / M_{p}^{2}=\Lambda_{\text {new }} \sim 10^{-120} \\
& \Psi_{\text {old }} / M_{p}^{2}=\Psi_{\text {new }} \ll 1
\end{aligned}
$$

dimensionless cosmological constant and Weyl curvature very small in classical situations where can trust GR

$$
\begin{aligned}
& \qquad S[A, B, \Psi]=\int_{M} B^{i} \wedge F^{i}-\frac{1}{2}\left(\frac{\Lambda}{3} \delta^{i j}+\Psi^{i j}\right) B^{i} \wedge B^{j} \\
& \begin{array}{c}
\text { there is no scale in classical GR } \\
\text { not coupled to any matter }
\end{array} \\
& {[B]=2, \quad[A]=1, \quad[\Lambda]=[\Psi]=0}
\end{aligned}
$$

Generalisations of Plebanski

CDJ '91 in the context of "pure connection" formulation of GR realised that there are "neighbours of GR"

$$
S_{\mathrm{CDJ}}[A, \eta]=\int \eta\left(\operatorname{Tr} M^{2}-\frac{1}{2}(\operatorname{Tr} M)^{2}\right)
$$

later studied by Capovilla, and extensively by Bengtsson come in an infinite -parameter family
"cosmological constants" of Bengtsson
were mostly studied in the Hamiltonian formulation
geometrical interpretation was obscure
In 2006 I rediscovered these theories and studied since then
they are all 4D gravity theories describing just two propagating polarisations of the graviton

BF formulation of "deformations of GR"

$$
S[A, B, M, \mu]=\int B^{i} F^{i}-\frac{1}{2} M^{i j} B^{i} B^{j}-\mu(f(M)-\lambda)
$$

integrating out M gives $V(B)$ gravity as "BF plus potential"

General Relativity in Plebanski formulation

Self-Dual Gravity
other interesting choice

$$
f_{\mathrm{det}}=\operatorname{det}(M)
$$

can "integrate out" B,M to get the "pure connection formulation" useful alternative is to just "integrate out" B

These theories no longer have a "preferred" metric - only the conformal class is fixed

GR as the low energy limit of deformations of GR Deformations of GR are UV modifications of GR

Any of these theories will at sufficiently low energies be indistinguishable from GR
Parametrise

$$
M^{i j}=\frac{\Lambda}{3} \delta^{i j}+\Psi^{i j}
$$

Solve $f(M)=\lambda$ for $\Lambda=\Lambda(\Psi)$
For $\Psi \ll 1$ the solution will be of the form

$$
\Lambda(\Psi)=\Lambda_{0}+\alpha \operatorname{Tr}\left(\Psi^{2}\right)+\ldots
$$

can neglect $\operatorname{Tr}\left(\Psi^{2}\right)$ compared to Ψ
E.g.

$$
\operatorname{det}(M)=(\lambda / 3)^{3} \quad \Lambda(\Psi)=\lambda+\frac{3}{2 \lambda} \operatorname{Tr}\left(\Psi^{2}\right)+\ldots
$$

indistinguishable from GR for $\Psi \ll \lambda$
but λ is also the cosmological constant!
in a generic theory with only one scale corrections to GR appear at the same scale as the effective cosmological constant scale

Remarks:

- It was always strange to have an infinite-parameter family of 4D gravity theories with similar properties
- The observation that GR is the low energy limit of any one of them explains specialness of GR
- But then there remains the question of what is the "right" theory from this class, if any
The new development:
Theories of this type arise by dimensional reduction from a certain theory of 3 -forms in 7 dimensions

What comes out is a theory with specific $f(M)$
Moreover, the size of the extra dimension provides another scale

Frame field

Eli Cartan method of moving frames introduced differential forms into geometry

$$
\begin{aligned}
& e^{I}, \quad I=1, \ldots, n \\
& n=\operatorname{dim}(M)
\end{aligned}
$$

collection of I-forms that are declared orthonormal and this defines the metric
frame (generalised tetrad, vielbein) as the square root of the metric

Cartan's structure equations

$$
\begin{gathered}
d e^{I}+w^{I}{ }_{J} \wedge e^{J}=0 \\
F^{I J}:=d w^{I J}+w^{I}{ }_{K} \wedge w^{K J}
\end{gathered}
$$

$$
d s^{2}=\eta_{I J} e^{I} \otimes e^{J}
$$

$$
\mathrm{GL}(D) / \mathrm{SO}(D)
$$

metric as coset
torsion-free condition determines the spin connection
curvature of the spin connection is
Riemann curvature

Cartan connection

Both frame and the spin connection are one-forms

Cartan himself realised that there is a useful construction that puts the two together Cartan connection

Cartan geometry is a generalisation of Riemannian and Kleinian geometry (based on homogeneous group spaces G/H)

CS description of 3D gravity

$$
\begin{array}{cc}
\Lambda^{2} \mathbb{R}^{3} \sim \mathbb{R}^{3} & f^{i}=d w^{i}+\frac{1}{2} \epsilon^{i j k} w^{j} \wedge w^{k} \\
w^{i j}=\epsilon^{i k j} w_{k} & i=1,2,3 \\
f^{i j}=\epsilon^{i k j} f_{k} & F^{i}=0 \quad \Leftrightarrow
\end{array}
$$

$\Lambda<0 \quad$ real and imaginary
$A^{i}:=w^{i}+\sqrt{-1} e^{i}$

$$
d e^{i}+\epsilon^{i j k} w^{j} \wedge e^{k}=0
$$

$$
f^{i}=\frac{1}{2} \epsilon^{i j k} e^{j} \wedge e^{k}
$$

parts of the zero curvature condition

Flat connections are extrema of Chern-Simons functional

$$
S_{\mathrm{CS}}[A]=\int A^{i} \wedge d A^{i}+\frac{1}{3} \epsilon^{i j k} A^{i} \wedge A^{j} \wedge A^{k}
$$

We understand quantum gravity in 3D mostly due to formulation in terms of differential forms!

Similar trick is possible in 4D Mac Dowell-Mansouri formulation

3-Forms

New idea - there is a different way of putting the spin connection and the frame together

Start by forming Lorentz group Lie algebra valued 2-forms

$$
B^{I J}:=e^{I} \wedge e^{J}
$$

Introduce Maurer-Cartan I-forms on the Lorentz group

$$
m^{I J}:=\left(g^{-1} d g\right)^{I J} \quad g \in \mathrm{SO}(n)
$$

Then $w^{I J}, B^{I J}$ are different components of a 3 -form in

$$
\begin{aligned}
& {[m, m]^{I J} \wedge w_{I J}} \\
& m^{I J} \wedge B_{I J}
\end{aligned}
$$

$$
M \times \mathrm{SO}(n)
$$

Kaluza-Klein spirit - gauge group arising from geometry of "internal" space

I am going to apply this idea to 4D gravity
There is no interesting theory of 3 -forms in $4+6=10 \mathrm{D}$
But can use self-dual 2-forms instead

$$
\begin{aligned}
& \mathrm{SO}(4) \sim \mathrm{SU}(2) \times \mathrm{SU}(2) \\
& \quad \Sigma^{i}=\left(e^{I} \wedge e^{J}\right)_{s d} \\
& A^{i}=\left(w^{I J}\right)_{s d}
\end{aligned}
$$

fields of chiral Plebanski formulation of GR

3 -forms are most interesting in 4+3=7D!

Geometry of 3-forms in 7D

Stable forms define a metric

$$
g_{C}(\xi, \eta) \operatorname{vol}_{C}=-\frac{1}{6} i_{\xi} C \wedge i_{\eta} C \wedge C
$$

C as the "cube root" of the metric
Can also write an explicit formula for the volume
stable forms as coset
G_{2} first exceptional Lie algebra, rank 2

3-form in 7D = G2 structure

$$
\operatorname{vol}_{C} \sim\left(\tilde{\epsilon}^{\mu_{1} \ldots \mu_{7}} \tilde{\epsilon}^{\nu_{1} \ldots \nu_{7}} \tilde{\epsilon}^{\rho_{1} \ldots \rho_{7}} C_{\mu_{1} \nu_{1} \rho_{1}} \ldots C_{\mu_{7} \nu_{7} \rho_{7}}\right)^{1 / 3}
$$

When over reals, metric is either Riemannian or signature $(4,3)$

Canonical expression
$C=e^{123}+e^{1} \Sigma^{1}+e^{2} \Sigma^{2}+e^{3} \Sigma^{3}$

$$
\begin{aligned}
& \Sigma^{1}=e^{45}-e^{67} \\
& \Sigma^{2}=e^{46}-e^{75} \quad \text { ASD 2-forms } \\
& \Sigma^{3}=e^{47}-e^{56}
\end{aligned}
$$

Intimate relation with 7D spinors

$$
C_{\mu \nu \rho}=\psi^{T} \gamma_{\mu} \gamma_{\nu} \gamma_{\rho} \psi \quad \psi^{T} \psi=1
$$

Theory of 3-forms in 7D

$$
S[C]=\int_{M} C \wedge d C+6 \lambda \operatorname{vol}_{C}
$$

can always set $\lambda=1$ by rescaling 3 -form
cone over such metrics can be
Euler-Lagrange equations $d C=\lambda^{*} C \quad$ shown to have holonomy Spin (7)
Can be shown to imply that the metric g_{C} is Einstein (with non-zero scalar curvature)
But they are more restrictive

- also imply vanishing of some Weyl components

This is a theory with 3 propagating DOF
Unlike 7D GR which has $7 * 8 / 2-2 * 7=14$ DOF
Claim: the dimensional reduction of this theory on S^{3} is 4D gravity theory coupled to a scalar field
canonical example:
Hopf fibration
$S^{7} \rightarrow S^{4}$

Dimensional reduction to 4D

Assume 7D manifold to have $\operatorname{SU}(2)$ act on it without fixed pts Has the structure of the principal $\operatorname{SU}(2)$ bundle over 4D base Assume C is invariant 3 -form

Easiest to start with
$\phi=$ const,$\quad c=0$
Then

$$
\left.g_{C}\right|_{\text {base }}=\text { Urbantke metric }
$$

Urbantke metric has 7-dimensional origin!

Topological theory in 7D

$S[C]=\int C \wedge d C \quad$ for $\lambda=0$ we get a topological theory

$$
d C=0, \quad C \bmod d B
$$

Dimensional reduction on S^{3}

$$
\begin{aligned}
& C=-2 \operatorname{Tr}\left(\frac{\phi^{3}}{3} W^{3}+\phi W B\right)+c \\
& \quad d C=-2 \operatorname{Tr}\left(\phi^{2} d \phi W^{3}+\left(\phi^{3} F+\phi B\right) W^{2}\right. \\
& \\
& \left.\quad+d_{A}(\phi B) W+\phi F B\right)+d c
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{2} \int C d C= & \int_{\mathrm{SU}(2)}-\frac{2}{3} \operatorname{Tr}\left(\mathbf{m}^{3}\right) \\
& \times \int^{-2 \operatorname{Tr}}\left(\phi^{4} \mathbf{B F}+\left(\phi^{2} / 2\right) \mathbf{B B}\right)+\phi^{3} d c
\end{aligned}
$$

topological BF theory (with non-zero cosmological constant)

Dimensional reduction of the full theory

The dimensional reduction of $\lambda \neq 0$ 7D theory gives

$$
f(M)=\frac{1}{\phi^{3}} \operatorname{det}\left(\mathbb{I}+\phi^{2} M\right) \quad \text { for small }\left.M\right|_{t f} \text { gives GR! }
$$

with constraint $f(M)=1$
Then expanding $\quad \frac{\Lambda(\Psi)}{3}=\frac{\phi-1}{\phi^{2}}+\frac{\phi}{2} \operatorname{Tr}\left(\Psi^{2}\right)+\ldots$
The S^{3} dim reduction of theory of 3 -forms in 7D is 4D gravity theory (in general coupled to a scalar field) indistinguishable from GR for small Weyl curvatures $\Psi \ll 1 / \phi$

For $\phi \approx 1$ get small cosmological constant and Planck scale modifications!

Geometry of 3-forms in 6D (after Hitchin)

A stable (=generic) 3-form $\Omega \in \Lambda^{3}(M)$ in 6D of the right sign defines an almost complex structure

$$
\mathrm{GL}(6) / \mathrm{SL}(3) \times \mathrm{SL}(3)
$$

stable forms as coset
Defines an endomorphism $K_{\Omega}: T M \rightarrow T M$

$$
i_{\xi}\left(K_{\Omega}(\alpha)\right):=\alpha \wedge i_{\xi} \Omega \wedge \Omega / v
$$

Here defined using its action on one-forms
rather than vector fields
Here v is an arbitrary volume form on M
A computation shows that its square is multiple of identity

$$
K_{\Omega}(\alpha)^{2}=\lambda(\Omega) \mathbb{I} \quad \lambda(\Omega) \neq 0 \Leftrightarrow \text { form is stable }
$$

For $\lambda(\Omega)<0$ get an almost complex structure

$$
J_{\Omega}:=\frac{1}{\sqrt{-\lambda(\Omega)}} K_{\Omega} \quad J_{\Omega}^{2}=-\mathbb{I}
$$

Does not depend on v chosen in definition

For the negative sign the canonical expression is

$$
\Omega=2 \operatorname{Re}\left(\alpha^{1} \wedge \alpha^{2} \wedge \alpha^{3}\right) \quad J_{\Omega}\left(\alpha^{i}\right)=\frac{1}{\mathrm{i}} \alpha^{i}
$$

where the complex I-forms are unique modulo $\operatorname{SL}(3, C)$
Can apply J to all 3 slots of Ω

$$
\hat{\Omega}:=-J_{\Omega}(\Omega) \quad \hat{\Omega}=2 \operatorname{Im}\left(\alpha^{1} \wedge \alpha^{2} \wedge \alpha^{3}\right)
$$

Theorem (Hitchin): the almost complex structure J_{Ω} is integrable iff

$$
\begin{aligned}
d \Omega & =0 \\
d \hat{\Omega} & =0
\end{aligned}
$$

Theorem (Hitchin): integrable almost complex structures
are critical points of $S[\Omega]=\frac{1}{2} \int_{M} \Omega \wedge \hat{\Omega}$
when variation is taken within a cohomology class

Relation to 3D gravity with $\Lambda<0$

starting with $A^{i}:=w^{i}+\sqrt{-1} e^{i}$
form a lift to the total space of the principal $\operatorname{SU}(2)$ bundle

$$
\begin{array}{lll}
\mathbf{m}:=g^{-1} d g, & g \in \mathrm{SU}(2) \\
\mathbf{w}:=w^{i} \tau^{i}, & \mathbf{e}=e^{i} \tau^{i} & \tau^{i}:=(-i / 2) \sigma^{i}
\end{array}
$$

connection I-form in the total space of the bundle

$$
W=\mathbf{m}+g^{-1} \mathbf{w} g, \quad E=g^{-1} \mathbf{e} g
$$

Chern-Simons (Cartan) connection $\quad A:=W+\sqrt{-1} E$
Define

$$
\Omega=\operatorname{Re}\left(-\frac{1}{3} \operatorname{Tr}\left(A^{3}\right)\right)=\operatorname{Tr}\left(-\frac{1}{3} W^{3}+W E^{2}\right)
$$

Theorem: J_{Ω} is integrable iff
canonical example

$$
d_{\mathbf{w}} \mathbf{e}=0 \quad \text { and } \quad \mathbf{f}(\mathbf{w})=\mathbf{e} \wedge \mathbf{e}
$$

$$
\mathrm{SL}(2, \mathbb{C}) \rightarrow H^{3}
$$

i.e. the 3 D metric has constant negative curvature

Theory of forms in 6D

Consider a theory of 2- and 3-forms in 6D

$$
\begin{array}{ll}
S[B, C]=\int_{M} B \wedge d C+\operatorname{vol}_{C} & \text { topological theory } \\
C \in \Lambda^{3}(M) \quad B \in \Lambda^{2}(M) & \operatorname{vol}_{C}:=\frac{1}{2} C \wedge \hat{C}
\end{array}
$$

Euler-Lagrange equations

$$
\begin{aligned}
d C & =0 \\
d B & =\hat{C} \quad \Rightarrow d \hat{C}=0
\end{aligned}
$$

Dimensional reduction to 3D

$C=-2 \operatorname{Tr}\left(\frac{\phi^{3}}{3} W^{3}+\phi W B\right)+c$
For simplicity we set

$$
\phi=1, \quad c=0
$$

$$
\ln 3 \mathrm{D} \quad B= \pm E \wedge E
$$

So, consider

$$
\begin{array}{r}
C=-2 \operatorname{Tr}\left(\frac{1}{3} W^{3}-W E^{2}\right)=\operatorname{Re}\left(-\frac{2}{3} \operatorname{Tr}\left(A^{3}\right)\right) \\
A=W+i E
\end{array}
$$

So, 6D field equations imply 3D Einstein equations

Summary

- Can put Lie algebra valued I - and 2-forms together into a 3 -form in a bigger space - variant of KK idea

```
one necessarily gets more than gravity - scalar in 4D
```

The origin of 4D SU(2) BF theory topological theory of 3 -forms in 7D

4D gravity (coupled to a scalar field) as the dimensional reduction of a theory of 3 -forms in 7D

3D gravity arises as the dimensional reduction of a topological theory of 2- and 3 -forms in 6D

Problems of this approach

(if to apply it to real world gravity)

- No known mechanism to drive $\phi \rightarrow 1$ dynamically

There are 2 solutions with constant ϕ

$$
\begin{array}{lll}
\phi=2 & \text { Round sphere } S^{7} & \\
\phi=6 / 5 & \text { Squashed sphere } S^{7} & \begin{array}{l}
S^{7} \rightarrow S^{4} \\
\text { Hopf bundle }
\end{array}
\end{array}
$$

Both give very large cosmological constant (order one in Planck units)

Exactly the same problem exists in Kaluza-Klein supergravity

$$
A d S_{4} \times S^{7} \quad \text { Freund-Rubin solution }
$$

- Also (less so) coupling to matter and "reality conditions"
but matter arises by generalising form content and/or number of dimensions reality conditions are either irrelevant or clear in many situations

Thank You!

