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quantum spacetime

In classical spacetime, physical variables commute with each other. However, In 
quantum spacetime, some variables doesn't commute and as a result, these variables 
which used to be continuous may become discrete now. 

String theory --- begins with quantum field theory and tries to add gravity.  

Loop quantum gravity --- begins with relativity and tries to add quantum features.
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spin-network
❖ a language to describe 

quantum geometry of space

❖ In Loop Quantum Gravity, at 
each point of time, geometry is 
concentrated on one 
dimensional structures, which is 
simply a network of one 
dimensional, oriented lines 
which are linked together at 
their end points to form a kind 
of net.



spin-network



spin-network

❖ vertex with its lines can be 
corresponding to a geometry   
shape. 



spin-network

❖ As a simple example, take the 
following vertex and six lines, 
you can associate it with a solid 
cube object.

❖ vertex with its lines can be 
corresponding to a geometry   
shape. 
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❖ focus on one vertex and make a 
closure
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Experiment Design 
❖ which states corresponds to the quantum tetrahedron?

❖  a classical geometry of tetrahedron in 
a 3d Euclidean space gives 4 oriented 
areas E(k=1,···,4) = (E(k), E(k), E(k))

❖ ---4 qubit invariant tensor states



Experiment Design 
❖ 1. from the theoretical calculation of general relativity, E(k)   

satisfies the Poisson bracket.

❖ Then, the quantization promotes E(k) to operators Eˆ(k) . we 
replace the poisson bracket with the commutator , [ , ] = ih{ , } gives 
precisely the commutation relation of Jˆ(k)’s , if

A. Ashtekar, A. Corichi, and J. A. Zapata, Class. Quant. Grav. 15, 2955 (1998), gr-qc/9806041.



Experiment Design 
❖ 2.  we could get the SU(2) invariance and the geometrical 

interpretation.

❖ So a state satisfy the condition:

❖ are just the invariant tensor state
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HaimHint+Hrf

❖ Purpose: to simulate an aimed Hamiltonian using the NMR system 
Hamiltonian.
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Hint = πν j
j=1

4

∑ σ z
j + π

2j<k ,=1

4

∑ J jkσ z
jσ z

k

Hrf = − 1
2
ω1 (cos(

i=1

4

∑ ω rf t +φ)σ x
i + sin(ω rf t +φ)σ y

i )

❖ In NMR system, the internal Halmitonian

❖ by adding the ingredient of radio-frequency pulse 

HaimHint+Hrf

❖ Purpose: to simulate an aimed Hamiltonian using the NMR system 
Hamiltonian.
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∫

❖ The evolution of the aimed Halmitonian during a certain time t can be 
almost simulated:



Experiment Set-up

U NMR = e
− i(Hint+Hrf )dt
0

t

∫

❖ can be replaced by the average effect of the evolution of NMR system:

U aim = e
− iHaim dt
0

t

∫

❖ The evolution of the aimed Halmitonian during a certain time t can be 
almost simulated:



Experiment Set-up
❖ What we usually do？if provided a designed Unitary 

evolution

U = e
− iHint dt
0

t

∫
e
− i(Hint+Hrf )dt
0

t

∫
...e

− iHint dt
0

t

∫
e
− i(Hint+Hrf )dt
0

t

∫

U =U freeUlocal ...U freeUlocal
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Experiment Result

Preparation of the pseudo-pure state 

ρeq =
1− ε
16
I+ ε(γ C1σ z

1 + γ C2σ z
2 + γ C3σ z

3 + γ C4σ z
4 )

ρ0000 =
1− ε
16
I+ ε | 0000〉〈0000 |,

David G. Cory, Amr F. Fahmy, and Timothy F. Havel. Proceedings of the National Academy of Sciences, 94(5):1634–1639, 1997. 
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❖ Measure the dihedral angular 

❖ Show the Dynamics  
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❖ A tetrahedron can be uniquely 

determined by six individual 
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❖ In the figure, the transparent 

columns represent the 
theoretical values, while the 
coloured ones represent the 
experimental results.
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❖  Vertex amplitudes in Ooguri’s 
model elate to the classical 
action of gravity when the 
spins are large 

❖ the vertex amplitude of the 
quantum spacetime at the 
Planck level in Ooguri’s model 
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