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Boundary conditions, algebras

and entropies



Algebraic subsystems [quant-ph/0103030]

General point of view: System described by unital *-algebra A
Consists of ”accessible operations” on system, e.g. finite resolution

Subsystems correspond directly to unital *-subalgebras

For entanglement, require notion of ’complementary subsystems’

Definition: complement via commutant

AL|R ⊂ A complementary :⇔ (AL)
′ = {X ∈ A|[X ,AL] = 0} = AR and vice

versa

For AL ∪ AR
∼= AL ⊗AR , representations give usual form

Hilbert space subsystems for centerless algebras

HL|R complementary in H :⇔ H ∼= HL ⊗HR .
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Centers [1904.08370]

In general, complementary AL ∪ AR ̸= A, and Z := AL ∩ AR ̸= ∅
Subsystem decompositions can have centers

In particular: AL ∪ AR /∼=AL ⊗AR

Representations can diagonalise Z, so block diagonal:

Hilbert space of decomposition with center

HL∪R
∼=

⊕
E∈spec(Z)

HL,E ⊗HR,E

Density matrices in AL ∪ AR must commute with Z.

AL ∪ AR ∋ ρ =
∑
E

pEρE TrE [ρE ] = 1,
∑
E

pE = 1, pE ≥ 0 (1)
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Boundary subalgebras [1808.05939]

Typical case: Finite region R with boundary conditions

Generically, boundary condition ↔ boundary subalgebra A∂R

E.g. scalar field theory on R: A∂R gen. by ϕ(x), π(x)∀x ∈ ∂R

Dirichlet: ϕ only, Neumann: π only (both central!)

HDir
∼=

⊕
ϕ∂

H[ϕ∂ ] ρ =
∑
ϕ∂

p[ϕ∂ ]ρ[ϕ∂ ] (2)
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Example: Lattice gauge theory

Lattice gauge theories: Gauge invariant algebra always has center ZGauss

Boundary algebra (open boundary conditions!) depends on shape of

boundary:

▶ 1-valent boundary vertices: Electric fields

▶ boundary tangential links: Boundary magnetic fields

Center for first case: generated by casimirs Ce := E 2
e ∀e ⊥ ∂R

Algebra options on R for LGT

Electric: no holonomies he , e ⊂ ∂γ

Magnetic: No electric fields Ee , e ⊥ ∂γ

For nonabelian casimirs, requires ’constancy’(mixedness) of ρ across the

representation:

[Z, ρ] = 0 =⇒ ρ =
∑
E

pEρE , ρ{se} = ρ̄{se} ⊗
⊗
e

Ise
Dse

(3)
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Decomposition of von Neumann entropy

We can compute the Entropy as usual (Ps total weight of representation s):

SvN(ρ) = −Tr[ρ ln(ρ)]

=
∑
E

pESvN(ρ̄E )−
∑
E

pE ln(pE ) +
∑
s

Ps ln(Ds)

= ⟨SvN(ρ̄)⟩p + H(p) + G (p)

(4)

Pieces of von Neumann entropy

1. ⟨SvN(ρ̄)⟩p: Distillable entanglement

2. H(p): Shannon entropy of mixture weights (includes abelian edge modes)

3. G (p): Nonabelian edge mode piece

Can do the same thing for the Rényi entropies e−(k−1)Sk (ρ) =
Tr[ρk ]

Tr[ρ]k
.
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Interpretations

Distillable entanglement Sdist = ⟨SvN(ρ̄)⟩p : No edge modes, only

operationally accessible entanglement. Can transfer into external Qubit

reservoir.

Gauge invariant entropy Sgi = Sdist + H(p) : Entropy calculated on

gauge-invariant observables only.

Full entropy S = Sgi + G (p): Includes Kabat contact terms, edge modes.

Calculated on the full algebra.

Any prescription for entropy must know what it’s calculating:

Replica trick and extended Hilbert space procedure calculate full

entropy S .

Replica trick with gauge-fixed boundary conditions: Sgi .
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Entanglement structures in spin

networks



Notation and basics

Fix now some (compact) Lie group G and for simplicty a valence D.

Spin network vertex Hilbert space

Hx = L2(GD)/Gdiag
∼=

⊕
j

Hj,Hj = Ij ⊗ Vj (5)

Algebra can be understood as having center Ĵ idiag via Gauss constraint.

Graph Hilbert space for γ

Hγ =

⊗
e∈Eγ

L2(Ge)

 /
⊗
x∈Vγ

Gx,diag (6)

Graph boundary: Here as 1-valent vertices

=⇒ Corner algebra Holonomy-fluxes on boundary links (keep only fluxes)

=⇒ Corner center Z∂γ gen. by J2e , e ⊥ ∂γ
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Single link [2012.12622]

Decompose link state on graph into semilinks:

L2(Ge) ∼= ΠGe;R
(L2(Gs(e) × Gt(e))) - Ψ(gs(e), gt(e)) = ψ(gs(e)g

−1
t(e))

Projection onto right-invariant functions of group elements at ends

On basis |js(e)ms(e)ιs(e)⟩ ⊗ |jt(e)mt(e)ιt(e)⟩ acts as projection on

|e; je⟩ =
1√
Dje

∑
me

(−1)je+me |je ,me⟩s(e) |je ,−me⟩t(e) (7)

which is maximally entangled

Glueing of links

Can glue Hs(e) ⊗Ht(e) 7→ Hγ by projecting onto maximally entangled link

states |e; je⟩ or superpositions thereof, or equiv. via Projection operator ΠΓ

Here Γ refers to a to-be-glued subset of semilinks on the unconnected vertices.

Simon Langenscheidt Entanglement and holography in Spin networks 9



Full graph, fixed representations

For fixed-representation spin networks, proceed the same way, collecting labels

into j⃗ = {jv |v ∈ Vγ}:

Hγ,⃗j ∼=
⊗
x∈Vγ

Ijx ⊗
⊗
e∈Eγ

Vje
∼= ΠΓ(

⊗
x∈Vγ

Hx,jx ) (8)

Spin network basis as a Projected Entangled Pair State(PEPS):

|γ; j⃗, {me}e∈∂γ , ι⃗⟩ =
⊗
e∈Γ

⟨e; je |
⊗
x∈Vγ

|jxmx ιx⟩ (9)

This is typical for many bases and has a very clean entanglement structure
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Spin tensor networks [2207.07625]

Preferred ’corner’ of Hilbert space Hγ (now with no restriction on

representations): PEPS-like Spin networks

Weigh maximally entangled states by coefficients |e; g⟩ =
∑
je

gje |e; je⟩

Spin tensor networks from vertex states

|γ;ψ⟩ =
⊗
e∈Γ

⟨e; g |
⊗
x∈Vγ

|ψx⟩ (10)

▶ Clean entanglement structure

▶ Can expect area-law-like behaviour

▶ Strict projection only for g = 1, but this way more states reached
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Types of entanglement [2302.05922]

Can reduce state to various subsystems AR ⊂ Aγ and get different types:

▶ Link entanglement: R = e single link, Ae = B(L2(Ge))

▶ Intertwiner entanglement: R = x , y 2 vertices, AR = B(Ix ⊗ Iy )
▶ Boundary semilink entanglement: R = e1, e2 ⊥ ∂γ,AR = B(Ve1 ⊗ Ve2)
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Algebra of subregion

Now consider bipartition of γ = γL ∪S γR along set of links S

=⇒ New center ZS in AL|R gen. by casimirs J2e on S

Decomposition of subregion density matrix

AL|R ∋ ρ =
∑

E∂,L|R ,ES

p[E∂,L|R ,ES ](ρ̄[E∂,L|R ,ES ]⊗
⊗

e∈∂γL|R

Ije
Dje

) (11)
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Entropy of subregion

Without any details about the state already:

Localisation on entangling surface

G (p) =
∑

e∈∂γL|R

P(je) ln(Dje ) P(je) =
∑

{je′ |e′∈∂γL|R ,e ̸=e}

p[{je′ |e′ ∈ ∂γL|R}]

(12)

So, even when only one sector is active, p[{je}] = δ({je}, {j̄e}), we get a

contribution localised on the boundary of the region

G (δj,j̄) =
∑

e∈∂γL|R

ln(Dj̄e
) (13)

For this case it also becomes clear this accounts for all Link entanglement

Suspicion: Only intertwiner entanglement is distillable
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Random unitaries [1601.01694]

Make statements about large classes of typical states:

Haar random states

H ∋ |ψ⟩ = U |ψ0⟩ , U ∈ U(H) ⟨f ⟩U =

∫
dµHaar (U)f (U) (14)

Focus on Rényi entropy S2 for states with fixed graph pattern γ

=⇒ Spin tensor networks with random vertex |ψx⟩
For high representation labels: Distribution localises on average

⟨e−S2(ρ)⟩U = ⟨Tr[ρ
2]

Tr[ρ]2
⟩U ≈ ⟨Tr[ρ2]⟩U

⟨Tr[ρ]2⟩U
=:

Z1

Z0
(15)
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Fixed spin [2105.06454]

Can rewrite Z1|0 as Ising partition sum

▶ Replica trick to convert multiplication ρ2 into swap operators SγL
▶ ⟨(|ψ⟩ ⟨ψ|)⊗2⟩U expressed through swap operators on vertices

⊗
x

(Ix + Sx)

▶ Expand sum, label swap terms by Z2 Ising spin σx

Average entanglement entropy

Z1|0 =
∑
σ⃗

K 2
j⃗
e−βH1|0 (⃗j;σ⃗) β = ln(Djmean) (16)

In high spin regime, leading term from domain wall close to S :

Universal edge term and distillable intertwiner entanglement

⟨S2(ρ)⟩U ≈
∑

e∈∂γL

ln(Dje ) + S2((ρ)I) (17)

Condition for max entropy: Small intertwiner dimensions
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Spin tensor networks

Cannot ignore center ZS anymore when spins not fixed / p(E ) general

▶ Additional sum in Z1|0 over j⃗ for each replica copy

▶ Factors K⃗jKk⃗ become pendent of p[E ]

▶ Some pairs of sectors (⃗j, k⃗) forbidden by trace =⇒ ∆1|0(⃗j, k⃗; σ⃗)

Entropy for free representation labels

⟨e−S2(ρ)⟩U ≈
∑
j⃗,⃗k

p⃗jp⃗jZ
j⃗,⃗k
1 Z j⃗,⃗k

1 =
∑
σ⃗

∆1(⃗j, k⃗; σ⃗)e
−H1 (⃗j,⃗k;σ⃗) (18)

No longer a notion of ’temperature’ present

Can still perform cumulant expansion over p ⊗ p distribution

Cumulant expansion of entropy

⟨S2(ρ)⟩ ≈ ⟨X ⟩p⊗p +
1

2
(⟨X 2⟩p⊗p − ⟨X ⟩2p⊗p) + . . . X⃗j,⃗k = − ln(Z j⃗,⃗k

1 ) (19)
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Holographic information

transport



Minimal setup: Fixed spins

Application: Entanglement between intertwiners (bulk) and boundary links

Definition: Holography in fixed-representation spin networks

|ψ⟩ ∈ Hγ,⃗j holographic: Induced Φψ : I⃗j → V∂⃗j isometric, Φψ(|ζ⟩) = ⟨ζ |ψ⟩

Can convert into statement about maximal entropy:

Φ†Φ =
II
DI

⇔ S((|ψ⟩ ⟨ψ|)I) = ln(DI) (20)

Can again map to similar Ising model calculation (with ’magnetic fields’)

=⇒ Generic spin networks with small intertwiners are holographic
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Extended setup for spin tensor networks

Can again not ignore nontrivial center Z∂γ , so:
Replace Hilbert space mapping by algebra mapping T : AI → AO

Relevant sector label E = {je : e ⊥ ∂γ} (contrast with bulk spins jB)

Definition: bulk and boundary algebras

AI =
⊕
E∈W

B(IE ) AO =
⊕
E∈W

B(VE )

IE =
⊕
jB

I⃗j=E∪jB
VE =

⊗
e⊥∂γ

Vje

(21)

Largest consistent choice of bulk/boundary subsystems
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Transport superoperator

Use partial trace and extension maps to relate subsystems to full one

P TrO [X ] =
⊕
E

TrIE
[XE ] iI (X ) =

⊕
E

XE ⊗ IVE
(22)

Can use this to define Choi ’transport superoperator’

Definition: state-induced transport superoperator

Tρ(X ) = DI P TrO [iI (X )ρtI ] (23)

For trivial center + pure ρ: Reduces to Hilbert space formulation

Definition: Holography in general

ρ holographic: Induced Tρ isometric in Hilbert-Schmidt ⟨X ,Y ⟩ = Tr[X †Y ]
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Isometry condition

Explicit calculations difficult → Look for necessary criteria

Needed: dim(VE ) = const across all E

Reintroduces notion of scale to system =⇒ Low temperature limit

Isometry condition bulk→ boundary

▶ Restrict to fixed total area (=̂ dim(VE ))

▶ Require isometry in each boundary sector E seperately
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Bulk reconstruction

Interpretation:

Parts of bulk can be reconstructed in finite regions if boundary has lax

conditions (fixed total area) if not many intertwiner degrees of freedom

All this data is reconstructed from pure gauge edge modes

Edge modes ⇄ nonconstant corner gauge degrees of freedom (e.g. Ve)

Global constraint is directly related to global gauge group Gauss

constraint

Possible conclusion 1

Found preferred corner of Hilbert space for holography

Possible conclusion 2

Intertwiner data is rarely reconstructible from edge modes alone
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Final note: Boundary spin entanglement

Also possible: Fix bulk intertwiner data |ζ⟩ ∈ I
Produce induced state Φψ(|ζ⟩)

Boundary Hilbert space factorises

H∂γ,E =
⊗
e⊥∂γ

Vje = HA ⊗HĀ (24)

Studying this perhaps closer to AdS/CFT ”geometry from entanglement”

Would need better understanding of entropy and observables to compare

though
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Wrap-up

Take-home messages:

1. Entropy depends on chosen algebra, different types mean different things

2. Different types of algebras can be assigned to regions depending on

Boundary conditions

3. Spin network states are superselected by boundary casimirs

4. Edge contribution to entropy in spin networks universal and from edge

modes

5. Average spin network states support holographic reconstruction

Simon Langenscheidt Entanglement and holography in Spin networks 24



Thank you for your attention!
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